Scalability of P1149.10
versus
Common Clock Test Interfaces

CJ Clark, Intellitech
Common Clock - Interface is synchronous to clock driven by ATE

Embedded Clock - Clock is embedded in the interface
- While ATE may drive the system clock
 needed by UUT, Clock for UUT
 could come from other source.
P1149.10

Define packet encoder/decoder & distribution Matrix (shaded area)

Define packets for packet decoder
 Enable packet formats to validate link during testing (CRC32, running disparity, etc)

Define vendor documentation for
Enabling P1149.10 interface, enabling Loopback and documenting requirements of interface (system clock, diff swing, Encoding (8b/10b, 64/66b, 128/130b etc)

Testing or implementation of SERDES BIST Is not an objective of the standard.

Packet Decoder/Encoder with Distribution Matrix
Common Clock = 80G/sec = 400 chains, 806 pins and 200Mhz operation
Embedded Clock SERDES = 80G/sec = User Defined chains, 37 pins and user defined Mhz

Bandwidth

<table>
<thead>
<tr>
<th>SI/SO+TAP+CLK</th>
<th>Tester Chan</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

SERDES = 4 pins + 4 pin TAP + clock. Channel bonding is used to have 2, 4 and 8 Serdes lanes.
5 SERDES lanes just included for comparison purposes.
Bandwidth adjusted for encoding bit loss and 2% overhead of packet
Observations

80G bandwidth - 806 pins running 400 scan chains at 200Mhz

P1149.10 - More flexible with number of internal scan-chains and scan-chain architecture. Channel bonding can be used for higher bandwidth or multi-site testing. Users can make their own economic choices.

Embedded clock SERDES is scalable. More bandwidth coming.

Common Clock - reaching ceiling - needs more pins and higher clock rates.

Normalizing for ATE pins Embedded Clock is 5-10x bandwidth than common clock.

- Common Clock 100 pins = 10G @200mhz
 SERDES 10G bandwidth with 9 pins
 11 sites = 99pins = 110G total bandwidth
CEI-25G 2013 25G/sec 16G/sec PCIe 4.0 - coming

Credo, Snowbush, Avago all with 25G SERDES IP in 2013 - Others?
Some with 28G- Xilinx Virtex 7 HT (shipping) GTZ run to 28G/sec

2 CEI-25G SERDES will yield 50G bandwidth

Need 240 pins at 200mhz to equal one CEI-25G interface link

Bandwidth

Intellitech®

11/11/2013
Cost Trade-offs

Probe Card:
- P1149.10 requires Gigabit probe card ('increased' cost) and handler infrastructure.
- Compare with common clock requires increased cost probe card (800+ contacts for single location).

Handler
- Requires gigabit connections but less of them. Could use (Coax however SATA, CAT-6A, Fiber are also choices).

Silicon
- re-using mission mode SERDES so not expecting vendor to implement SERDES just for P1149.10. P1149.10 does not preclude dedicated SERDES either.

No use
- P1149.10 does not mandate it is used during wafer test. So one may use P1149.10 in later stage processes. Instrument access at benchtop, characterization and FPGA configuration.
The numbers

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>3.70</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3.70</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.85</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.93</td>
<td>1.25</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>6.5G w/ 8b/10b</td>
<td>5.07</td>
<td>10.14</td>
<td>20.28</td>
<td>25.35</td>
<td>40.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5G w/ 64/66b</td>
<td>6.18</td>
<td>12.35</td>
<td>24.71</td>
<td>30.88</td>
<td>49.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11G w/64/66b</td>
<td>10.45</td>
<td>20.91</td>
<td>41.81</td>
<td>52.27</td>
<td>83.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16G PCIe 4.0</td>
<td>15.44</td>
<td>30.88</td>
<td>61.76</td>
<td>77.19</td>
<td>123.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25G w/ 128/130b</td>
<td>24.12</td>
<td>48.25</td>
<td>96.49</td>
<td>120.62</td>
<td>192.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI/SO+TAP+CLK</td>
<td>9</td>
<td>13</td>
<td>21</td>
<td>20</td>
<td>37</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>Chains</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>X</td>
<td>25</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Tester Chan</td>
<td>9</td>
<td>13</td>
<td>21</td>
<td>26</td>
<td>37</td>
<td>56</td>
<td>106</td>
<td>206</td>
<td>406</td>
<td>806</td>
</tr>
</tbody>
</table>

Intellitech

11/11/2013