STIL P1450.4 Binning

Summarized below are the key points of binning from several different commercially available testers.

Agilent 93000

Bin architecture:
A binisdefined as

struct {
char hardbin_string[2];
char *softbin_string;

int hardbin_number; /1 0-999

bool pass fail; /I good | bad

bool reprobe flag; /I reprobe | noreprobe

int color; /1 0-7 or black | white | red | yellow |
I green | cyan | blue | magenta

bool over_on_flag; /I over_on | not_over_on

} Bin;

There are two types of test execution flow-nodes
run
run-and-branch

and two types of bin flow-nodes:
Stop bin (can be good or bad)
Otherwise bin (if not defined by user, a system default is used).

The display icons for test execution and bin flow-nodes are shown below in Fig. 1.

Bin map(s):
List of bin structures described above. Only one bin map available in the program. Asfar
as| know, there are no limits to the number of bins abinmap can contain - though, with
the exception of softbin_string, the range of values each structure member can take on
would seem to limit the number of permutations. Nonetheless, as each unique binis
defined (and used), it issimply placed in the binlist.

Containment hierarchy (relationship to flow):

A binisessentially aterminal flow-node.
A flow does not need to contain bin assignment flow-nodes; if not, a default
“otherwise” bin is predefined.
No other flow-nodes can follow a bin flow-node (i.e, a bin node has an input but no
output).
Theinput to abin flow-node is from the output of one (and only one) flow-node (this
isreally more afunction of the testflow, rather than the binning — the bin just
happens to be aflow-node).
Binning istied to abin flow-node. Bin assignment (viaahbin flow-node) selects one
of N binsin thebinlist (i.e., hard binning and soft binning happen together, not
separately).
Two types of test execution flow-nodes, each of which can be followed by another
flow-node, or abin node.

run

run-and-branch

Bin/stop relationship:

Two modes:

- Stoponfail:
Disables/powers down, skips over remaining tests and testbl ocks, sets bin based on
the bin flow-node connected to the the fail port of the failing test. If no bin flow-
node is present, the flow continues to the next execute flow-node. At the end of the
test flow, if no bin has been assigned, the otherwise bin is assigned.
Override on.
Flow continues past the fail bin to the flow-node immediately following the failing
test (asindicated by adotted line in the testflow — see Fig. 2 below). If there are no
more tests after the stop bin, the otherwise binis assigned.

Bin strategies:
- Binflow nodes are used in testflow:

Bin based on the bin assigned from a bin-flow-node (assign fail-bin, pass, bin, or

otherwise bin, depending on pass/fail results and overon setting)

Bin flow nodes are not used in testflow:

Only the otherwise bin is used, and always assigned at the end of the testflow.

l—] |-G run
«{ | badbin
F
"|_|__}_:|'° run and branch .v S
. :
Testsutes e

Fig. 1 Agilent 93000 - Display iconsfor test execution and bin flow-nodes

select File Merge Edit Insert Special Search ProdSemings Bookmarks Doc

Fig. 2 Agilent 93000 - Graphical representation of test flow
including pass/fail bins and run/run-and-branch flow nodes

test_flow

run_and_branch(funct_first) then

{
}
else
{
stop_bin"zC", "fp_cont_fail", , bad,noreprobe,red, 7, not_over_on; // Fail bin
}

run(simulate_test time_ 2);
stop_bin"AA","p_good_part", , good,noreprobe,green, 1, not_over_on; // pass bin
end

binning

otherwise bin="DB", "otherwise_hin", , bad,noreprobe,cyan, 99, not_over_on; // otherwise bin
end

Fig. 3 Agilent 93000 - Text representation of graphical test flow shown in Fig. 2

Teradyne Binning:

Bin Architecture:
A binisdefined as a structure containing softbin number, softbin string, hardbin number,
hardbin string, and a pass/fail/error classification, e.g.,

1"GRADE_1" hbin=1"GRADE_1" pass,

Bin maps:
Array of 256 instances of bin struct described above in “Bin Architecture”. Only one bin
map allowed per program.

Containment hierarchy (relationship to flow):
soft binning istied to atest, however, atest may be an otherwise empty container. Soft
binning is separate from hard binning.

Bin/stop relationship:
3 modes
a) stop on fail: disables and powers down affected site, skips over remaining tests and
testblocks, and proceeds to hardware binning
b) continueon fail: registersthefirst bin failed, no intra-chiptest count (maintains chip
to chip summary, e.g. failed bin 15 twice)
c) continueon error: not sure what happens

Bin strategies: thereare 3
a) passbinning: set soft bin on test pass
b) fail binning: set soft bin on test fail
c) disqualify binning: unset soft bin(s) on test fail

Credence Binning:

Bin Architecture:
A bin isdefined as a structure containing softbin number, and hardbin number.

Bin maps:
Array of 128 instances of bin struct described above in “Bin Architecture”. Only one bin
map allowed per program.

Containment hierarchy (relationship to flow):
soft binning istied to atest, however, atest may be an otherwise empty container. Soft
binning is separate from hard binning.

Bin/stop relationship:
thereis 1 mode, stop on fail. Thereisaper test ignore fail option but then no binning
takes place.

Bin strategies: thereare 2
a) fail binning: set soft bin on test fail
b) unconditional binning: set soft bin unconditionally

Schlumber ger 1 TS9000

Bin Architecture:

A bin isdefined as a structure containing three elements

- virtual (soft) bin number
Thevirtual bin number will be mapped to a hardware bin number in the binmap. The
virtual bin number is used to set the working value of the virtual bin number asthe
flow passes through the port of aflow node. The soft bin number or adevice is
usually set to the value of the working virtual bin number at the end of test.
Bit bin number.
Each bin object has a bit bin number (which normally defaultsto 0). The bit bin
number is used when it is necessary to cal culate the soft bin based on the path of the
flow through the test. At key placesin the test flow, the bit bin number is assigned to
abit mask. Astheflow passesthrough aflow node with abit bin number assigned,
thismask islogically ored into aworking bit bin mask. At the end of test, the
working value of the bit bin number is added to the working virtual bin number to
calculate the soft bin number for the device. The final soft-bin number isthen
mapped to a hardware bin in the bin map.
Flow id bit number
The Flow id isused when it is hecessary to replace the normal binning mechanism
with a user defined mechanism. To track the flow, a unique Flow Id Bit Number [O ..
4095] set at the input or output ports of each flow node. Asthe flow passes through a
port of aflow now with aFlow id Bit number assigned, abit isored into into the
Flow id bit array (4096 bits) at the bit number specified. Thisarray can be access by
auser routine at end of test to override the normal binning mechanism.

Bin maps:
The bin map has two sections — a software bin section and a hardware bin section.
- Hardware bin section
- Definesthe available hardware bins, including
- Hardware bin name
- PASSorFAIL
- Reprobe this bin or not (if so, the maximum allowable reprobe count)
- bin number (to be sent to the prober or handler).
Software bin section
- Assignsaname to each soft bin number (specified in each bin object).
- Maps each soft bin to a hardware bin (any number of soft bins can be
mapped to asingle hard bin).

Multiple binmaps can be used in the test program. Only one at atime, of course, can be
active.

Containment hierarchy (relationship to flow):
A bin can be attached to either the input or output of atestflow node.
The virtual bin number and bit bin number of each bin must be selected so that soft
bin calculated at the end of test matches a soft bin in the selected bit map.
When abin is assigned at aflow-node port, only the soft-bin isassigned. At theend
of the flow, the most-recently-assigned soft bin is mapped to a hard bin viathe
currently-selected bin map.
A flow does not need to contain a bin assignment or abin map to run. If no binmap
exists or no bin assignment is done in the flow, then the test program’s “ current bin”
(i.e., the most-recently assigned bin) isanull bin object.
A test program can have more than one bin map. However the only one bin map can
be selected at atime.

Bin/stop relationship:

Bin assignment and test flow stop/continue execution are separate. The soft bin
assignments are made as the flow passes through flow node ports with a bin attached. The
deviceis binned according to the soft bin assignment at the end of testing (when a
terminal nodeisreached).

Stop on fail is not supported. The flow always continues until it reaches aterminal flow
node. Inthetypical case, however, atest will have onefail node and at least one pass
node. Theflow isconstructed so that atest-flow node’ sfailing port leads directly to a
terminal node (a“ Stop” segment, in ITS9000 terminology). The ITS9000 software does
allow setting breakpoints or pauses at various pointsin the test flow (including
breakpointsif a specific test fails).

Overide on Fail is supported.

Bin strategies:
- Bin Assignment Strategy
The virtual bin number is used to assign the working soft bin number as the flow passes
through the port of aflow node. At the end of test, the last soft bin number assigned is
used to look up the soft bin and hard bin information in the selected bin map.

Path Dependent Strategy

This strategy isused when it is necessary to calculate the soft bin based on the path of the
flow through the test. At key placesin thetest flow, the bit bin number is assigned to a bit
mask.

Asthe flow passes through aflow node with abit bin number assigned, thismask is
logically ored into aworking bit bin mask. At the end of test, the working value of the bit
bin number is added to the working virtual bin number to calcul ate the soft bin number
for the device. This soft bin number is used to look up the soft bin and hard bin
information in the selected bin map.

User Defined Strategy

This strategy is used when it is necessary to replace the native binning strategy with a
user defined bining strategy. On popular way to do thisis by tracking the complete flow
path by assigning unique Flow Id Bit Number [0 .. 4095] set at the input port or at all
output ports of each flow node. Asthe flow passes through a port of aflow now with a
Flow id Bit number assigned, a bit isored into into the Flow id bit array (4096 bits) at
the bit number specified. Thisarray can be access by a user routine at end of test to
calculate the soft bin number based on the complete path of execution.

Praosy pam inh]_#33_itt bok Hacmants ! 3 m

DLlsplay: TSR CORpeoE LT e8!
Pass port — no bin attached

Bin objects are attached
to atest flow node port.
Typically, the failing port
has a bin attached, and
the passing port has no
bin attached.

[
“~N Fail port — bin attached
I

Input port to STOP segment —will
typically have passing bin attached.

Fig. 4 Schlumberger | TS9000 —Graphical representation of test flow

Watar Lot No bin block attached to a passing
: - port of atest flow flow-node

Surmary Counter Valus:
Fumsary Countar Status! DISAELED Flow ID Big)

Ein Bloak Mams:

Active bin map name (there can be
multiple binmaps in atest program)

Vircual Ble Humd-ae:

Bit Ein Bunpber;

Bin Map Block Wams otn map /
Di=play Mode; WAFER soft Bd

Cl END OF WAFER & LOT Hard Ein Conses

laar

L Contents of active bin map

Congas @

_J.“.-:‘:_Nu.'l: 1] ; b 0 (=} .'r‘|
p bsbber part 2] I} [n o 'F'&SEE
progocd_[art 1]] B 1 |8 o P.EBS:
b fale_part 1 [1 AD i o 0 ThES|
p_pass ing_part 5 0 il WE 5 |o 4 PRAE |
£ S 10Ta] opans 10] n 2 o 0 |
£ powar ghorbs 1l 0 o b 11 |0 o] FAIT |
f5 signal shorts 12] 1] I5 12 |0 o 1 !
fn_=oan_funa i} o] Tz 13 |u o |
tn_do_furs el (] 1}] 14 |0 (&} |
£n_me_fura &2 i i 78 1 |] i
Fig.5 Schlumberger 1 TS9000 — Bin/Binmap window opened at passing port —no bin attached

Tapk: nop_funstlonal_test

Pork: fubput Por

Sumrary t Hane: Wafer Lk

Summary ntat Hum: Summary Counter Walos: i e

Bumsiaby Countar Btatus: DISAELED Flow ID Bit Hum [0..d085]:

Bin Block Hama! tnnom funs = Binfn_nom_func attached to fail port of

virtunl Bin Mumber: 3 Lozt Executed Virkual Bin 4 0 test flow flow-node

Eit Bin Ehober: 1] of of emeouted Eit Bip Mums: + 0

Boft Ble Hunber! = 0

Bin Map Block Hams: kg nap Contents of active bin map ctg_map (bin

Display Mode: WAFER maft Bin Gcoseautive Counti fn_nom_funcisnot visiblein the

Clesar CoOses A END OF WAFER @ LOT Hard Bio Comsecutiwe Count; 1] L . .

displayed scroll window)

B kGt part 0 [7Yy 1 [
b betbar part 0] AE 2]
P _good_park 3 :?/ ‘U/ AT 3 1]
p_fair park 4 (d 1} & | 0
b passing part 5 e] AE 5 |a] PRES
o 9 ignal opers] o] i to [o (]
fa power shorts 11 a] P 11 |]
f£5_sigral_sberts 2 =] (] o] T e 1]
£n_acan_funs 0 o (]] 11 |o (]
fn d= funs Zl] a YE 1 |2 o
fn_ma fung 28 o] ¥E 14 @]
? fn_higha _funo 11 =] 1] TE 1d |& 1]

Fig.6 Schlumberger 1TS9000 — Bin/Binmap window opened at failing port — bin fn_nom_func attached

binsp_passing_part {

<08:17:1993 11:49:53>, Softbin definitions
VIRTUAL_BIN =1,
BIT_BIN=0

}; * end of binsp_passing_part block */

binsfn_nom_func {
<08:17:1993 09:57:05>,
VIRTUAL_BIN = 20,
BIT_BIN=0

}; * end of binsfn_nom_func block */

Fig. 7 Schlumberger 1TS9000 — Test program syntax example for bin blocks

bin_map ctg_map { |

<04:16:1993 10:24:26>, Softbin to hardbin mappings;
CLEAR_CONSEC =WAFER_LOT, definition of softbin name

VIRTUAL_MAP={

{ MAP=1>1, COUNTER ="p_passing_part" },
{ MAP=10> 10, COUNTER ="fo_signal_opens" },

{ MAP=11>11, COUNTER ="fs_power_shorts" },

{ MAP=12> 12, COUNTER ="fs signal_shorts" }, Hardbin definitions

{ MAP=20> 13, COUNTER ="fn_nom_func" }

1

HARDWARE = {
{ BINS=1, RETEST =0, COUNTER ="AA", BIN_TYPE = PASS},
{ BINS=10, RETEST =0, COUNTER ="ZC", BIN_TYPE = FAIL },
{ BINS=11, RETEST = 0, COUNTER ="ZP", BIN_TYPE = FAIL },
{ BINS=12, RETEST = 0, COUNTER ="ZS", BIN_TYPE = FAIL },
{ BINS=13, RETEST =0, COUNTER ="YZ", BIN_TYPE =FAIL },

}
}; /¥ end of BIN_MAP ctg_map */

Fig. 8 Schlumberger I TS9000 — Test program syntax example for bin map

segment Test_2{ |
<08:17:1993 09:57:05>, Exit part of flow-node syntax —
é—%ﬁ: %52 fail bin attached to fail port;
ENTRY = W57, no bin attached to pass port

ICON = "ftestseg_c",
TOOL = "ftesttool",
TEST =nom_functional_test,
RETURN = {
{ POS =41, FAIL, End_1, BINS #fn_nom_func},
{ POS = E38, PASS, Function_5

}
}; /* end of SEGMENT Test_2*/

Fig. 9 Schlumberger | TS9000 — Test program syntax example for flow-node

