Figure A: Test Program Layers

TestProgram “Prod” Container
(Contains All Program Components)

OnLoad “2”

EntryPoint Objects

Flow “#2”

OnlLoad “2”
OnUserDefined “ 2~

Where:
® — |powest-level TestModule
@S = mid-level TestModule
< = highest-level TestModule

1of6

Figure B: Test Program Components

TestProgram Block: top level test program construct or container
There can be one or more of these blocks and they may be domain
name or unnamed (global).

EntryPoint: A special program level tester activated task that is a pointer
a TestModule. There are a set of
general (via this spec) EntryPoint entities such as OnStart, OnReset, etc.
these can be domain named or defaulted unnamed. If a given Flowdeclares
a domain named EntryPoint (i.e. OnLoad “2”) then when an “on-load”
tester systeminterupt occurs, then execution will flow to the Active Flow
to the named object.

Flow Block: One or more program flows (ie. Prod, Finaltest, Char ...)
Special SubFlowNodecomposing a complete test flow.

FlowNode: Node in a flow: contains a TestModule or SubFlow Reference
(See Figure #1)

SubFlowModule: (See Figures #2B, 4 and 5)

TestModule: (See Figures #, 2A and 3)

BinNode: Not yet discussed/defined
(Need two natures, terminal and flow-through)

TaskNode: Is this non-test type node? Is it needed for non-test activities?

DecisionNode: Is this non-test type node? Is it needed for flow decisions?
2 of 6

Figure 1: A FlowNode Diagram with Its Named Parts

@FlowNode

9

i

i)

Module

@PreActions

PostActions

®

T
@Exit

Actions(1)

@Exit

mActions(2)

@Arbitor

- @Exit
Actions(n)

Yo Y@ Y@

Pre- Body

Post-

FlowNode Elements Terms

1. FlowNode

2. EntryPath

3. PreActions Block

4. Module Block

5. PostActions Block
6. Arbitor Block

7. EXitActions Block

8. ExitPath

9. SkipPath

Informative Terms:
Pre-

Body

Post-

3 0of6

Figure 2: Variations on What a FlowNode Module Is a TestModule

0]
| TestMethod “XYZ" | & g |
ol [{Arg1, Arg2,...ArgN}| o] |5
TestModule
FI Node
\
" o Exit .
8 c Actions(1)
(@) —
e = 0
D Module 3} E
g g >
0 7 < _
E o Exit
o ™ Actions(n)
//
P/ré Body St-
FN1 FN2 FNn
0]
[=
U } Il
e J‘ -m J g g I
L g-l—aiilzxit
@ 5 <

TestModule

4 of 6

Figure 3: Variations on TestModule with Three “out-flow” Configurations

3A: Two Exits Joint 3B: Classic Two EXxits: 3C: By Pass, Two Exits:
to One Point One Pass, One to Normal Pass to Next
for Later Arbitor Failure Terminal TestModule, One that
Action Point Flows next Around TM
™1 ™2 ™3 T™Mn

_ = _ L. |l

Figure 4: An Example of a FlowNode containing SubFlowModule with
Reusable FlowModules of Various “out-flow” Configurations

FlowNode

/0 X

Exit
TActions(1)[T | -

Module

PreActions

Exit
= Actions(n) =

|
| |
| |
| |
PostActions
|
Arbitor

Post-

~

Pre/ Body

SubFlowModule with Various FlowModule “out-flows”

T™M2 TM3 ™1

i L _

1

50f6

Figure 5: An Example of a SubFlowModule with Contents per ITC2002 Diagram

FlowNode

S

Exit
TlActions(1)[] | -

i Module

Exit
= Actions(n) =]

Pre—/ Body Post-

PreActions
PostActions
|
Arbitor

T™MB

he)
O —|
L
T
u N
2:
8 J
F TMD
he)
0
E -|
TMA gf—c
T™MC 2 J TMF
0
T
] B o F ke)
c 0o o
<
oy c c
b 0; o;
=R () i
7 iz =
g 2 TME 2
[—L F

TestMethod
w g
| I

Note: TMA and TMD both reference TestMethod “1”. All other TMs
reference different TestModules (#2-5)

6 of 6

