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A.5.x Basic Concepts

Let p be a prime, k > 1 an integer and IK = IFpk be the k�th degree Galois
extension of the prime Galois �eld IFp.

I The root power bases of IK.
Let b 2 IFp be such that

b
p�1

q ; for all primes qjk:

Then the polynomial fb(x) = xk � b is irreducible over IFp and it generates
IK up to isomorphism. If � 2 IK is a root of f , thus �k = b, then

B = f1; �; �2; : : : ; �k�1

is a root power base for IK over IFp. The concept of Kummer extensions
over the rational �eld is related to this.

II The Frobenius in a root power base The Forbenius map � : IK �! IK
de�ned by

�(�) = �p; 8� 2 IK

is an automorphism and it generates the Galois group of IK over IFp. Suppose
that ip = mik+ri, with 0 � ri < k, for i = 1; 2; : : : ; k�1. As a consequence,
for elements � 2 IK developed over the base B,
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This shows that raising an element in IK to the power p is reduced to

(i) Multiplying its coe�cients ai in the power root base B by some �xed
constants bmi , which only depend upon the choice of the element b 2 IFp
which generates the extension.

(ii) Consequently permuting these products according to the rule i 7! ri; i =
1; 2; : : : ; k � 1.



III Roots of Unity Consider the case when p and k are related by

p = 2km+ 1: (1)

In this case, ri = i and mi = 2mi; i = 1; 2; : : : k � 1. Furthermore,

bmi = bi�
p�1

k = �i;

where � = b
p�1

k 2 IFp is a p�th primitive root of unity. In this particular
case thus, the action of the Frobenius has the additional properties:

(iii) The permutation in (i) is the identity (since ri = i).
(iv) The multipliers bmi in (i) are actually roots of unity.

A.5.x+1 Arithmetic

The bases for �nite extension �elds introduced in A.5.x are practical for high
performance arithmetic. The choice of the �eld characteristic may in this case
be made, so as to ease the arithmetic. Practical choices of p will

(v) Be \close" to the machine word length B, so as to take maximal advantage
of the base machine arithmetic and make modular reduction simple. Thus
p = B � l, where l is among the smallest positive integers making p prime,
or p = 231 � 1, or p = 264 � 232 + 1 are some examples of practical choices
for the characteristic p.

We shall denote �elds with characteristic chosen this way medium Galois

�elds. We also make the implicit assumption that medium Galois �elds are pre-
sented in a root power base B. The name is given since the characteristic p close
to machine word length lays between the most frequent, extreme, cases which
are p = 2, a small characteristic requiring a large extension degree k and degree
k = 1, for which the characteristic p has to be large. For medium Galois �elds,
one may use as a rule of thumb the fact that the amount of information upon
which security is based is given by �k(p), with �k being the k�th cyclotomic
polynomial. The best security is thus achieved for prime values of k. Note that
�k(p) is the size of the largest multiplicative subgroup of IK.

We now give some rules for the arithmetic in medium Galois �elds. In the
complexity discussion of these operations, one must consider that multiplication
in IFp is machine integer multiplication, since by the choice of p, elements of IFp
require one machine word.

A.5.x+1.1 Multiplication in the medium Galois �elds

Let �rst x; y 2 IFp; multiplication in IFp, thus computing z = x � y 2 IFp consists
of one integer multiplication and a subsequent reduction mod p, where use of
the special choice (v) of p may be made.



Let �; �0 2 IK. Then
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and the coe�cients with index i � k are supposed to be 0. The advantage of the
root power consists in the fact that the reduction modulo f(x) of the product of
the polynomial representations for � and �0 is trivial essentially amounting to k
multiplications and k additions in IFp. to cj ; j < k. The action of the Frobenius
automorphism on � is:

A.5.x+1.2 Exponentiation in the medium Galois �elds

If 1 < n < pk�1 is an exponent, a quick way for computing �n uses the p - adic
representation of n : n =
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one has thus to compute the powers �ni , apply the Frobenius map { resp. powers
thereof { and multiply. Compared to the naive binary method, one reduces thus
the number of squarings by a factor of 1=k, from k log(p) to log(p).

A.5.x+1.3 Fast Convolutions

The multiplication of two elements �; �0 2 IK, represented as polynomials in �
can be done by using fast convolutions. We recommend in particular two types
of fast convolutions:

(vi) The Fourier transform, which becomes with the special choice of p given by
(1) a Number Field Transform (NFT, [2]). This is particularly e�cient when
k is close to a power of 2 { e.g. k = 31. Products of powers of small primes
(2; 3; 5) are the next best guess: e.g. k = 11 = 22 �3�1; k = 17 = 2�32�1; k =
23 = 23 � 3� 1; etc:.

(vii) The Karatsuba method or the more general Toom - Cook transforms [5],
resp. \small Winogradow transforms" [2] are a possible alternative to NFT
and may be appealing, for instance by the ease of implementation.

Note that the use of fast convolutions is responsible for the major perfor-
mance improvements for arithmetic in medium Galois �elds as compared to
prime �elds. This is due to the fact that the operations required by these con-
volutions take place in the prime �eld of the extensions itself and we thus have
no explosion of the size of intermediate values, which a typical problem specially
for Toom { Cook. In practice the advantages due to convolutions are superior
to the ones resulting from the ease of modular reduction and use of Frobenius.



A.5.x+1.4 Parallelization

The use of automorphisms for exponentiation has a further advantage: the al-
gorithm for exponentiation in Galois extensions is highly parallel. In fact the
exponentiations �ni can all be performed in parallel; they share the computa-
tion of the squares si = �2

i

; i = 1; 2; : : : ; log(p). With k processors, the run-time
may thus be reduced by a further factor k=2 { the half stems from the fact that
on the average only 1=2 of the processors will be active for each value of si.

With the above notation, an exponentiation in IK can use parallel processor
capacity according to the following scheme:

A Input � 2 IK and n, such that the power 
 = �n needs to be computed.

B Write the p-adic representation of n : n =
P

j njp
j .

C For j = 0; 1; : : : ; k � 1 set 
j = 1.

D For i = 0; 1; : : : ; log2(p) do following:

a) compute �i = �2
i

(serial step).
b) for j = 0; 1; : : : ; k�1, if nj & 2i then 
j = 
j ��i (parallel step).

E Compute 
 =
Q

j 
j

For special values of p as for example p = 264�232+1, a parallel chip architecture
for the single multiplications and squarings may be considered. Using fast Fourier
transform and k parallel gates, multiplication may be reduced to log(k) steps.
Using k such special purpose processors, exponentiation is reduced from
O
�
k3 � log(p)

�
to O

�
log(k) log(p)

�
steps.

1 Claimed Advantages

This particular presentation of �nite extension �elds was �rst suggested to the
cryptographic community in a paper presented in 1997 at the Workshop for
Fast Software Encryption in Haifa [6]. In 1998, [3] coined the name of OEF
(optimal extension �elds) for �nite extension �elds presented over a root power
base. The name thus implicitly refers both to the �elds (which are unique up
to isomorphism) and to the special base in which their elements are presented.
Special choices of prime characteristics close to machine word length are made
as above. The use of properties of the Frobenius was suggested in the 1999 paper
[4] for applications to elliptic curves cryptosystems. The choice (1) of p such as
that IFp contains a 2k�th root of unity together with the use of fast convolutions
for multiplication and Frobenius for exponentiation was �rst (only ?) suggested
in [6]. This improvements apply clearly to the cases treated in [3] and [4] too.
Medium galois �elds may by used not only for elliptic curve but also for discrete
logarithm based curve systems. This holds without restriction for the Di�e -
Hellman algorithm, why other algorithms require some adaptions. The use of
medium galois �elds may turn Di�e Hellman into a very performant public key
algorithm, improvement factors of over 10 being current.



2 Security Assesment Considerations

The security of discrete logarithm based public key cryptosystems over medium
galois �elds is given by the security of the corresponding discrete logarithm
problem, which is according to [1] comparable to the one in prime �elds and
superior to characteristic 2 �elds. Considering the possibility of sub�eld attacks,
the proper measure of information for an extension �eld IFq = IFpk is �k(p)
rather then q�1; the two �gures are equal when k is a prime and di�er the most
when k is even. The known complexity bounds for a given attack should thus
be applied to �k(p) rather then q� 1. E.g., for a discrete logarithm attack with
complexity Ln(1=3), the security evaluation is L�k(p)(1=3).

3 Known Limiatations and Disadvantages

The adaption of algorithms which, like DSA, require a prime factor of �xed
length, rjp � 1 is more di�cult, when relpacing p by a prime power pk for the
case of medium galois �elds.

4 Intellectual Property Issues

The intellectual property of the described techniques is protected by FingerPIN
AG, Zurich, together with the author. A letter of intention has been provided.
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