
Submission to IEEE P1363

PSS: Provably Secure Encoding Method

for Digital Signatures

Mihir Bellare
� Phillip Rogawayy

August 1998

Abstract

We describe two encoding methods: EMSA-PSS, for signing with appendix, and EMSR-PSS, for

signing with message recovery. These encodings are appropriate for signatures based on the RSA

or Rabin/Williams primitive. The methods are as simple and e�cient as the methods in the

current P1363 draft (based on X9.31 and ISO 9796), but they have better demonstrated security.

In particular, treating the underlying hash function as ideal, EMSA-PSS and EMSR-PSS give

rise to provably-secure schemes: the ability to forge implies the ability to invert the underlying

trapdoor permutation. In fact, when the underlying primitive is RSA, the schemes are not

only provably secure, but are so in a tight way: the ability to forge with a certain amount

of computational resources implies the ability to invert RSA (on the same size modulus) with

essentially the same computational resources. Additional bene�ts are described in the body of

this paper.

The methods described in this contribution are from our Eurocrypt '96 paper, The exact

security of digital signatures| How to sign with RSA and Rabin [3].

�Department of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La

Jolla, California 92093. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported by

NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation Fellowship in Science and Engineering.
y Department of Computer Science, University of California at Davis, Davis, California 95616. E-

mail: rogaway@cs.ucdavis.edu. URL: http://www.cs.ucdavis.edu/~rogaway. Supported by NSF CAREER Award

CCR-9624560, and RSA Data Security { MICRO Grant 97-150.

1

Contents

1 Description of the Encoding Methods 3

1.1 Overview . 3

1.2 Encoding Method for Signatures with Appendix: EMSA-PSS 3

1.2.1 Encoding Operation . 3

1.2.2 Decoding Operation . 4

1.2.3 Notes . 5

1.3 Encoding Method for Signatures with Message Recovery: EMSR-PSS 7

1.3.1 Encoding Operation . 8

1.3.2 Decoding Operation . 9

1.3.3 Notes . 10

2 Attributes and Advantages of the Encoding Methods 10

2.1 Enumeration of Attributes and Advantages . 10

2.2 Comment . 11

3 Security Assessment of the Encoding Methods 12

4 Limitations 12

5 Intellectual Property Statement 13

References 13

2

1 Description of the Encoding Methods

1.1 Overview

To compute the signature of a message M with a trapdoor bijection such as the RSA primitive,

prevailing practice is to �rst encode the message M into a message representative, f , and then

apply the trapdoor-requiring direction of the function to arrive at the signature. For example, to

sign M with RSA one maps M to a number f , where f < n, with n the RSA modulus, and then

the signature of M is s = fd mod n, where d is the RSA decryption exponent.

This contribution describes a way to do the message encoding step of the process outlined above,

that is, the M 7! f mapping. The encoding method we describe is from our Eurocrypt '96 paper,

The exact security of digital signatures | How to sign with RSA and Rabin [3]. Our encoding

method is simple and e�cient, yet has proven security properties.

Actually we give two message encoding methods. The �rst, EMSA-PSS, does not embed the

message M into the message representative f . This encoding method is used for signature schemes

with appendix: the message M needs to be transmitted along with its signature s. The second

encoding method, EMSR-PSS, embeds as much of the messageM into the message representative f

as will �t. The remaining portion of the message, if any, will have to be transmitted along with s.

This is for signature schemes permitting message recovery: the message M is recovered from the

signature s and the remaining portion of the message, if any, which couldn't be packaged into the

signature.

Here we document the methods. For the materiel providing and supporting the technical

security claims, see [3].

1.2 Encoding Method for Signatures with Appendix: EMSA-PSS

EMSA-PSS is an encoding method for signatures with appendix based on a hash function. It is

intended for use with IFSA (integer factorization signature schemes with appendix). The encoding

method is parameterized by a mask generation function, G. Recall that a mask generation function

returns as many octets as requested. For b � 0 a number, we indicate by G(x)[b] that we request b

octets to be generated by applying the mask generation function G to x.

The message encoding process includes the selection of a random seed seed of seedLen octets, and

the application of a mask generation function G, producing a string w of wLen octets. The values

seedLen and wLen could either be �xed constants, parameters associated to the underlying key, or

inputs to the encoding and decoding operations. Below, we take them as constants: seedLen =

wLen = 20 octets. We discuss in Section 1.2.3 how to adapt the method to allow seedLen and/or

wLen to be inputs to the encoding and decoding operations. We also discuss in Section 1.2.3

changing slightly the arguments to the mask generation function G.

1.2.1 Encoding Operation

Input:

| the octet string M , the message

| the number l, which is the maximum bit length of the output.

Output: a message representative, which is an integer f of bit length at most l; or \error"

3

The message representative f is computed by the following or an equivalent sequence of steps.

(Also see Figure 1.)

1. If the length ofM in octets, mLen, is greater than the length limitation (eg., mLen � 261�21),

or l < 320, then return \error". (More generally, the shortest possible message representative

is wLen+ seedLen octets.)

2. Let oLen = dl=8e denote the maximal length of the message representative in octets. (Note

oLen � 40 octets by Step 1.)

3. Generate a fresh, random octet string, seed, having 20 octets.

4. Let w = G(seed kM)[20]. (Recall that this means to use the mask generation function to

make 20 octets.)

5. Let expandedW = G(w)[oLen� 20]. (The length of expandedW is at least 20 octets.)

6. Let seedMask = expandedW [1::20] be the �rst 20 octets of expandedW .

7. Let remainMask = expandedW [21::oLen�20] be the remaining oLen�40 octets of expandedW .

8. Let maskedSeed = seed � seedMask.

9. Let T = w k maskedSeed k remainMask.

10. Convert the octet string T to the binary number f which it represents using BS2IP.

11. Return f .

1.2.2 Decoding Operation

Input:

| the octet string M , the message

| the number l, which is the maximum bit length of the output

| the message representative, which is an integer f � 0

Output: \valid" if f is a correct message representative for M ; \invalid" otherwise

The validity indicator shall be computed by the following or an equivalent sequence of steps.

1. If the length ofM in octets, mLen, is greater than the length limitation (eg., mLen � 261�21),

or l < 320, then return \invalid".

2. Let oLen = dl=8e denote the maximal length of the message representative in octets.

3. Convert f into the octet string T of length oLen which represents it using I2OSP.

4. Let w = T [1::20] be the �rst 20 octets of T .

5. Let maskedSeed = T [21::40] be the next 20 octets of T .

6. Let remainMask = T [41::oLen] be the remaining oLen octets of T .

7. Let expandedW = G(w)[oLen� 20].

8. Let seedMask = expandedW [1::20].

9. Let remainMask2 = expandedW [21::oLen � 20].

10. Let seed = maskedSeed � seedMask.

11. If G(seed kM)[20] 6= w, or remainMask2 6= remainMask, then return \invalid". Otherwise

return \valid".

4

M seed
XXXXXXXXXXXXXXXXX

�����������������

?

w maskedSeed remainMask

seedMask

�
?
�

?

G0

G1

-

6
G2

Figure 1: EMSA-PSS. Computing the message representative, the pieces of which (prior to integer conver-

sion) are darkened. Here G0(M; seed) = G(seed kM)[20], G1(x) denotes the �rst 20 octets of G(x)[l � 20],

and G2(x) denotes the remaining octets. Di�erent ways to instantiate G0, G1 and G2 are discussed in the

body of the paper.

1.2.3 Notes

Remark 1.1 Consider the method above except make seedLen an input to the encoding and

decoding process. In particular, suppose the forger may select a chosen value of seedLen having

seen messages signed with respect to some other value of seedLen. Then the resulting mechanism

is not secure. Let us illustrate.

Above we concatenated seed and M and then applied G in order to get w. Let the adversary

have the signature s of some message M , a signature which uses a seed seed of length seedLen. Let

seed = seed1 k seed2 , where seed2 is not the empty string. Then the adversary immediately knows

a signature for the message seed2 kM with respect to seed seed1 , since s itself is such a signature.

Thus the signature of a new message has been created.

As can be seen from this example, careless combining of M and seed prior to hashing allows

one to forge messages with one value of seedLen using the signature associated to another set of

encoding parameters. This was not ruled out by the proof of [3] because the values of seedLen and

wLen were �xed.

If seedLen is to be regarded as an input, the mask generation function could be treated as a

function of multiple arguments, each of them meaningfully di�erentiated. In particular, a suitable

instantiation of the mask generation function would encode the length of each of its arguments.

5

The desired output length could also be encoded. For example, to compute G(x1; x2; : : : ; xi)[b] one

could �rst set

x = x1 k I2OSP8(jx1j) k x2 k I2OSP8(jx2j) k � � � k xi k I2OSP8(jxij) k I2OSP8(b)

and then use x to generate a string of b octets using the method currently described as the mask

generation function MGF1 of [6]. Here jxij denotes the length of xi, and I2OSP8(i) is the 8-octet

string which encodes the number i.

Remark 1.2 The proof of security assumes two (unrelated) random oracles, g and h. Above we

used a single mask generation function, G, to instantiate both of these oracles. To keep separate

what are conceptually (and in proofs) independent random oracles one could encode a unique

identi�er inside the scope of the mask generation function. For this particular protocol, this turns

out to be unnecessary, at least insofar as interactions among these two oracles. That is, provable

security remains (in the random-oracle model) even had one used the same random oracle for what

are, in [3], two distinct random oracles. Nonetheless, we believe that separating the di�erent uses

of the mask generation function is a generally good practice. It makes security more transparent

and, when all algorithms do this, it avoids interaction among hash functions of di�erent protocols.

Remark 1.3

Combining the last two comments, the encoding function for EMSA-PSS could be as follows. Note

the change in arguments to G at lines 4 and 5 for the encoding procedure, and the analogous change

in the decoding procedure.

EMSA-PSS Encoding (with multiple-argument mask generation function)

1. If the length of M , mLen, is greater than the length limitation (eg., mLen � 260), or l <

8(wLen+ seedLen), then return \error".

2. Let oLen = dl=8e denote the maximal length of the message representative in octets.

3. Generate a fresh, random octet string, seed, having seedLen octets.

4. Let w = G(\p1363-emsa-pss-make-w"; seed;M)[wLen].

5. Let expandedW = G(\p1363-emsa-pss-expand-w"; w)[oLen � wLen].

6. Let seedMask = expandedW [1::seedLen] be the �rst seedLen octets of expandedW .

7. Let remainMask = expandedW [seedLen+ 1::oLen � wLen] be the remaining oLen� wLen�

seedLen octets of expandedW .

8. Let maskedSeed = seed � seedMask.

9. Let T = w k maskedSeed k remainMask.

10. Convert the octet string T to the binary number f which it represents using BS2IP.

11. Return f .

Naturally the decoding function would be similarly modi�ed:

EMSA-PSS Decoding (with multiple-argument mask generation function)

1. If the length of M , mLen, is greater than the length limitation (eg., mLen � 260), or l <

8(wLen+ seedLen), then return \invalid".

6

2. Let oLen = dl=8e denote the maximal length of the message representative in octets.

3. Convert f into the octet string T of length oLen which represents it using I2OSP.

4. Let w = T [1::wLen] be the �rst wLen octets of T .

5. Let maskedSeed = T [wLen+ 1::wLen+ seedLen] be the next seedLen octets of T .

6. Let remainMask[wLen+ seedLen+ 1::oLen] be the remaining octets of T .

7. Let expandedW = G(\p1363-emsa-pss-expand-w"; w)[oLen � wLen].

8. Let seedMask = expandedW [1::seedLen].

9. Let remainMask2 = expandedW [seedLen+ 1::oLen� wLen].

10. Let seed = maskedSeed � seedMask.

11. If G(\p1363-emsa-pss-make-w"; seed;M)[wLen] 6= w, or remainMask2 6= remainMask, then

return \invalid". Otherwise return \valid".

Remark 1.4 If wLen is allowed to vary, one might set a minimal acceptable value. Values less

than 8 octets, say, are clearly insecure. The proof of security proof a suggests a choice such as 16

or 20 octets.

Remark 1.5 The security analysis suggests a like value for seedLen � wLen, say 16 or 20 octets.

But smaller values are not overly problematic. Indeed when seedLen = 0 the scheme e�ectively

\collapses" to something akin to the \full domain hash (FDH)" encoding method [3, 1]. Like FDH,

the seedLen = 0 scheme remains provably secure (in the random oracle model), albeit without the

tight quantitative security.

Remark 1.6 The authors of this note do not have an opinion about whether wLen and seedLen

should be constants, parameters tied to the modulus, or inputs. On the other hand, we do be-

lieve that it generally good practice to modify the mask generation function G to allow multiple

di�erentiated arguments, one of which is used to e�ectively separate oracle instances. This issue,

however, is orthogonal to the PSS proposal.

1.3 Encoding Method for Signatures with Message Recovery: EMSR-PSS

Often signatures schemes with appendix are able to handle messages of arbitrary (or essentially

arbitrary) length, while signatures with message recovery can not be used to sign messages with

lengths which exceed a certain portion of the length of the signature itself. This sharp cuto� in the

maximal length of messages which can be signed seems rather arbitrary and restrictive. Of course

a 1025-bit message can not possibly be encoded into 1024-bit signature, but there is no a priori

reason to believe that it can not be encoded into a 1024-bit signature plus one extra bit. Thus, in

contrast to other schemes for signatures with message recovery, we permit messages of arbitrary

length (or essentially arbitrary length) to be signed. We shove into the signature \as much as will

�t." Any excess, the \overhanging portion of the message," will have to be transmitted along with

the signature. Of course this overhanging portion of the message will often be empty.

The method follows. (Again, the choice of a multiple-argument mask generation function and

the style of its use are issues orthogonal to the substance of this proposal.)

7

M1 M2 seed
XXXXXXXXXXXXXXXXX

�����������������

?

w maskedSeed maskedM1

seedMask

�
?
�

?

G0

G1

G2

-

?

m1Mask

6

-�
6

pad

@
@@

Figure 2: EMSR-PSS. Computing the message representative, the pieces of which (prior to integer conver-

sion) are darkened.

1.3.1 Encoding Operation

Input:

| the octet string M , the message

| the number l, which is the maximum bit length of the output.

Output: Assuming the output is not \error", the method returns:

| a message representative, which is an integer f

| an octet string, M2 , which is the \overhanging piece of the message".

The message representative, f , and the overhanging piece of the message, M2 , are computed by

the following or an equivalent sequence of steps. (Also see Figure 2.)

1. If the length of M in octets, mLen, in greater than the length limitation (eg, mLen � 260), or

l < 8(wLen+ seedLen) + 8, then return \invalid".

2. Let oLen = dl=8e denote the maximal length of the message representative in octets.

3. Let m1Len = minfmLen; oLen� wLen� seedLen� 1g.

4. Let M1 =M [1::m1Len] be the �rst m1Len octets of M

8

5. Let M2 =M [m1Len+ 1::mLen]. be the remaining octets of M .

6. Let padLen = oLen� wLen� seedLen�m1Len. (Note padLen � 1.)

7. Let pad = 00 � � � 00 01 be a sequence of padLen � 1 zero-bytes followed by a single byte

encoding the number 1.

8. Let paddedM1 = pad k M1 .

9. Generate a fresh, random octet string, seed, having seedLen octets.

10. Let w = G(\p1363-emsr-pss-make-w"; seed;M)[wLen].

11. Let expandedW = G(\p1363-emsr-pss-expand-w"; w)[oLen � wLen].

12. Let seedMask = expandedW [1::seedLen] be the �rst seedLen octets of expandedW .

13. Let m1Mask = expandedW [seedLen+1::oLen�wLen] be the remaining octets of expandedW .

14. Let maskedSeed = seed � seedMask.

15. Let maskedM1 = paddedM1 � m1Mask.

16. Let T = w k maskedSeed k maskedM1 .

17. Convert the octet string T to the binary number f which it represents using BS2IP.

18. Return f and M2

1.3.2 Decoding Operation

Input:

| the message representative, which is an integer f � 0

| the octet string M2 , the overhanging piece of the message (may be empty).

| the number l, which is the maximum bit length of the output

Output: the message M or \invalid"

The message (or invalidity indicator) shall be determined by the following or an equivalent sequence

of steps:

1. If the length of M2 in octets, m2Len, in greater than the length limitation, or l < 8(wLen+

seedLen) + 8, then return \invalid".

2. Let oLen = dl=8e denote the maximal length of the message representative in octets.

3. Convert f into the octet string T of length oLen which it represents using I2OSP.

4. Let w = T [1::wLen] be the �rst wLen octets of T .

5. Let maskedSeed = T [wLen+ 1::wLen+ seedLen] be the next seedLen octets of T .

6. Let maskedM1 = T [wLen+ seedLen+ 1::oLen] be the remaining octets of T .

7. Let expandedW = G(\p1363-emsr-pss-expand-w"; w)[oLen � wLen].

8. Let seedMask = expandedW [1::seedLen] be the �rst seedLen octets of expandedW .

9. Let m1Mask = expandedW [seedLen+1::oLen�wLen] be the remaining octets of expandedW .

10. Let seed = maskedSeed � seedMask.

11. Let paddedM1 = maskedM1 � m1Mask

12. Let i be the smallest positive number such that the i-th octet of paddedM1, paddedM1[i], is

the octet 01. If there is no such 01-octet in paddedM1, return \invalid".

13. Let pad = paddedM1[1::i].

14. Let M1 = paddedM1[i+ 1::oLen � wLen].

9

15. Let M = M1 k M2 .

16. If G(\p1363-emsr-pss-make-w"; seed;M)[wLen] 6= w, or

pad[j] 6= 00 for any number j between with 1 � j � i� 1, or

(i > 1 and M2 is the not the empty string)

then return \invalid". Otherwise, return the recovered message, M .

1.3.3 Notes

Remark 1.7 All of the remarks in Section 1.2.3 apply here, too.

Remark 1.8 By virtue of Remarks 1.4, 1.5 and 1.7, one might wish to allow greater
exibility in

the choice of seedLen than the choice of wLen. Shorter values of seedLen allow longer messages to

be packed into the signature.

2 Attributes and Advantages of the Encoding Methods

2.1 Enumeration of Attributes and Advantages

We enumerate what we see as the key attributes and advantages of PSS (meaning EMSA-PSS

and EMSR-PSS both) when compared with the techniques EMSA2 and EMSR1 of [6]. (Because

of the familiarity of the readership with [6], we dispense with a review of its signature encoding

techniques.)

1. Provable security (in the random oracle model). Assurance for PSS stems not from an

inability to �nd attacks, but from proofs. By virtue of these proofs, an ability to forge

using any attack which does not exploit some structural characteristic of the MGF implies

the ability to break the underlying primitive in a very strong sense: that is, invert RSA or

the Rabin/Williams primitive on random instances. This is a qualitatively higher level of

guarantee than the more ad hoc techniques of EMSA2 or EMSR1.

2. Tight provable security with RSA (in the random-oracle model). When RSA is the

underlying primitive, something even more is known: that the ability to forge with resources

R in an attack which does not exploit some structural characteristic of the MGF implies the

ability to invert RSA on random strings using computational resources only slightly greater

than R. This is called tight provable security and it is, apart from reliance on the RO model,

about the best one can hope for in proofs of cryptographic security.

3. Weakened assumptions on collision-intractability. As �rst pointed out to us by Matt

Robshaw, the manner in which we use the mask generation function to map the seed seed and

message M to a string w does not necessitate collision intractability in its customary, strong

form. Call the map which takes seed and M to w by w = G0(seed;M). Given G0(seedi;Mi)

for random seedi and adversarially chosen Mi, the adversary should be unable to come up

with a new (seed;M) such that G0(seed;M) = G0(seedi;Mi) for some i. By virtue of the

seedi values, which the adversary can not control, this is an apparently weaker requirement

than asking for G0 to be collision intractable. Intuitively, the random seed works to give the

adversary very limited ability to manipulate what message representatives will be used.

10

4. Robustness against randomness failures. Although PSS encoding makes use of a random

string seed, a failure in this string being random is not catastrophic. What happens in

that case (say the random number generator is \stuck" at the constant 0) is that one loses

Advantages 2 and 3 that we have just described. Provable-security remains, it is just that

the underlying reduction is not as good. (Note that the [6] encoding schemes do not give any

form of provable security, tight or otherwise.)

5. No length restrictions for message recovery (EMSR-PSS). Method EMSR-PSS works

on messages of arbitrary length, packing into the signature as many octets of the message as

�t. Unlike EMSR1 and ISO 9796 there is no \discontinuity" in the lengths of messages for

which the method is applicable.

6. Greater bandwidth e�ciency (EMSR-PSS). In a signature scheme with message recov-

ery, the bandwidth e�ciency measures the fraction of the signature that is occupied by (an

encoding of) message bits; see [9]. ISO 9796 achieves bandwidth e�ciency of about 1=2;

roughly oLen=2 octets of message can be placed in a oLen octet signature. EMSR-PSS allows

one to pack oLen�wLen� seedLen� 1 octets of information in an oLen octet signature. For

recommended values of oLen;wLen; seedLen, this is greater bandwidth e�ciency.

7. Uni�ed treatment for signatures with appendix and message recovery. Methods

EMSA-PSS and EMSR-PSS are nearly identical. They share they same security proof. With

a small change in EMSA-PSS, the methods could be made to have a common implementation

or speci�cation.

2.2 Comment

We mention in passing that we view di�erently the level of assurance provided by EMSA2 (which

is similar to X9.31) and EMSR1 (which is based on ISO 9796-1). Though neither enjoys any sort of

provable-security guarantee when used in its intended way, it seems to us more likely that EMSA2

will fall to a concrete attack. This would mean that the \increment" that PSS provides to EMSA2

is e�ectively greater. Let us explain.

In EMSA2 / ISO 9796 there is again de�ned a redundancy function R which maps a string M

to its message representative f . Though there are a variety of details, f is basically the octets of

M at odd octet positions, and the \shadow" of these octets at even octet positions. The shadow

of an octet is what one gets by looking up that octet in a table which is speci�ed in the standard.

The security of EMSA2 depends on the following assumption: that no adversary, given the mod-

ulus n, can �nd distinct strings x1; : : : ; xa and y1; : : : ; yb such that
Q

iR(xi) mod n =
Q

iR(yj) mod n.

Given the non-cryptographic nature of R, such an assumption seems quite strong. It even seems

plausible that one could �nd distinct x1; : : : ; xa; y1; : : : ; yb such that
Q

iR(xi) =
Q

iR(yj), that is,

the equality holds in the integers. This would amount to a way to get a forgery that works for any

modulus n. The stated assumption would seem to be unrelated to factoring.

11

3 Security Assessment of the Encoding Methods

To avoid a lengthy (and increasingly well-known) discussion and set of de�nitions and proofs, we

incorporate by reference the contents of Sections 1{5 of [3].1 No changes have been made to the

methods described in [3] beyond the trivial one to allow arbitrary-length messages be signed with

EMSR-PSS. (For ease of explication, this was only mentioned in [3].)

By virtue of the referenced results, we view PSS under RSA as e�ectively \leapfrogging" one

generation of assurance for a cryptographic standard. In the past, methods de�ned within standards

have rarely had any sort of provable-security properties. Now we are just beginning to see standards

which use schemes about which one can make provable-security claims. But the methods of this

proposal go further, by actually providing a scheme which, when instantiated with RSA, admit a

tight reduction.

(The value of tightness in a reduction in made explicit by an example of [3] (Section 1.4) which

indicates that, under speci�ed assumptions, one would need a 3447-bit modulus under the \FDH"

encoding method (Section 3 of [3]) to get the same guaranteed security achieved by a 1024-bit

modulus under PSS. Nonetheless, the value of tightness in a reduction should neither be understated

nor overstated. While desirable, any sort of reduction is often well ahead of prevailing practice,

and, in many cases, tight reductions are not known or are known only by virtue of impractical

techniques.)

The comment we made in Section 2 about what happens if the seed seed is not selected at

random (Comment 4 of that section) could use some additional clari�cation. Suppose, instead of

seed being chosen at random, it is actually selected by the adversary. (This is as bad a failure of

randomness as one could ever possibly imagine.) Even then, PSS retains provable security. The

proof is along the exact same line as the proof of FDH security in Section 3 of [3].

One can conclude that the randomness in PSS is less essential than the acronym for PSS (\prob-

abilistic signature scheme") might suggest. Again, the randomness is used for tight security, and

to obtain a heuristic bene�t of apparently weakened cryptographic assumptions. The probabilism

is less crucial than in contexts such as OAEP or PKCS #1.

4 Limitations

Recently some concerns have been raised about the use of the random-oracle paradigm of [1].

The best expression of these concerns is in [5], where the authors demonstrate that it is possible

to devise cryptographic protocols which are provably secure in the random-oracle model but for

which no complexity assumption properly instantiates the random-oracle-modeled hash function.

However, these examples are contrived to make the paradigm fail by having the schemes explicitly

depend on the instantiating functions, so that these concerns do not appear to apply to the schemes

presented here, or, in fact, to any of the concrete practical schemes that have been proven secure

in the random-oracle model. A protocol with a proof of security in the random-oracle model does

have higher assurance than one that lacks any proof in the provable-security tradition, and the

competing methods fall into the latter category. (A protocol with a proof of security under a

1 Readers of both this document and [3] will note that what is here called EMSA-PSS is in [3] known as PSS; and

what is here called EMSR-PSS is in [3] called PSS-R. The change in names was just to be a bit more consistent with

P1363 conventions.

12

standard complexity theoretic assumption would provide even higher assurance, but all protocols

known with such proofs are still impractical.)

The tight security guarantee has been proven only for RSA-based signing. We do not know if

one also obtains a tight bound for RW-based signing, though we expect that one does not. For a

non-tight bound for RW, one can fall back on the FDH-style analysis from [3].

We comment that tight-proven-security Rabin signatures are in fact easy to obtain, but by

changing not just the encoding scheme, but the primitive. One Rabin-based signature scheme is

described in [3]. We did not introduce this method in this writeup because it involves specifying

not just the PSS encoding method, but also a new primitive: a di�erent (and simpler) version of

the Rabin scheme. The authors will be happy to formally submit this Rabin primitive if there

appears to be interest.

Finally we note that while we have provided a \heuristic" argument to suggest that the hash

functions of this proposal are being used in a rather weak way, where even collisions in the hash

function might not give rise to any insecurity in the signature scheme. To achieve this heuristic

bene�t the hash function h(r;M) would have to be instantiated with care; otherwise, collisions in h

may well lead to forgeries. And we emphasize that this bene�t has only been argued heuristically,

and we do not know how to meaningfully formalize it.

5 Intellectual Property Statement

The University of California has �led a patent application (US only) on the techniques used in

PSS [2]. The University of California will license any resulting patent in a reasonable and non-

discriminatory fashion. A letter to this e�ect will be provided.

References

[1] M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing

e�cient protocols. Available via URL of either author. Preliminary version in Proceedings of

the First Annual Conference on Computer and Communications Security , ACM, 1993.

[2] M. Bellare and M. Rogaway, Probabilistic signature scheme. US Patent Application.

[3] M. Bellare and P. Rogaway, The exact security of digital signatures| How to sign with

RSA and Rabin. Available via URL of either author. Preliminary version in Advances in Cryp-

tology { Eurocrypt 96 Proceedings, Lecture Notes in Computer Science Vol. 1070, U. Maurer

ed., Springer-Verlag, 1996.

[4] M. Bellare and P. Rogaway, Optimal asymmetric encryption | How to encrypt with

RSA. Available via URL of either author. Preliminary version in Advances in Cryptology {

Eurocrypt 94 Proceedings, Lecture Notes in Computer Science Vol. 950, A. De Santis ed.,

Springer-Verlag, 1994.

[5] R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, revisited.

Proceedings of the 30th Annual Symposium on the Theory of Computing, ACM, 1998.

[6] IEEE P1363 Committee, IEEE P1363 / D5 (Draft version 5), Standard speci�cations for public

key cryptography. August 1998. See http://grouper.ieee.org/groups/1363/index.html/

13

[7] ISO/IEC 9796, Information technology security techniques { Digital signature scheme giving

message recovery. International Organization for Standards, 1991.

[8] ISO/IEC 14888-3, Digital signatures with appendix - Part 3: Certi�cate-based mechanisms

Draft. International Organization for Standards, 1998.

[9] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography.

CRC Press, 1997.

[10] R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and

public key cryptosystems. Communications of the ACM, vol. 21 (1978).

[11] RSA Data Security, Inc., PKCS #1: RSA Encryption Standard (Version 1.4). June 1991.

[12] RSA Data Security, Inc., PKCS #7: Cryptographic Message Syntax Standard (version 1.4).

June 1991.

14

