
Test Flow Use Cases
Document Revision: January 7, 2003 9:15 am

Author: Jim O’Reilly
Informative statement
Priority ranking:
1. Must: Absolutely required for Minimum Viable Product
2. Want: Requested as an anticipated requirement
Use Case Overview:
1. Use Case #1: Dependent timing. Example of a test block with timing dependent upon

search results from a search run from a test block in a prior flownode. For timing,
often referred to as "source synchronous" - for instance, timing of a data strobe is
dependent upon the position of a clock output.

1. Use Case #1: Dependent timing.
1.1. Priority - Must

1.1.1. Simplest straight through flow to be supported by P1450.4 extension
1.2. Assumptions/Prerequisites

1.2.1. This flow shows only the test program flow once all aspects of the
program are loaded and tester requirements are initialized. If there are
other flows to direct the loading of memories/registers and the
initialization sequences, these must be discussed in an other Use Case.

1.2.2. No tester-to-DUT connect/disconnect sequences are encompassed in this
flow

1.2.3. This sequence is only a subset of a complete flow.
1.2.4. This sequence is focused for single site testing

1.3. Pre-Conditions
1.3.1. All patterns are loaded into tester hardware. Timing, levels, and other test

program have been loaded into the appropriate memory (either tester
hardware, if the system stores this data in hardware, or as part of the run-
time image of the test program). Tester is initialized.

1.4. Tasks/Scenario
1.4.1. A flow node which contains a search test is run. The timing or levels for

this search depend only on values which are known at load time. The
result of this search is stored so that a subsequent flow node can use the
results.

1.4.2. A flow node which follows the first flow node runs a test method
(functional test, dc test, timing or levels search, etc.) in which the input or
output timing (or levels) depends on the results of the test method run in
1.4.1. Generally, the setup data for such a test will be represented as an
equation of some sort; that equation will contain a variable for the
dependent timing or voltage

1.5. Issues
1.5.1. One location in which the search result might be stored is in the "Meas"

field of a Spec-Selector block. Alternatively, a Global variables block

could be defined (within the scope of a test flow or test program), and the
result could be stored there.

1.5.2. It’s quite likely that, even if the "Meas" field of a Spec-Selector block can
be used, we’ll also need a "Global variables" block of some sort - probably
at the "test program" scope (I see the "test program" scope as
encompassing the "test flow(s)" scope). As discussed in the previous
conference call, we may have a completely user-defined set, or include a
subset of the SEMI TSEM variables in addition to any user-defined
variables.

1.5.3. In either case, the issue of persistance of the measured value arises. Once
the result is obtained, is it valid for only the duration of the current test
flow execution, or until reset? There are at least two cases to consider:

1.5.3.1. Valid only for the duration of the test flow. This case would apply
to search results which will vary from device to device (i.e., the
search result contains a device measurement). In such a case, we
don’t want to accidently use results from a previous device to
calculate equations for the current device. So, some means of
resetting the measured result (or flagging it as invalid) is required,
either at the beginning or the end of a test flow execution.

1.5.3.2. Valid until the test program is reloaded. This case would apply to
search results which do not vary from device to device. Examples
would be (timing or levels) calibration of load board circuitry.
Again, some means of resetting the measured result (or flagging it
as invalid) is required; except in this case, the measured result is
valid until the measurement is repeated, or the test program is
reloaded.

1.5.4. When the result is used in a subsequent equation, that equation will
contain a reference to the measured result. The syntax of such referencing
needs to be worked out. From the 1450-1999 standard (p 73) there are a
few examples of the usage of specs from a spec block to define the edge
timing in a waveform table:

’txx’ // simple variable from a spec sheet or labeled event
’txx*5’ // expression
’txx+5ns’ // expression

1.5.5. Generally, these specs will be resolved within the scope of whatever spec
block is specified by the flow node (or by the PatternExec statement). We
probably also need some syntax mechanism to specify a spec value from a
spec block other than the one specified by the flow node (i.e.,
<SpecBlockName>.<specName>, perhaps).

