
P1450.4 Test Program Flow Conceptual Model Discussion Document
1.0 Top-Down Conceptual View

The P1450.4 constructs will reside within a IEEE 1450-1999 STIL Std file. Its top level
constructs will add to the STIL top level constructs/keywords. Figure1 shows the TestPro-
gram block, TestModuleDefs, TestMethodDef and EntryPointDefs blocks. The “Defs”
blocks contain all definitions of their respective definition blocks and parallel the Macro-
Def block in the 1450.0 STIL standard construct.

FIGURE 1. Top Level Test Program Flow Constructs Diagram

2.0 Test Program Flow Extension Terms

2.1 TestProgram Block:

The top level test program construct. There can be one or more. One may be global
(unnamed). There may be one or more named TestProgram blocks in a STIL file.

2.2 Flow Block (or TestFlow):

This is the top level program flow construct. There can be one unnamed Flow block.
There can be one or more named Flow blocks. This block contains definition of flow and
bin entities that make up a given test program flow.

2.3 EntryPoint:

This is a reference to a special program level task activated by the tester (tester operating
system, system interrupts, etc.) This entry point references a TestModule. There is a gen-
eral set of EntryPoint entities defined by this extension (i.e. OnStart, OnReset, etc.). These
can be named and one instance of each can be unnamed and treated as global to any Flow

EntryPointD efs

TestM ethodD efs

TestM oduleD efs

STIL
1450.0

constructs

TestProgram “C har”

TestProgram “W S”

TestProgram “FinalTest”

TestProgram “LabA TE”

Standard Libraries via Includes
(sim ilar to M acroD efs)

TestProgram blocks
contain references to
EntryPoints and TestM odules

1450.2
constructs

1450.n
constructs *

* P1450.1 and .6 as
they becom e adopted
to the STIL standard

EntryPointD efs

TestM ethodD efs

TestM oduleD efs

STIL
1450.0

constructs
1450.0

constructs

TestProgram “C har”TestProgram “C har”

TestProgram “W S”TestProgram “W S”

TestProgram “FinalTest”TestProgram “FinalTest”

TestProgram “LabA TE”TestProgram “LabA TE”

Standard Libraries via Includes
(sim ilar to M acroD efs)

TestProgram blocks
contain references to
EntryPoints and TestM odules

1450.2
constructs

1450.2
constructs

1450.n
constructs *

1450.n
constructs *

* P1450.1 and .6 as
they becom e adopted
to the STIL standard
TestProgramFlowConceptualModelD.fm May 12, 2004 Page 1 of 9

P1450.4 Test Program Flow Conceptual Model Discussion Document
block that does not declare a named one of each type. When a flow is active and a tester
event requires an EntryPoint response, the associated EntryPoint TestModule/FlowMod-
ule that was declared, or the default if not declared is run.

2.4 TestMethod:

This represents a test type which when instantiated, becomes a TestModule. There are two
kinds of types: integral and user defined. A user-defined TestMethod may be composed
from a combination of integral and other user defined types. The means by which integral
and user defined types are combined to form a new type is the TestMethod Flow, the only
primitive TestMethod defined by P1450.4.

Integral types are sub-divided into primitives and purely derived types. All types are
derived from “Harness”, a base class which represents the common denominator (data and
functions) between all TestMethods. An example of a primitive might be ForceMeas or
VOH.

User-defined types are divided into combinatorial and purely derived types. An example
of a combinatorial might be a vol/voh test performed both functionally and parametrically.
An example of a purely derived type might be TopLevelFlow.

2.4.1 “Harness”
This represents the common denominator of all TestMethods, i.e., all TestMethod defini-

tions include the “Harness” component, explicitly or implicitly, but a TestMethod of

purely type “Harness” can not be instantiated. Here are some proposed elements:

• Test id

• 0+ parameters/arguments: input, output, ioput, private (local)

• Ports: entry, exit (pass/fail), and associated actions:

- variable assignment (conditional/unconditional)

- bin (conditional/unconditional)

- stop (conditional/unconditional)

- skipTestAndActions (conditional/unconditional, entry action only)

- actionlist (conditional/unconditional)

• Fail flag

• Result: scalar, array

• Default fail bin

This is an informative term that is not intended to have a keyword in the extension lan-

guage. It is a common denominator descriptor for all TestModule instantiations. Its use

refers to a data type (or object type) from which the various types of TestModules (shown

in figures 3 and 5) are derived.
TestProgramFlowConceptualModelD.fm May 12, 2004 Page 2 of 9

P1450.4 Test Program Flow Conceptual Model Discussion Document
Straw Man Syntax Skeleton to Illustrate Concepts:
TestProgramFlowConceptualModelD.fm May 12, 2004 Page 3 of 9

P1450.4 Test Program Flow Conceptual Model Discussion Document
TestProgramFlowConceptualModelD.fm May 12, 2004 Page 4 of 9

P1450.4 Test Program Flow Conceptual Model Discussion Document
2.5 TestModule:

This is an instantiation of a TestMethod.

(See Figures 3, 4 and 5)

2.6 FlowNode:

(See Figure2) A node in the program flow that contains a ModuleRef (Body) that refer-
ences a TestModule or FlowModule. This node has PreActions that defines the entry point
into the node and may contain actions, declarations such as Spec/Category selection, etc.
Absence of actions may in the Pre section may cause default actions (tbd). The Post sec-
tion contains PostActions, Arbitrator, and ExitActions. The ExitActions give directives as
to the follow-on flow path taken out of the FlowNode.

2.7 BinNode and BinMap:

Not yet defined/discussed

(Need two natures: terminal and flow-through)

2.8 TaskNode and DecisionNode:

These are non-test type nodes used for non-test activities and flow decision content.
TestProgramFlowConceptualModelD.fm May 12, 2004 Page 5 of 9

P1450.4 Test Program Flow Conceptual Model Discussion Document
3.0 FlowNode Conceptual Model

FIGURE 2. The FlowNode Conceptual Model Diagram (with its named components)

3.1 FlowNode Components Descriptions

1. FlowNode

2. EntryPath

3. PreActions Block

4. ModuleRef (Module Reference)

5. PostActions Block

6. Arbiter Block

7. ExitActions Block

8. ExitPath

9. SkipPath (can goto to any ExitAction Block)

FlowNode

8

8

9
1

P
os

tA
ct

io
ns

A
rb

ite
r

5
6

Exit Actions(1)
7

Exit Actions(n)

7

ModuleRef
2

P
re

A
ct

io
ns

3

Pre- Body Post-

8

4 8Exit Actions(2) 8

7

.

.

TestProgramFlowConceptualModelD.fm May 12, 2004 Page 6 of 9

P1450.4 Test Program Flow Conceptual Model Discussion Document
3.2 FlowNode Informative Term Descriptions

1. “Pre-” portion

2. “Body” portion

3. “Post-” portion

4.0 Relationship of FlowNodes to TestModules

The instantiation of the TestMethod (i.e. VOH) can be “in-line” or “defined-before-use”.
“Define-before-use” is the mechanism by which two or more FlowNodes can refer to the
same “Test Object” (i.e. Module). Test Module instantiation involves placing the instanti-
ated TestMethod inside the harness as shown to the left (the harness is the grey portion of
the box labeled TestModule.)

TestMethod “VOH” {Arg1, Arg2,...ArgN} is the type definition, and

Test VOH {Arg1, Arg2,...ArgN}is the instantiation of the VOH TestMethod in the test
module.
TestProgramFlowConceptualModelD.fm May 12, 2004 Page 7 of 9

P1450.4 Test Program Flow Conceptual Model Discussion Document
FIGURE 3. Block Diagram View of FlowNode Where ModuleRef References a TestModule

5.0 TestModule Characteristics

5.1 The “Harness” of the TestModule (a better title will emerge)

Commonalities. What the harness provideds. The FlowNode has dependencies on the the
harness. Describing the data interaction model. Perhaps an upper level view of the inter-
face between the FlowNode and the TestModule. Examples. Cummunication with input
and output arguments flowing into and out of the TestModules.

FlowNode

P
os

tA
ct

io
ns

ModuleRef

P
re

A
ct

io
ns

Exit
Actions(1)

Exit
Actions(n)

A
rb

ite
r

Te
st

P
os

tA
ct

io
ns

Te
st

A
rb

ite
r

Te
st

P
re

A
ct

io
ns

PassActions

FailActions

“Harness”

Test VOH {Arg1, Arg2,...ArgN}

TestModule
TestProgramFlowConceptualModelD.fm May 12, 2004 Page 8 of 9

P1450.4 Test Program Flow Conceptual Model Discussion Document
5.2 Two Types of “Outflow” Configurations for TestModules

FIGURE 4. Conceptual Block Diagrams of the Two Outflow Types

5.3 TestFlow as the TestModule Body

FIGURE 5. TestModule Referencing a TestFlow

TM2TM1

4A: Two Exits Join
 to One Point

4B: Classic Two Exits:

 for Later ArbiterArbiter
 Action

 One Pass, One to
 Failure Terminal
 Point

P
os

tA
ct

io
ns

A
rb

ite
r

P
re

A
ct

io
ns PassActions

FailActions

“Harness”

TestModule

FN1 FN2

..

..

FNn

T
M

n

T
M

A

T
M

B

Test Flow...
TestProgramFlowConceptualModelD.fm May 12, 2004 Page 9 of 9

	1.0 Top-Down Conceptual View
	2.0 Test Program Flow Extension Terms
	2.1 TestProgram Block:
	2.2 Flow Block (or TestFlow):
	2.3 EntryPoint:
	2.4 TestMethod:
	2.4.1 “Harness”

	2.5 TestModule:
	2.6 FlowNode:
	2.7 BinNode and BinMap:
	2.8 TaskNode and DecisionNode:

	3.0 FlowNode Conceptual Model
	3.1 FlowNode Components Descriptions
	3.2 FlowNode Informative Term Descriptions

	4.0 Relationship of FlowNodes to TestModules
	5.0 TestModule Characteristics
	5.1 The “Harness” of the TestModule (a better title will emerge)
	5.2 Two Types of “Outflow” Configurations for TestModules
	5.3 TestFlow as the TestModule Body

