Dynamic Voltage Restorer for a critical Manufacturing Facility

Most common cause of voltage dips

- Single phase ground faults
Case Study DVR

Site Conditions 1999:

Semiconductor Plant in Israel

Up to 15 sags a night

Over 150 sags a year

Faults: 1-phase sags seen as 2-phase sags at plant

Ready for chip manufacturing September 2000
Case Study DVR

Main Data

- Medium Voltage: 22kV / 50Hz
- Protected Load: 22.5 MVA
- 3-phase compensation: 35%
- 1-phase compensation: 50%
- Multiple sags: possible
- Duration: 500ms
- Response time: 1 ms
- Energy storage: 3.1 MJ
Case Study DVR

Operating principle

Booster Transformer

Utility

Converter

Energy Storage

Load
Case Study DVR
Case Study DVR

Compensation capability

- 1-phase %
- 2-phase %
- 3-phase %

Graph showing compensation capability against time (F[ms]) for 1-phase, 2-phase, and 3-phase systems.
Case Study DVR

- Hardware platform IGCT – PEBB (three level – IGCTs)
Case Study DVR

Dynamic Voltage Restorer
Case Study DVR

DVR Container
Case Study DVR

Project Information

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Date</td>
<td>January 6 2000</td>
</tr>
<tr>
<td>Delivered EXW</td>
<td>June 15 2000</td>
</tr>
<tr>
<td>In Service DVR-1B</td>
<td>September 3 2000</td>
</tr>
<tr>
<td>In Service DVR-1A</td>
<td>September 18 2000</td>
</tr>
</tbody>
</table>
Case Study DVR
Case Study DVR
Case Study DVR

Since the installation of two ABB DVR systems (22,5 MVA each) in 2000 all sags have been compensated resulting in a significant:

- Increase in plant availability
- Decrease in consequential damages
- Higher operational efficiency

<table>
<thead>
<tr>
<th></th>
<th>Sags</th>
<th>Compensated</th>
<th>Success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVR-1B:</td>
<td>151</td>
<td>151</td>
<td>100%</td>
</tr>
<tr>
<td>DVR-1B</td>
<td>168</td>
<td>168</td>
<td>100%</td>
</tr>
</tbody>
</table>
Case Study DVR

Voltage sag events at a critical site

Events which were successfully compensated by a DVR

Number of Voltage Sags

Case Study DVR

all sags compensated!
ABB delivered a proven solution
High compensation capability
Low maintainance
100% succes rate
Reduced operation cost due to high efficiency
Increased Customers Productivity

SATISFACTION
Consequences of voltage sags

Highly automated continuous processes can experience disturbances

Quotations from manufacturers about money lost per event

- Textile: US $ 35’000. —
- Pharmaceutics: US $ 1’000’000.—
- Semiconductors: US $ 500’000. —
- Plastic products: US $ 80’000. —

very much dependent on plant size
Theoretical US market volume

<table>
<thead>
<tr>
<th>Factories per industry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor</td>
<td>1082</td>
</tr>
<tr>
<td>Pulp & Paper</td>
<td>293</td>
</tr>
<tr>
<td>Yarn Spinning</td>
<td>411</td>
</tr>
<tr>
<td>Broad woven</td>
<td>838</td>
</tr>
<tr>
<td>Plastic resin</td>
<td>532</td>
</tr>
<tr>
<td>Plastic products</td>
<td>8608</td>
</tr>
</tbody>
</table>

11,764

Source: www.laruscorp.com/isokera.htm

Isokeraunic Map of United States
Semiconductor manufacturers acc. to US census

<table>
<thead>
<tr>
<th>SIC 3674</th>
<th>plants</th>
<th>employee</th>
<th>YoS</th>
<th>red values are calculated, black values are copied from economic census</th>
</tr>
</thead>
<tbody>
<tr>
<td>semiconductor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geographic Region	Plants	Employees	YoS	
United States	1182	198,119	2,100,364	
California	410	54,377	1,094,742	
Texas	213	36,139	1,996,937	
Massachusetts	73	5,517	1,941,020	
Pennsylvania	52	7,916	4,142,733	
Arizona	47	18,070	1,059,716	
New Jersey	41	1,194	3,371,171	
New York	41	7,900	1,167,765	
Colorado	31	4,656	1,141,521	
Florida	30	3,481	805,877	
Oregon	28	8,930	7,959,672	
Illinois	25	4,07	57,360	
Washington	21	3,104	703,783	
Connecticut	19	755	1,152,290	
New Mexico	16	3,348	803,977	
Virginia	16	11,00	751,116	
Michigan	15	311	369,009	
Minnesota	15	2,038	3,729,036	
North Carolina	14	1,796	3,553,600	
New Hampshire	13	1,400	2,734,206	
Ohio	17	1,380	2,992,852	
Maryland	9	1,540	884,156	
Missouri	9	0	0	
Wisconsin	9	0	0	
Utah	7	813	51,720	
Idaho	6	8,439	2,086,948	
Indiana	5	0	0	
Kansas	5	189	1,373,830	
Vermont	4	0	0	
Maine	3	0	0	
Oklahoma	3	0	0	
Rhode Island	3	0	0	
Tennessee	3	0	0	
South Carolina	7	0	0	
North Dakota	1	0	0	

avg Value of Shipments / plant

Electricity intensity = energy/value added
? The big question mark ?

- Voltage dip compensating devices exist

- Why are not hundreds of them in operation?
Possible answers

- They do not operate satisfactorily

- The expected pay back time is unrealistically low

- The figures stated by manufacturers represent theoretical loss of sales, but real volume of sales is far below plant capacity
Our approach

- We expect increased demand for voltage dip compensating devices
 - Smaller units than usually built so far
 - Installed at low voltage distribution level
- We developed the SVR (Series Voltage Restorer)
SVR, Series Voltage Restorer

- Protection of loads at low voltage level with ratings in the range of typical industrial low voltage feeder loads

- Voltage sag compensation at nominal load
 - Single-phase sags of 50% for 1000 ms
 - Three-phase sags of 38% for 1000 ms

- Larger sags or longer duration for partial loads

- Response time until voltage is back to normal (amplitude and vector angle position) about 1 ms

- No energy storage

- Additional user benefits
SVR, Series Voltage Restorer

- Additional user benefits
 - Constant Voltage Regulation
 - Reactive Power Compensation
 - Provision of UPS functionality if required in the future

- Potential future options, if there is a demand
 - Load Balancing
 - Active Filter performance
SVR, Series Voltage Restorer

- PCS for voltage sag compensation in low voltage systems (SVR)

1 ... Booster – Converter
2 ... Charger – Converter
3 ... DC Link
4 ... Charger - Transformer
SVR, Series Voltage Restorer

Diagram showing the connections and components of a Series Voltage Restorer:
- Grid (A B C N)
- A' B' C' Load
- Crowbar
- Isolating Switch 1
- Bypass Switch
- Isolating Switch 2
- Charger Transformer
- Charger Converter
- DC Link
- Booster Converter

ABB Switzerland Ltd. - 27 - © 2003 ABB. All rights reserved.
SVR, Series Voltage Restorer

- Hardware platform IGBT – PEBB (two level – IGBTs)
 - Latest hardware platform with ABB LoPak IGBT modules
 – The PowerPak
SVR, Series Voltage Restorer
SVR, Series Voltage Restorer

- PCS for voltage sag compensation in low voltage systems (SVR)

- 400 to 600 V

- 500 A

- 1500 A

- 2500 A
SVR, Series Voltage Restorer

- PCS for voltage sag compensation in low voltage systems (SVR)
 - 400 to 600 V, 1500 A
SVR, Series Voltage Restorer

SVR, dimensions

right side view

front view

ABB Switzerland Ltd. - 32 -
© 2003 ABB. All rights reserved.
SVR, Series Voltage Restorer

- PCS for voltage sag compensation in low voltage systems (SVR)

The SVR compensates a 30% three-phase sag (top) for 6 cycles, such that it has no effect on a sensitive load (bottom).
SVR, Series Voltage Restorer