Figure A: Test Program Layers
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Figure B: Test Program Components

TestProgram Block: top level test program construct or container
There can be one or more of these blocks and they may be domain
name or unnamed (global).

EntryPoint: A special program level tester activated task that is a pointer
a TestModule. There are a set of
general (via this spec) EntryPoint entities such as OnStart, OnReset, etc.
these can be domain named or defaulted unnamed. If a given Flowdeclares
a domain named EntryPoint (i.e. OnLoad “2”) then when an “on-load”
tester systeminterupt occurs, then execution will flow to the Active Flow
to the named object.

Flow Block: One or more program flows (ie. Prod, Finaltest, Char ...)
Special SubFlowNodecomposing a complete test flow.

FlowNode: Node in a flow: contains a TestModule or SubFlow Reference
(See Figure #1)

SubFlowModule: (See Figures #2B, 4 and 5)

TestModule: (See Figures #, 2A and 3)

BinNode: Not yet discussed/defined
(Need two natures, terminal and flow-through)

TaskNode: Is this non-test type node? Is it needed for non-test activities?

DecisionNode: Is this non-test type node? Is it needed for flow decisions?
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Figure 1: A FlowNode Diagram with Its Named Parts
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Figure 2: Variations on What a FlowNode Module Is a TestModule
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Figure 3: Variations on TestModule with Three “out-flow” Configurations
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Figure 4: An Example of a FlowNode containing SubFlowModule with
Reusable FlowModules of Various “out-flow” Configurations
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Figure 5: An Example of a SubFlowModule with Contents per ITC2002 Diagram
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Note: TMA and TMD both reference TestMethod “1”. All other TMs
reference different TestModules (#2-5)
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