What is happening with IEEE P1581?

Heiko Ehrenberg
P1581 working group chair
GOEPEL Electronics

Purpose

"IEEE Std. 1581 will make you forget you ever had a memory problem"

Bob Russell

Outline

- Why do we need P1581?
- How does P1581 work?
- What are possible implementations?
- What is the impact on Board level test?
- Current status of development

Why do we need P1581?

- DDR-SDRAM, DDR2-SDRAM, FLASH, etc.
 - → 1149.1 not built in!
 - → Controllability
 - → Complexity
 - → Test time
 - → Test conditions
 (use of untested resources to test the DUT)

How does P1581 work?

Example: memory device

P1581 test logic circuitry

- XOR/XNOR, or Inverters/AND
- Only combinational, non-sequential logic
- Easy to implement, simple test vectors
- Faults on pins don't inhibit test of other pins
- Fault detection guaranteed
- Fault diagnostics depends on implementation, test vectors
- Patented vs. public domain

Entering and leaving Test Mode

Test Pin

- Dedicated test enable pin
- Unconditional test mode access
- Active state defined by chip designer

TTM (Transparent Test Mode)

- No dedicated pin
- P1581 mode until first write
- Not usable for certain devices (e.g. FLASH)

Board level test and P1581

- Simple, quasi-static interconnect test (no need for at-speed access or initialization)
- Multiple P1581 devices in bus structure

Current status of development

- Test logic architecture defined; editorial work remains;
- Test mode control defined; editorial work remains;
- Description language defined
- Completed draft expected for early 2006
 - → Ballot in 2006

Conclusion

Before P1581:

- FLASH device connections not easily testable
- Synchronous memory devices may cause test problems

Now:

- P1581 = an elegant solution
- A perfect match for Boundary Scan

"IEEE Std. 1581 will make you forget you ever had a memory problem"

Bob Russell