Implications of Moving CTL to 1450

Rohit Kapur

In this document I plan to highlight some of my thoughts on this subject with the intent of giving the reader some insight into the changes caused by the simple banner change of CTL. If CTL did not take on the 1450 banner, that is it took on an arbitrary number such as 1500.1, 15000 or 666 then no changes would have to be made.

Development Environment

CTL has been developed in the user defined block of STIL which works perfectly and was the best solution given that it is a separate entity. If CTL merges into 1450, all decisions that were made in CTL need to be re-addressed in the new structure. The same argument holds for 1450.1 decisions made in the absence of CTL if the new CTL home were 1450.1.

Changes as a Result of Moving to 1450

1. Multiple Signal blocks: CTL is a language that is putting together cores in a hierarchical manner to create a new core. This requires the recognition of internal entities called CoreInstances which have Signals.

2. Mode Concept: CTL has multiple modes. This concept needs to move to the forefront and be the top level possibly over the PatternExec concept.

3. PatternDefs: Seems like a Pattern Definition block would help a whole lot. Cores come with patterns and the same core may be instantiated twice.

4. Inheritance: CTL relies on Inheritance to minimize the amount of information. Not sure how this concept merges with the Inheritance outside the environment.

5. Attribute Resolution: CTL has worked out a resolution of attributes on a signal that is exposed in the move to 1450.

6. DomainName.EntityName: Not sure how this will change with the current resolution mechanism in 1450.

7. Foreign Construct: For complete interoperability on the chip CTL needs to allow for non-compliant capabilities such as the case where the patterns are not described in STIL. Under 1450 this capability is in trouble.

8. Meaning of STIL constructs: A number of constructs in CTL provide meaning to existing STIL constructs and places where the user defines things. This feature is very important to CTL but not in the basic essence of STIL.

9. Other Cores: Structural constructs other than Scan Structures would possibly have to be created to provide a replacement for IsConnected.

While I have listed only a few things. I believe that all constructs in CTL need to be moved out of the environment block as a result of the move to 1450. The destination would have to be determined. A second testing phase of CTL would have to kick in as a result of this to see that we have not lost functionality. The multiple usage scenarios of CTL have to be reconsidered.

CTL Concept Entity

If CTL merges into 1450.1 then it has lost its entity as 1450.1 has other goals such as supporting the simulation and design environment. CTL supports the core test environment. If the merge happens, there is no mechanism in place for 1500 to point to CTL without pointing to the other focuses of 1450.1. Merging with 1450.1 has other technical (such as logic-BIST, Equivalence etc.) and non-technical (bringing two teams together) issues that are not relevant to this document.

