1 // XLATION NOTE: Methods and parameters accepted at face value
2 TestProgram production {
3 // ==
4 // **** BINNING ****
5 // NOTE: presumes implicit STIL defined SoftBin NoBin
6 PassBins {
7 // Implicit anonymous Axis
8 SoftBin Good { Descriptor = "Good Device"; }
9 HandlerMap default {
10 HardBin 1 [Good];
11 }
12 }
13 // NOTE: reason for separating pass and fail maps:
14 // PassBins {
15 // Axis freq {
16 // SoftBin Indeterminate { Descriptor = "Good Device"; }
17 // SoftBin 50Mhz { Descriptor = "Good 50Mhz Device"; }
18 // SoftBin 100MHz { Descriptor = "Good 100MHz Device"; }
19 // }
20 // Axis pwr {
21 // SoftBin 5% { Descriptor = "Good Device +- 5%"; }
22 // SoftBin 10% { Descriptor = "Good Device +- 10%"; }
23 // }
24 // HandlerMap default {
25 // HardBin 1 [100MHz, 10%];
26 // HardBin 2 [100MHz, 5%];
27 // HardBin 3 [50Mhz, 5%|10%];
28 // HardBin 4 [Indeterminate, *];
29 // }
30 // }
31 }
32 FailBins {
33 // Implicit anonymous Axis
34 SoftBin Fail_Opens {}
35 SoftBin Fail_Shorts {}
36 SoftBin Fail_Icc { Descriptor = "Failed static Icc"; }
37 SoftBin Fail_InputLeakage {}
38 SoftBin Fail_dCStuckCore {}
39 SoftBin Fail_acPathCore {}
40 SoftBin Fail_Functional {}
41 SoftBin Fail_PLL {}
42 SoftBin Fail_tddq {}
43 HandlerMap default {
44 // NOTE: logic presumes bit-wise behavior
45 HardBin 7 [Fail_Opens | Fail_Shorts];
46 HardBin 8 [!(Fail_Opens | Fail_Shorts)]; // Any FailBin other than these
47 }
48 }
49 // ==
50 // *** TEST METHOD DECLARATIONS ***
51 // NOTE: STIL.4 defined default. It's presence here is neither
52 // necessary nor harmful.

Method Test {
 // STIL.4 defined parameters can not be replaced, only added to
 InOut const SoftBin DefaultFailBin = NoBin; // Default

 Out Bool Failed; // Fail flag
 Out Integer Status; // For integer or bit-wise arithmetic
 Out NrwUnits Result; // Scalar
 // 1 to N dimensioned array not covered

 // STIL.4 defined actions can be replaced
 PreActions ()
 PostActions ()

 Fail OnCondition <anytest>.Fail {
 BinAndStop; // Uses DefaultFailBin, set by derived Method (NoBin = no action)
 }
 Pass {} // No Condition (necessary|permitted)
}

Method Contact {
 In SignalRefExpr pins;
 In Amperes Current;
 In Volts ShortsLimit = '200mV'; // Default
 In Volts OpensLimit = '0V'; // Default
 In Seconds Delay = '0s'; // Default
 InOut const String Title = "Opens / Shorts Test"; // Default
 // ? Diodes = VssDiode;
 Private const Integer FailOpens = 1;
 Private const Integer FailShorts = 2;

 Execute Object<STIL or user defined method(s)>;

 ExitPort Fail {
 // Method "Test" override (inherits condition)
 if (<thistest>.Status | FailOpens) // Bit comparison
 BinAndStop(Fail_Opens);
 else if (<thistest>.Status | FailShorts) // Bit comparison
 BinAndStop(Fail_Shorts);
 else
 Exception("Unexpected Contact Status: " + String(<thistest>.Status) + ");
 }
}

// Placeholders
Method Connect { <Assume to be STIL.5 declared> }
Method Current { <Assume to be STIL.5 declared> }
Method Delay { <Assume to be STIL.5 declared> }
Method Frequency { <Assume to be STIL.5 declared> }
Method IDDQ_PMU { <Assume to be STIL.5 declared> }
Method NullOperation { <Assume to be STIL.5 declared> }
Method Pattern { <Assume to be STIL.5 declared> }
Method PinMode { <Assume to be STIL.5 declared> }
Method Search { <Assume to be STIL.5 declared> }
Method Setup { <Assume to be STIL.5 declared> }
Method SpecContext { <Assume to be STIL.5 declared> }
Method Test {
Method Voltage { <Assume to be STIL.5 declared> }

// ==
// **** DEFAULTS ****

// Defaults for the harness of FlowNode and/or any Method. Defaults
// are applied during object initialization.

Defaults { // NOTE: STIL.4 defined default. It's presence here is neither
// necessary nor harmful.
 FlowNode {
 PreActions {}
 PostActions ()
 ExitPort Fail OnCondition test.Fail {
 Goto end; // End of parent Flow
 }
 ExitPort Pass {
 Goto next; // Next node in nodelist
 }
 }
 ExitPort Pass {
 Goto next; // Next node in nodelist
 }
 // Add a parameter to STIL defined Method Test
 Method Test {
 InOut const String Title = "";
 }
}

// ==
// **** TEST OBJECT DEFINITIONS/INSTANTIATIONS ****

// NOTE: named define-before-use instantiations only: anonymous
// instantiations may occur inline.

TestObject Flow Device_1 {
 Title = "Stuck Fail";
 Execute Method Setup {DCLevels = "NomLevels";}
 Execute Method Delay {Delay = '50ms';}
 Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Apply;Delay = '1ms';}
 Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Low;ComparatorMode = NoChange;}
 Execute Method Delay {Delay = '2ms';}
 Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Off;ComparatorMode = NoChange;}
 Execute Method Delay {Delay = '2ms';}
 Execute Method Voltage {SignalRefExpr = "FPGA_OK";Force Current = '10uA';Min V = '2V';Delay = '2ms';}
}

TestObject Flow Device_2 {
 Title = "Good Device";
 Execute Method Setup {DCLevels = "NomLevels";}
 Execute Method Delay {Delay = '50ms';}
 Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Apply;Delay = '1ms';}
 Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Low;ComparatorMode = NoChange;}
 Execute Method Delay {Delay = '2ms';}
 Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Off;ComparatorMode = NoChange;}
 Execute Method Delay {Delay = '2ms';}
 Execute Method Voltage {SignalRefExpr = "FPGA_OK";Force Current = '10uA';Min V = '2V';Delay = '2ms';}
}

// XLATION NOTE: need more detail about scope of behavior of "ExecutionMode IgnoreAllFails"
Execute Method Delay {Delay = '2ms';}
Execute Method Pattern {SignalRefExpr = 'JTAG_PINS-TDO';PatternExec = "Exec_GoodConfig";BurstMode = True;}
Execute Method Delay {Delay = '2ms';}
Execute Method Voltage {SignalRefExpr = "FPGA_OK";Force Current = '10uA';Min V = '-1V';Max V = '1V';Delay = '2ms';}
Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Remove;Delay = '0s';}
}

// --
TestObject Flow Device_3 {
Title = "ac Fault";
Execute Method Connect {SignalRefExpr = 'DELAYENABLE';Resource = PE;Action = Apply;Delay = '0s';}
Execute Method PinMode {SignalRefExpr = 'DELAYENABLE';DriverMode = High;ComparatorMode = NoChange;}
Execute Method Setup {DCLevels = "NomLevels";}
Execute Method Delay {Delay = '50ms';}
Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Apply;Delay = '1ms';}
Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Low;ComparatorMode = NoChange;}
Execute Method Delay {Delay = '2ms';}
Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Off;ComparatorMode = NoChange;}
Execute Method Delay {Delay = '2ms';}
Execute Method Pattern {SignalRefExpr = 'JTAG_PINS-TDO';PatternExec = "Exec_scrace";BurstMode = True;}
Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Remove;Delay = '0s';}
}

// --
TestObject Flow Device_4 {
Title = "Chain Race";
Execute Method Setup {DCLevels = "NomLevels";}
Execute Method Delay {Delay = '50ms';}
Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Apply;Delay = '1ms';}
Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Low;ComparatorMode = NoChange;}
Execute Method Delay {Delay = '2ms';}
Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Off;ComparatorMode = NoChange;}
Execute Method Delay {Delay = '2ms';}
Execute Method Pattern {SignalRefExpr = 'JTAG_PINS-TDO';PatternExec = "Exec_scstuck";BurstMode = True;}
Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Remove;Delay = '0s';}
}

// --
TestObject Flow Device_5 {
Title = "Stuck Chain";
Execute Method Setup {DCLevels = "NomLevels";}
Execute Method Delay {Delay = '50ms';}
Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Apply;Delay = '1ms';}
Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Low;ComparatorMode = NoChange;}
Execute Method Delay {Delay = '2ms';}
Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Off;ComparatorMode = NoChange;}
Execute Method Delay {Delay = '2ms';}
Execute Method Pattern {SignalRefExpr = 'JTAG_PINS-TDO';PatternExec = "Exec_scstuck";BurstMode = True;}
Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Remove;Delay = '0s';}
}

// --
TestObject Flow Device_6 {
Title = "Stuck & Broke";
Execute Method Setup {DCLevels = "NomLevels";}
Execute Method Delay {Delay = '50ms';}
Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Apply;Delay = '1ms';}
Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Low;ComparatorMode = NoChange;}
Execute Method Delay {Delay = '2ms';}
Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Off;ComparatorMode = NoChange;}
Execute Method Delay {Delay = '2ms';}
Execute Method Pattern {SignalRefExpr = 'JTAG_PINS-TDO';PatternExec = "Exec_stuck_broke";BurstMode = True;}
Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Remove;Delay = '0s';}
// --
TestObject Flow DeviceConfig {
Title = "Device Programming";
// XLATION NOTE: don't know the meaning of "Action { ''; Exit=1; }
// XLATION NOTE: don't know what "Type UNCONDITIONAL" is
Execute Object Device_1;
Execute Object Device_2;
Execute Object Device_3;
Execute Object Device_4;
Execute Object Device_5;
Execute Object Device_6;
} // --
TestObject Flow LeakageTests {
Title = "Leakage Tests";
DefaultFailBin = Fail_InputLeakage;
Execute Method Current {SignalRefExpr = '_in';Force Voltage = '0V';Min I = '-10uA';Max I = '10uA';Delay = '800us';Measurement Sequence = MBB;Measurement Mode = Static;Max Expected Current = '100uA';}
Execute Method Current {SignalRefExpr = '_in';Force Voltage = '3V';Min I = '-10uA';Max I = '10uA';Delay = '400us';Measurement Sequence = MBB;Measurement Mode = Static;Max Expected Current = '100uA';}
} // --
TestObject Flow dcStuckTest {
Title = "DC Stuck At Tests";
DefaultFailBin = Fail_dcStuckCore;
Execute Method Pattern {SignalRefExpr = '_so';PatternExec = "dcStuckAtExec";}
} // --
TestObject Flow acPathTests {
Title = "Path Delay Tests";
DefaultFailBin = Fail_acPathCore;
Execute Method SpecContext {CategorySelectorExpression = Engineering+SpeedGrade;}
Execute Method Search {SignalRefExpr = '_po_-'SO[7]"-SO[10]";PatternExec = "acPathExec";ResourceSignals = "'CLK'";Search Start = '1/30MHz';Search Stop = '1/130MHz';Upper Limit = '1/InternalFreq';SearchExpression = "acPathDelay";ResultVariable = #;}
} // --
TestObject Flow FunctionalTests {
Title = "Functional Tests";
DefaultFailBin = Fail_Functional;
Execute Method SpecContext {CategorySelectorExpression = Engineering+SpeedGrade;}
Execute Method Pattern {SignalRefExpr = 'fpins';PatternExec = "Exec_functional";}
} // --
TestObject Flow PllTests {
Title = "Phase Lock Loop Tests";
DefaultFailBin = Fail_PLL;
Execute Method SpecContext {CategorySelectorExpression = Engineering+SpeedGrade;}
Execute Method Frequency {SignalRefExpr = '"ClkOut"';Minimum Freq = '100MHz*(1-0.0002)';Maximum Freq = '100MHz*(1+0.0002)';Measure Mode = Continuous;PatternExec = "Exec_pll";Output Mode = Average;ResultVariable = #;}

TestObject Flow IddqTest {
Title = "Iddq Tests";
DefaultFailBin = Fail_Iddq;
Execute Method SpecContext {CategorySelectorExpression = Engineering+SpeedGrade;}
Execute Method IDDQ_PMU {Test Pins = 'fpins';Meas Pin = 'IddqPin';DPS Pin = 'VCCINT';User Bits = 'Kidd';PatternExec = "Exec_Iddq";Measurement Mode = Dynamic;Delay = '2ms';Max I = '80uA';}
}

TestObject Flow Main {
// XLATION NOTE: didn't know what to do with Diodes = VssDiode;
Execute Method Contact {SignalRefExpr = 'all_pins';Current = '300uA';ShortsLimit = '200mV';OpensLimit = '1V';Delay = '300us';}
Execute Object DeviceConfig;
Execute Object LeakageTests;
Execute Object dcStuckTest;
FlowNode {
ExitPort Pass { Goto 51; } // Inherit condition, override actions
}
FlowNode 41 {
ExitObject FunctionalTests;
ExitPort Pass { Goto 15; } // Inherit condition, override actions
}
FlowNode 51 {
ExitObject PllTests;
ExitPort Pass { Goto 41; } // Inherit condition, override actions
}
FlowNode 15 {
ExitObject IddqTest;
}
// XLATION NOTE: xlated intent, i.e., setting SoftBin PassAll is associated with Flow Main, not IddqTest or FlowNode 15
Pass { BinAndStop(PassAll); }
// --
TestObject Connect Start {Title = "ConnectResources";SignalRefExpr = 'all_pins';Resource = PE;Action = Apply;Delay = '0s';}
// --
TestObject Flow Finish {
Title = "RemoveResources";
Execute Method Connect {SignalRefExpr = 'all_pins';Resource = PE;Action = Remove;Delay = '0s';}
Execute Method SpecContext {CategorySelectorExpression = Engineering+SpeedGrade;}
Execute Method Setup {DCLevels = "Zero";}
}
// --
TestObject SpecContext Load {Title = "Spec Selection";CategorySelectorExpression = Engineering+SpeedGrade;}
// NOTE: there is no reference to this flow
TestObject Flow Unload {
}

// NOTE: there is no reference to this flow
TestObject Flow Load_dcFault1 {
 Execute Method Setup {DClevels = "NomLevels";}
 Execute Method Delay {Delay = '50ms';}
 Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Apply;Delay = '1ms';}
 Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Low;}
 Execute Method Delay {Delay = '2ms';}
 Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Off;}
 Execute Method Delay {Delay = '2ms';}
 Execute Method PinMode {SignalRefExpr = 'PROGRAM';DriverMode = Off;}
 Execute Method Delay {Delay = '2ms';}
 Execute Method Pattern {SignalRefExpr = 'JTAG_PINS-TDO';PatternExec = FPGA_dcFault;}
 Execute Method Connect {SignalRefExpr = 'JTAG_PINS+PROGRAM';Resource = PE;Action = Remove;Delay = '0s';}
}

TestObject NullOperation NoOp;

// **** ENTRY POINTS ****
EntryPoints {
 // Using inline code instead of predefined SpecContext Load
 OnLoad Execute Method SpecContext {Title = "Spec Selection";CategorySelectorExpression = Engineering+SpeedGrade;};
 OnPatternLoad Execute Object NoOp;
 OnStart Execute Object Main;
 OnReset Execute Object NoOp;
 OnPowerDown Execute Object NoOp;
 OnFinish Execute Object Finish;
 OnLotStart Execute Object NoOp;
 OnLotEnd Execute Object NoOp;
 OnWaferStart Execute Object NoOp;
 OnWaferEnd Execute Object NoOp;
 OnSiteStart Execute Object NoOp;
 OnSiteEnd Execute Object NoOp;
 OnMultiSiteEnable Execute Object NoOp;
 OnMultiSiteDisable Execute Object NoOp;
}

// ===