Scattered pilot based channel estimation is a challenge in the very low SNR reception, in addition for the MIMO transmission case, with the limited scattered pilot density, in certain deployment scenario, the channel estimation is also a challenge task. In this contribution, we expand the MIMO transmission into differential modulation format such that it enables the MSS receiver to perform space time coded MIMO signal reception without the need for channel estimation. The added text is highlighted in green; the deleted text is stroked out.
MIMO differential modulations

1 Introduction
Scattered pilot based channel estimation is a challenge in the very low SNR reception, in addition for the MIMO transmission case, with the limited scattered pilot density, in certain deployment scenario, the channel estimation is also a challenge task. In this contribution, we expand the MIMO transmission into differential modulation format such that it enables the MSS receiver to perform space time coded MIMO signal reception without the need for channel estimation. This not only greatly simplifies the receiver channel estimation complexity, but the space time coding diversity order gain is fully achieved with any loss. The penalty of the differential modulation is consistently 3dB inferior to the ideal coherent demodulation. Therefore the differential MIMO transmission can be employed in the very low CIR reception condition in combination with repetition coding.

2 Differential MIMO modulation and demodulation
We propose to introduce recursive type differential modulation for MIMO modes they are applicable to QPSK constellation. The STC code based differential modulation preserve fully the space time coding gain, with only 3dB penalty compared the ideal coherent STC code. The encoding operation is \(Z_i = \frac{1}{\sqrt{2}} Z_{i-1} S_i \) where \(S_i \) is the matrix-A (for 2, 3 and 4 transmit antennas) with the element \(s_1, s_2 \ldots \) as the input symbol. The decoding is \(S_i = \frac{1}{\sqrt{2}} S_{i-1} Y_i \) where \(Y_i \) is the receiver matrix stacked from the received signal vectors, as we can see from Figure 1, both encoding and decoding is very simple. This is another advantage for the differential STC coding. The typical gain for differential can improve the range dramatically, even with single receive antenna for MSS.

![Figure 1 Modulator and demodulator for differential MIMO transmission (2-transmit case)](image-url)
Comparison of Coherent and Differential STTD Performance (QPSK)

Figure 2 Performance for Differential MIMO Modulation

Performanece of MIMO Differential Modulation
(ITU-VA, 120km/h, CTC, R=1/2)

Figure 2 Coded Performance for Differential MIMO Modulation
3 Specific text changes

[Add the following text into section 8.4.9.4.3.2]

---------Start text proposal-------

Additional optional differential modulations are listed in table zzz-1

Table zzz-1 differential space time code for 2, 3 and 4 transmit antennas

<table>
<thead>
<tr>
<th>Antenna Configuration</th>
<th>Modulation Rule</th>
<th>[S_i]</th>
</tr>
</thead>
</table>
| 2-transmit antenna | \[Z_i = \frac{1}{\sqrt{2}} Z_{i-1} S_i\] | \[
\begin{bmatrix}
s_1 - s_{i-1}^* \\
\frac{1}{s_2} \\
\frac{1}{s_3}
\end{bmatrix}
\] |
| 3-transmit antenna | \[Z_i = \frac{1}{\sqrt{2}} Z_{i-1} S_i\] | \[
\begin{bmatrix}
s_1 & s_2^* & 0 & 0 \\
s_2 & s_1 & s_3 & s_4^* \\
0 & 0 & s_4 & -s_3^*
\end{bmatrix}
\] |
| 4-transmit antenna | \[Z_i = \frac{1}{\sqrt{2}} Z_{i-1} S_i\] | \[
\begin{bmatrix}
s_1 - s_{i-1}^* & 0 & 0 \\
s_2 & s_1^* & 0 & 0 \\
0 & 0 & s_3 & -s_4^* \\
0 & 0 & s_4 & s_3^*
\end{bmatrix}
\] |

---------End text proposal-------

[Add the following text into section 11.8.3.7.2]
<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>1</td>
<td>Bit #0: 64-QAM</td>
<td>SBC-REQ(see 6.3.2.3.23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #1: BTC</td>
<td>SBC-RSQ(see 6.3.2.3.24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #2: CTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #3: STC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #4: AAS Diversity Map Scan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #5: AAS Direct Signaling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #6: H-ARQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #7: Differential Modulation</td>
<td></td>
</tr>
</tbody>
</table>