Analog Boundary Scan Description Language (ABSDL)

Bambang Suparjo

ABSDL Development Team Members

- Bambang Suparjo Mentor Graphics
- Adam Cron Synopsys
- Adam Ley Asset-Intertech
- Heiko Ehrenberg Goepel Electronics
- Keith Lofstrom KLIC
- Ken Parker Agilent Tech.
- Pete Collins JTAG Tech.
- Anthony Sparks JTAG Tech.
- Karla May Corelis
- Jake Karrfalt ASC
- Rohit Kapur Synopsys
- Wim Driessen JTAG Tech.

Objectives

- To discuss the status of ABSDL development.
- To identify the features to be added or to be removed.
- To identify the next stage of the development.

Outline of Presentation

- Introduction
- BSDL Description and Mixed-Signal Test (MST) Extension, with semantic checks
- Other Issue
- Conclusion and Future Plan

Introduction

- Effort to continue ABSDL development has been initiated during the 2004 1149.4 meeting.
- The development is based on Straw Dog Proposal-1, proposed by Ken Parker and John McDermid in May 2000.
- The initial proposal has been enhanced to Straw Dog 2.0 and Kitchen Sink 2.2.

Development Approach

- Review the individual requirements for Test Bus Interface Circuit (TBIC) and Analog Boundary Module (ABM) as described in the 1149.4 Standard.
- TBIC operations should follow:
 - Table 1 (Switching Patterns for TBIC)
 - Table 2 (TBIC Switching Assignments for Defined Instructions)
- ABM operations should follow:
 - Table 6 (Switch Patterns for Sample ABM)
 - Table 7 (Functions of ABM Switching Patterns)
 - Table 8 (Switching Pattern Requirements for Sample ABM).

BSDL Description (in general)

- BSDL description of an 1149.4 device.
- Compatible with 1149.1 BSDL.
- Still suitable for 1149.1 Interconnect Testing software.

BSDL Description Components

- Port Description Statements
- Standard and Optional Use Statements
- Component Conformance Statement
- Device Package Pin Mappings
- Grouped Port Identification
- Scan Port Identification
- Instruction Register Description
- Optional Register Description
- Register Access Description
- Boundary Scan Register Description

Pin Types in Port Description Statements

Pin	in	out	inout	linkage
ТАР	X	X		
Digital (Single Ended)	X	X	X	
Digital Diff.	X	X	X	
ATAP (Single Ended)			X	
ATAP Diff.			X	
Analog (Single Ended)			X	
Analog Diff.			X	
Power				X
NC				X

Port Description Statements Example

<pre>port(TAP pins, as per 1149.1 TCK, TDI, TMS: in bit; TDO: out bit; ATAP pins, as per 1149.4 = required to be inout (bidirectional) AT1, AT2: inout bit; ATAPN pins, as per 1149.4 = only required for optional differential ATAP = required to be inout (bidirectional) AT1N, AT2N: inout bit; digital pins, as per 1149.1 = type/ direction not restricted A, B: in bit;</pre>	 digital differential pins, as per 1149.1 = type/ direction not restricted D1, D1N: in bit; D2, D2N: in bit; analog pins, as per 1149.4 = required to be inout (bidirectional) W, Y: inout bit; analog differential pins, as per 1149.4 = required to be inout (bidirectional) X1, X1N : inout bit; X2, X2N : inout bit; linkage pins, as per 1149.1 NC1, NC13: linkage bit; GND, VCC: linkage bit);

Semantic Checks for Port Description Statements

- Port ID's for the two ATAP pins (AT1 and AT2) shall be specified, with pin type INOUT assigned to them.
- If the device has a differential ATAP, port ID's for the additional ATAP pins (AT1N and AT2N) shall be specified, with pin type INOUT assigned to them.
- Analog ports with dot4 test resources shall be specified with pin type INOUT.
- Digital ports with dot4 test resources shall be specified with pin type INOUT.

Semantic Checks for Port Description Statements (Cont.)

- Analog differential ports with dot4 test resources shall be specified with pin type INOUT (both the positive and negative port of the differential pair).
- Digital differential ports with dot4 test resources shall be specified with pin type INOUT (both the positive and negative port of the differential pair).
- Linkage ports with dot4 test resources shall be specified with pin type LINKAGE.

Standard and Optional Use Statements

-- standard use statement, as per 1149.1 use STD_1149_1_2001.all;

-- Get Std 1149.1-2001 attrs and defns

-- optional use statement, as per 1149.1

-- = standard use statement, as per 1149.4 use STD_1149_4_2005.all;

-- Get MST attributes and definitions

Semantic Checks for Standard and Optional Use Statements

 A USE-statement shall exist for a standard 1149.4 package file to obtain the MST attributes definitions from the 1149.4 standard package file string, "STD_1149_4_2005"

Component Conformance Statement

-- component conformance, as per 1149.1 attribute COMPONENT_CONFORMANCE of Kitchen_Sink_2_2 : entity is "STD_1149_1_2001";

Note: The 1149.4 component conformance and its semantic checks are shown in slides 37 and 38 respectively.

Device Package Pin Mappings

attribute PIN_MAP of Kitchen_Sink_2_2 : entity is PHYSICAL_PIN_MAP;

<pre>constant dip24 : PIN_MAP_STRING :=</pre>	
	"TCK:11, TDI:10, TMS:14, " &
NC1 1 24 VCC	"TDO:15, " &
A 2 23 W	"AT1:8, AT2:17, " &
B 3 22 Y	"AT1N:9, AT2N:16, " &
D1 4 21 X1	"A:2, B:3, " &
D1N 5 20 X1N	"D1:4, D1N:5, " &
D2N 6 19 X2N	"D2:7, D2N:6, " &
D2 7 18 X2	"W:23, Y:22, " &
AT1 8 17 AT2	"X1:21, X1N:20, " &
AT1N 9 16 AT2N	"X2:18, X2N:19, " &
TDI 10 15 TDO	"NC1:1, NC13:13, " &
TCK 11 14 TMS	"GND:12, VCC:24";
GND 12 13 NC13	

Grouped Port Identification

-- grouped port identification, as per 1149.1
-- = required for digital differentials
attribute PORT_GROUPING of Kitchen_Sink_2_2 : entity is
 "Differential_Voltage ((D1, D1N),(X1,X1N)),"&
 "Differential_Current ((D2, D2N),(X2,X2N))";

- D1, D1N, D2, D2N digital pins
- X1, X1N, X2, X2n analog pins

Scan Port Identification

attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH); attribute TAP_SCAN_MODE of TMS : signal is true; attribute TAP_SCAN_IN of TDI : signal is true; attribute TAP_SCAN_OUT of TDO : signal is true;

Instruction Register Description

```
attribute INSTRUCTION LENGTH of Kitchen Sink 2 2 : entity is 4;
```

```
attribute INSTRUCTION OPCODE of Kitchen Sink 2 2 : entity is
  -- mandatory instructions, as per 1149.1
    "EXTEST (1000), " &
    "PRELOAD (0010), " &
    "SAMPLE (0010), " &
    "BYPASS (0111), " &
 -- mandatory instruction, as per 1149.4
 -- = opcode may have any value except all ones
 -- = opcode value all zeros is not recommended (as per 1149.1)
    "PROBE (1011), " &
 -- optional instructions, as per 1149.1
    "CLAMP (0100), " &
    "HIGHZ (1101), " &
    "INTEST (1110), " &
    "IDCODE (0001)";
```

attribute INSTRUCTION CAPTURE of Kitchen Sink 2 2 : entity is "0001";

Semantic Checks for Instruction Register Description

- PROBE is a mandatory instruction for an 1149.4 compliant device and therefore shall be defined in attribute INSTRUCTION_OPCODE.
- The opcode value assigned to the PROBE instruction shall be unique.

(note: the opcode for the PROBE can be any value except all ones)

Optional Register Description

Register Access Description

attribute REGISTER_ACCESS of Kitchen_Sink_2_2 : entity is -- access to mandatory registers, as per 1149.1 "BOUNDARY (EXTEST, PRELOAD, SAMPLE), " & "BYPASS (BYPASS), " & "BOUNDARY (INTEST), " &

- -- access to mandatory registers, as per 1149.4
- -- = register BOUNDARY must be accessed by instruction PROBE "BOUNDARY (PROBE), " &
- -- access to optional register, as per 1149.1 "DEVICE ID (IDCODE)";

Semantic Checks for Register Access Description

- Register Access for the mandatory instruction PROBE shall be specified.
- PROBE shall access the Boundary Scan register.

Boundary Scan Register Description

Boundary Length

attribute BOUNDARY_LENGTH of Kitchen_Sink_2_2 : entity is 47;

Boundary Register

attribute BOUNDARY_REGISTER of Kitchen_Sink_2_2 : entity is

(continue in the next few slides)

Digital Pins

```
-- following cells (2) are for the digital pins
-- num cell port function safe [ccell disval rslt]
  "0 (BC_1, A, input, x), " &
  "1 (BC_1, B, input, x), " &
  -- following cells (6) are for the digital differential pins
-- num cell port function safe [ccell disval rslt]
  "2 (BC_1, D1, input, x), " &
  "3 (BC_1, D1N, input, x), " &
  "4 (BC_1, *, internal, x), " & -- D1:D1N Single Ended
  "5 (BC_1, D2, input, x), " &
  "6 (BC_1, D2N, input, x), " &
  "7 (BC_4, *, internal, x), " & -- D2:D2N Single Ended
```

- Cell 4 is the single ended point of D1 and D1N
- Cell 7 is the single ended point of D2 and D2N

TBIC Based Control

 foll	Lowing co	ells	(4) are	e TBIC	base	cc	ontro	ls			
 num	cell po	rt fur	nction	safe	[ccell	di	.sva]	. rs	lt]		
"8	(BC_1,	*,	interr	nal,	0),	"	&				 Ca
"9	(BC_1,	*,	contro	ol,	0),	"	&				 Co
"10	(BC_7,	AT1,	bidir,	,	Ο,	9,	0,	Z),	"	&	 D1
"11	(BC_7,	AT2,	bidir,	,	Ο,	9,	0,	Z),	"	&	 D2

- Safe value for cell 8 is 0 in order to prevent calibration mode from being invoked during 1149.1 EXTEST operation.
- Safe value for cell 9 is 0. It is needed to control both bidirectional cells (cell 10 and 11).
- Safe values for cells 10 and 11 are 0 satisfy the TBIC switching patterns for conventional EXTEST mode and extended interconnect test applications.

Semantic Checks for TBIC Based Control

- Boundary Scan cells shall be specified for TBIC Control (6.3):
 - Calibrate cell, functional value INTERNAL.
 - Control cell, functional value CONTROL; shall be listed in <disable_spec> for the TBIC Base Partition's D1 and D2 cells.
 - D1 cell, AT1 pin, functional value BIDIR;
 <disable_spec> shall be defined.
 - D2 cell, AT2 pin, functional value BIDIR;
 <disable_spec> shall be defined.

TBICN Based Control

 foll	owing co	ells ((4) are TBIC	CN base	contro	ls		
 num	cell po	rt fur	nction safe	[ccell	disval	rslt]		
"14	(BC_1,	*,	internal,	0),	" &			 Ca
"15	(BC_1,	*,	control,	0),	" &			 Co
"16	(BC_7,	AT1N,	bidir,	0,	15, 0,	Z), "	&	 D1
"17	(BC_7,	AT2N,	bidir,	Ο,	15, 0,	Z), "	æ	 D2

- TBICN is needed for fully differential test application.
- In Figure 27 of 1149.4 standard, the name of the TBIC inversion is TBIC(N). The parenthesis needs to be removed in BSDL. Refer to slides 41 and 43.
- The determination of the safe values is similar to the TBIC based control.

Semantic Checks for TBICN Based Control

- If TBICN ports are defined in the <port description> then four boundary scan cells shall be defined for the TBICN control (6.5):
 - Calibrate cell (INTERNAL).
 - Control cell (CONTROL); shall be listed in <disable_spec> for the TBICN Base Partition's D1 and D2.
 - D1 cell, AT1N pin (BIDIR); <disable_spec> shall be defined.
 - D2 cell, AT2N pin (BIDIR); <disable_spec> shall be defined.

TBIC and TBICN Extension Controls

 foll	owing cell	.s ((2) are TBIC	extens	ion	controls	
 num	cell port	fu	nction safe				
"12	(BC_1,	*,	internal,	0), "	&		 D1
"13	(BC_1,	*,	internal,	0), "	&		 D2
 foll	Lowing cel	Ls	(2) are TBIC	extens	ion	controls	
 num	cell port	fu	nction safe				
"18	(BC_1,	*,	internal,	0), "	&		 D1
"19	(BC_1,	*,	internal,	0), "	&		 D2
 f~11	lowing col			T oxtone	iion	controla	

-- following cells (2) are TBICN extension controls
-- num cell port function safe
 "20 (BC_1, *, internal, 0), " & -- D1
 "21 (BC_1, *, internal, 0), " & -- D2

To control additional internal test buses.

Semantic Checks for TBIC and TBICN Extension Controls

- Boundary Scan cells may be specified for TBIC extension control (6.4):
 - D1 cell (INTERNAL)
 - D2 cell (INTERNAL)
- Boundary Scan cells may be specified for TBICN extension control, if exist:
 - D1 cell (INTERNAL)
 - D2 cell (INTERNAL)

Cells Controlling ABMs (single ended)

 foll	owing cell	.s (4) control	the analog signal W	
 num	cell port	function safe	[ccell disval rslt]	
"22	(BC_1,	*, control,	0), "&	C
"23	(BC_7,	W, bidir,	0, 22, 0, Z), " &	D
"24	(BC_1,	*, internal,	0), "&	B
"25	(BC_1,	*, internal,	0), "&	B2

- The safe value of cell 23 needs to be set to 0 in order to prevent the pin from being connected to VG.
- The safe value setting shall be applied to other cells associated to all analog signal pins, in this example, for pins Y, X1, X1N, X2 and X2N.
- Cell 23 is controlled by cell 22.
- Each ABM has its own control cell.

Cells Controlling ABMs (diff.)

- -- following cells (4) control the analog differential signal X1
- -- num cell port function safe [ccell disval rslt]

"30	(BC_1,	*, control,	0), "&	C
"31	(BC_7,	X1, bidir,	0, 30, 0, Z), "&	D
"32	(BC_1,	*, internal,	0), "&	B1
"33	(BC_1,	*, internal,	0), "&	в2

-- following cells (4) control the analog differential signal X1N -- num cell port function safe [ccell disval rslt]

"34 (BC_1,	*, control,	0), "&	C
"35 (BC_7,	X1N, bidir,	0, 34, 0, Z), "	& D
"36 (BC_1,	*, internal,	0), "&	B1
"37 (BC 1,	*, internal,	0), "&	в2

Semantic Checks for Cells Controlling ABMs

- Boundary Scan cells shall be specified for analog I/O pins (single-ended and differential) (7.3.5):
 - Control cell (CONTROL)
 - Data cell, analog I/O pin (BIDIR); <disable_spec> shall be defined
 - B1 cell, AB1 (INTERNAL)
 - B2 cell, AB2 (INTERNAL)

Semantic Checks (Common for Boundary Scan Register)

- If there are no TBICN ports defined in the <port description> then there shall be no Boundary Scan Cells defined for the TBICN control.
- Safe values shall be defined for all TBIC, TBICN, TBIC Extension, TBICN Extension, and ABM Boundary Scan Cells.
- The disable result for all BIDIR cells shall be Z.
- Cell assignments shall be unique; Boundary Scan cells shall not be shared for multiple ABM or TBIC/TBICN control or TBIC/TBICN Extensions control and shall not be used for multiple functions

MST Extension

- Component Conformance Statement
- ATAP Identification Statement
- TBIC Statement
- ABM Pins Statement
- Differential Pins Statement

Component Conformance Statement

Statement

```
<MST component conformance statement> ::=
    attribute MST_Component_Conformance of <<u>component name</u>> : entity is
    <MST conformance string>;
<MST conformance string> ::= " <MST conformance identification> "
<MST conformance identification> ::= STD 1149 4 1999
```

Example

```
-- component conformance, as per 1149.4
attribute MST_Component_Conformance of Kitchen_Sink_2_2 : entity is
    "STD_1149_4_1999";
```

Semantic Checks for Component Conformance Statement

- Component conformance shall be specified with the attribute MST_Component_Conformance.
- The only valid <conformance string> is "STD_1149_4_1999";

ATAP Identification Statement

Statement

<MST ATAP identification statement> ::=
 attribute MST_AT1 of <component name> : entity is <port ID string>;
 attribute MST_AT2 of <component name> : entity is <port ID string>;
 attribute MST_AT1N of <component name> : entity is <port ID string>;
 attribute MST_AT2N of <component name> : entity is <port ID string>;
 attribute MST_AT2N of <component name> : entity is <port ID string>;
 attribute MST_AT2N of <component name> : entity is <port ID string>;
 attribute MST_AT2N of <component name> : entity is <port ID string>;
 attribute MST_AT2N of <component name> : entity is <port ID string>;
}

Example

-- ATAP port identification, as per 1149.4 attribute MST_AT1 of Kitchen_Sink_2_2 : entity is "AT1"; attribute MST AT2 of Kitchen Sink 2 2 : entity is "AT2";

```
-- ATAPN port identification, as per 1149.4
-- = only required for optional differential ATAP
attribute MST_AT1N of Kitchen_Sink_2_2 : entity is "AT1N";
attribute MST_AT2N of Kitchen_Sink_2_2 : entity is "AT2N";
```

Semantic Checks for ATAP Identification Statement

- The ATAP ports shall be identified in attributes MST_AT1 and MST_AT2, respectively.
- The pin type for the two ATAP ports shall be defined in the <Port description> as INOUT.
- For a differential ATAP, the additional ATAP pins (AT1N and AT2N) shall be identified in attributes MST_AT1N and MST_AT2N, respectively, otherwise these attributes shall not be present.
- The pin type for the two additional ATAP ports shall be defined in the <Port description> as INOUT.

TBIC Statement

```
-- TBIC register, as per 1149.4
-- = ref tables 1 and 2
attribute MST TBIC of Kitchen Sink 2 2 : entity is
  -- Ca num Co num
     "8, 9:"&
  -- { partition name D1 num D2 num}
     " IATBO (10, 11), " &
     " IATB1 (12, 13), " &
     " IATB2 (18, 19)";
-- TBICN register, as per 1149.4
-- = ref tables 1 and 2
attribute MST TBICN of Kitchen Sink 2 2 : entity is
  -- Ca num Co num
     "14, 15 : " &
  -- {Npartition name D1 num D2 num}
     "NIATB1 (16, 17), " &
     "NIATB2 (20, 21)";
```

Semantic Checks for TBIC Statement

- The cell assignment for TBIC control shall be specified in the attribute MST_TBIC.
- The first cell <Ca_num> in this attribute shall be the calibrate cell for the TBIC; the cell shall be listed in the Boundary Scan Register as INTERNAL cell.
- The second cell <Co_num> in this attribute shall be the control cell for the TBIC; the cell shall be defined in the Boundary Scan Register with function CONTROL and shall be listed in the <disable spec> for the ATAP ports.
- A <partition_name> for the TBIC Base Partition shall be specified with its two data cells <D1_num> and <D2_num>; the data cells shall be defined in the Boundary Scan Register.
- TBIC extensions are specified with a <partition_name> and the assigned data cells; the data cells shall be defined in the Boundary Scan Register; the listing order for multiple TBIC extensions is not relevant.

Semantic Checks for TBIC Statement (cont.)

- If a differential ATAP is implemented in the device, the cell assignment for TBICN control shall be specified in the attribute MST_TBICN, otherwise this attribute shall not be present.
- The first cell <Ca_num> in this attribute shall be the calibrate cell for the TBICN; the cell shall be listed in the Boundary Scan Register as INTERNAL cell.
- The second cell <Co_num> in this attribute shall be the control cell for the TBICN; the cell shall be defined in the Boundary Scan Register with function CONTROL and shall be listed in the <disable spec> for the additional ATAP ports.
- A <Npartition_name> for the TBICN Base Partition shall be specified with its two data cells <D1_num> and <D2_num>; the data cells shall be defined in the Boundary Scan Register.
- TBICN extensions are specified with a <Npartition_name> and the assigned data cells; the data cells shall be defined in the Boundary Scan Register; the listing order for multiple TBICN extensions is not relevant.

ABM Pins Statement

```
attribute MST_ABM_Pins of Kitchen_Sink_2_2 : entity is
-- ABMs, as per 1149.4 = ref tables 6, 7, and 8
-- port partition_name C_num D_num B1_num B2_num
"W ( IATB0: 22, 23, 24, 25 ), " &
"Y ( IATB0: 26, 27, 28, 29 ), " &
"X1 ( IATB1: 30, 31, 32, 33 ), " &
"X1 ( NIATB1: 34, 35, 36, 37 ), " &
"X2 ( IATB2: 38, 39, 40, 41 ), " &
"X2N ( NIATB2: 42, 43, 44, 45 )";
```

- W is the analog signal pin
- IATBO is the TBIC partition to be used for all 4 cells associated to pin W.
- The above explanation is also applied to other analog pins, Y, X1, X1N, X2 and X2N.

Semantic Checks for ABM Pins Statement

- Every ABM shall be listed in attribute MST_ABM_Pins
- Each ABM shall be listed with its port ID, as defined in the port description (attribute <port>), followed by the TBIC partition it is connected to and the four Boundary Scan cells assigned to the ABM control register.
- The TBIC partition name shall be defined in <MST_TBIC>.
- If the ABM is connected to a TBICN partition, than that partition name shall be defined in <MST_TBICN>.
- The order of the Boundary Scan cell assignment in the ABM pins table is the following: Control cell (C_num), Data cell (D_num), B1 cell (B1_num), and B2 cell (B2_num).

Note: The bit order in this attribute is referring to the bit order in Table 8 in the standard.

Semantic Checks for ABM Pins Statement (cont.)

- A Boundary Scan cell assigned to <C_num> shall be defined in <BOUNDARY_REGISTER> as CONTROL cell.
- A Boundary Scan cell assigned to <D_num> shall be defined in <BOUNDARY_REGISTER> as BIDIR cell and shall have a <disable_spec> which specifies <C_num> as its control cell.
- A Boundary Scan cell assigned to <B1_num> shall be defined in <BOUNDARY_REGISTER> as INTERNAL cell.
- A Boundary Scan cell assigned to <B2_num> shall be defined in <BOUNDARY_REGISTER> as INTERNAL cell.

Differential Pins Statement

```
attribute MST_Diff_Pins of Kitchen_Sink_2_2 : entity is
-- DBMs at single-ended side of differential drivers/receivers
-- representative_port associated_port num
"D1 : D1N ( 4), " &
"D2 : D2N ( 7)";
```

- The pin order defines the polarity i.e. D1 is positive and D1N is negative.
- Cell 4 is the single ended point of D1 and D1N.
- Cell 7 is the single ended point of D2 and D2N.

Semantic Checks for Differential Pins Statement

- Boundary Scan data cell numbers for DBMs on the single-ended side of differential drivers/receivers shall be assigned to the respective differential port pair in attribute MST_DIFF_PINS.
- First, the representative port ID shall be listed, then the associated port ID, followed by the Boundary Scan cell number.
- The two port ID's shall be defined in the port description (attribute <port>).
- The DBM's Boundary Scan cell shall be defined in the attribute <Boundary_Register>.

Other Issue

How to describe internal cells in ABSDL?

 Which patterns would be valid at ABM that wired to a linkage pin?

Conclusion and Future Plan

- Basic requirements of ABSDL description have been identified.
- More complex or specific conditions need to be identified to provide more stable ABSDL description.