IEEE Std P1532

A New Standard for 1149.1-based In System Configuration

Neil G. Jacobson, Chair
Historical Perspective

- ISP (In System Programming) first developed in 1993 using proprietary bus & protocol
- Simultaneous demand for boundary-scan and ISP leads to general adoption of 1149.1 bus & protocol
- Similar but different implementations result in custom tool environment
Historical Perspective

- Inaugural meeting April, 1996
 - Attended by semiconductor manufacturers, tool developers, ATE manufacturers and system designers
- E-mail reflector established
- Meetings held quarterly
- Draft developed for review
Mission

To define, document and promote the use of a standardized process and methodology for implementing programming capabilities...utilizing (and compatible with) the 1149.1 communication protocol.
Benefits

- Serve as development model for new devices
- Build on existing, well-supported and understood standard (1149.1, BSDL)
- Standardize tool, development system, test and manufacturing interfaces to provide “instant” device support
- Facilitate innovation and the development of new application areas
- Enable “concurrent programming” capabilities
P1532 Application Space

- It is the intention of P1532 to be applicable, usable and practical for:
 - FPGA’s
 - CPLD’s
 - PROM’s
I.E., ANY PROGRAMMABLE DEVICE
Progress so far...

- Description of silicon implementation requirements completed and proceeding to ballot.
- Description of BSDL extensions continuing to be filed as a supplement to the standard.
1149.1 System Modal States

- System Mode
- Test Mode

Diagram:

- System Mode
 - Any test instruction loaded
 - Any non-test instruction loaded
 - Test-Logic-Reset
 - Power Up

- Test Mode
 - Any test instruction loaded
 - Any non-test instruction loaded
P1532 System Modal States

- Unprogrammed Mode
- ISC Accessed Mode
- ISC Complete Mode
- Operational Mode
P1532 System Modes

Signals: (ISC_Enabled, ISC_Done)
P1532 System Modes

Unprogrammed

Operational

Test Mode

ISC Accessed

Any test instruction loaded

Any non-test instruction loaded and ISC Enabled is clear and ISC Done is clear

Any test instruction loaded

Any non-test instruction loaded and ISC Enabled is set

Any test instruction loaded

Any non-test instruction loaded and ISC Enabled is set and ISC Done is set

Any test instruction loaded

Any non-test instruction loaded and ISC Enabled is clear

Any test instruction loaded

Any non-test instruction loaded and ISC Enabled is clear and ISC Done is set

Any test instruction loaded

ISC Complete

Any test instruction loaded

Any non-test instruction loaded and ISC Enabled is set
P1532 Instruction Set

- Support Basic ISC Functionality
 - Concurrent Operations
 - Well-defined System Behaviour
 - Mandatory Instructions
 - ISC_ENABLE
 - ISC_PROGRAM
 - ISC_DISABLE
 - ISC_NOOP
P1532 Instruction Set

Support Additional Access Mechanisms
- ISC_DISCHARGE
- ISC_SETUP
- ISC_PROGRAM_DONE
- ISC_ERASEDONE
- ISC_DATA_SHIFT
- ISC_ADDRESS_SHIFT
- ISC_INCREMENT
P1532 Memory Model
Basic Structure
P1532 Memory Model
Variation 1
P1532 Memory Model
Variation 2
P1532 Memory Model
Variation 3
P1532 Memory Model
Variation 4
P1532 Memory Model
Variation 5

[Diagram showing memory model and data paths]

- Address Gen
- ISC_Address
- ISC_Config
- TDI
- TDO
- ISC_PData/ISC_RData
- Non-volatile Memory Array #1
 - Addr(n) = 0
- Volatile Memory Array #2
 - Addr(n) = 1
 - n-1 bits
 - 1 bit
P1532 Memory Model
Variation 6
P1532 Instruction Set

- Support Advanced ISC Functionality
 - ISC_ERASE
 - ISC_READ
 - ISC_READ_INFO
 - ISC_PROGRAM_SECURITY
 - ISC_PROGRAM_START
 - ISC_PROGRAM_STOP
P1532 Optional Status Mechanism

| N | . | . | 2 | 1 | 0 | 0 | 1 | 0 |

Optional Status Subcodes

Optional Programming-In-Progress Flag

Error Code
P1532 Optional Security Mechanism

Transfer of N+3 bits occurs on the completion of ISC_PROGRAM_SECURITY
IF (All 0's OR Equal) AND Not All 1's

All 0's
All 1's
Equal
N
N

ISC_DISABLE_READ
ISC_DISABLE_PROGRAM
ISC_DISABLE_ERASE

Internal Protection Control Register

N-Bit Key

Transfer of N+3 bits occurs on the completion of ISC_PROGRAM_SECURITY
IF (All 0's OR Equal) AND Not All 1's
P1532 BSDL

- Supported through BSDL EXTENSION
- Description sufficient to indicate:
 - Device ISC Capabilities
 - Allowable Mode Transitions
 - Operational Flows
Joining the Ballot Group

- You must be a member of the IEEE-SA.
- You must be committed to reading, understanding and returning the ballot document.
- Submit your contact information to me - now!
Joining the Working Group

- Meetings are scheduled at least 4 weeks in advance.
- They are 2 days in length and generally in the San Jose area.
- To become a voting member, you must:
 - Attend two consecutive meetings.
 - Express an interest in joining.
Information Sources

Executive Committee

– Neil Jacobson, Chair
 • neil.jacobson@xilinx.com
– Dave Bonnett, Vice Chair
 • dbonnett@asset-intertech.com
– Ted Eaton, Secretary
 • ted_eaton@sun.com
– Ken Parker, Technical Editor
 • parker@lvld.hp.com
Information Sources

- Invitation to Ballot Group
 - Contact Neil Jacobson
 - neil.jacobson@xilinx.com

- E-mail Reflector
 - stds-1532-wg@ieee.org
 - Contact Neil Jacobson to join

- Web Page
 - http://grouper.ieee.org/groups/1532/index.html