

1 Adamson Systems

Hierarchical Stream Configuration
G Fedorkow, Adamson Systems, Jul 15, 2010

During the last F2F meeting, we finally got far enough with the coding formats discussion to realize that,
given the variety of formats already supported by 1722 and 61883, a single Stream Setup message was
simply not going to do the job for 1722.1. Philip Foulkes and Stephen Turner had each noted the
hierarchical structure of the formats included in 61883, offering the opportunity to restructure stream
setup to reflect the hierarchy of the coding scheme.

Although some of the coding formats used in IEC-61883 are simple unitary streams with a fixed format,
e.g., the combined audio/video format used in BluRay DVDs, others are quite complex and flexible, as in
the 61883-6 audio formats, including AM824.

This proposal segments the connection setup problem in a way that takes advantage of the modularity
and hierarchy of the coding mechanism, allowing new codes to be plugged in as they’re developed
without having to change the basic stream setup procedure.

The approach uses one common module to set up an AVB stream, independent of media coding format.
It then optionally uses one or more format-specific multiplex/demultiplex objects to combine primary
media channels into a single AVB stream. The mux/demux blocks may be hierarchically arranged for
coding formats that contain multiple primary media channels. Figure 1 shows an example for how AM824
might be configured on the talker side of a AVB stream.

An important point to note is that each multiplexing block in the hierarchy may have several media inputs
on the left side, but one output on the right side that plugs into the next block down the chain. The
Listener side is an exact mirror image, with a stream delivering content to the first demux block, whose
multiple outputs may go to several different demux blocks until primary channels are derived. This allows

Stream

AM824
Mux

AES-3
Mux

MIDI
Mux

M
ed

ia
 S

ou
rc

es

Figure 1: Talker-Side Stream Multiplexing

One AVB Stream in a Talker

Internal “Patch Cable”

2 Adamson Systems

the multiplex/demultiplex blocks to be uniquely identified by a “handle” analogous to a Stream Source or
Sink, but with no external connection.

The picture shows the blocks in the hierarchy interconnected by “patch cables”, i.e., connections from one
block to another internal to the Talker or Listener.

When it comes to setting up streams, these hierarchical blocks can be configured independently,
removing the need for one all-inclusive Stream Create procedure that knows every code format. Blocks
are created dynamically, starting from the Media Sources, moving down the hierarchy to the AVB Stream.
Arguments to each command for dynamic creation of the multiplex blocks give the inputs to the block,
and output from the create function would be a handle (similar to a media source, but internal to the AVB
block) that identifies the patch cable, plus any bandwidth parameters needed by the next layer down.
Outputs from the blocks in Figure 1 are used as inputs to the next block to the right.

Listener configuration is the mirror image, with dynamically created demultiplex blocks starting from the
Media Sinks, working back to the received AVB stream.

[add an example for demux-ing MPEG-TS]

[text-fragment: Similarly, if there’s a media stream source that knows what to do with an MPEG transport
stream, then connection setup simply patches that media source into the Stream object. If the media
source has separate audio and video channels, then something needs to insert an MPEG multiplexer to
take the audio streams and video streams and put them together into a transport stream (or more likely
take them apart at the Listener).]

1.1.1 A Note on Type-Checking Media Channels
While the blocks in each level of the hierarchy should be flexible, it should be noted that this is not an
“anything plugs into anything” hierarchy… the output of an AM824 block can only go directly to one
stream, and a single stream cannot accept input from multiple AM824 blocks. Similarly, the block that
combines two unformatted 24-bit PCM audio streams and converts it to an AES-3 format in 61883-6 can
only plug into two slots of an AM824 stream.

We should further note that, although 1722.1 defines Media Sources and Media Sinks as if they’re all
interchangeable, of course that’s not true either. A compressed video stream source can’t be plugged
into AM824, and 24-bit PCM audio source can’t plug into a 61883-5 SDL-DVCR stream.

But by plugging different coding blocks into the hierarchy, the AVB subsystem can multiplex different
numbers and types of media stream inputs and outputs, with flexible formats.

To ensure that each level of the coding hierarchy knows what media format to expect, and to check for
incompatible requests, we can combine a Coding Type tag with a Media Source ID number, in a way
that’s analogous to the tag format used in AM824. Implementations can add a degree of consistency
checking by making sure that Coding Tag part of the Media Source and Media Sink identifiers line up with
the stream setup blocks to which they’re being routed. So for example, an XLR connector on the back of
a mic preamp might be represented internally as having an ID number corresponding to the plug, and
Coding Tag of 24-bit PCM. When a stream setup is done routing the mic-preamp to an AM824
multiplexer, then the AM824 mux knows what it’s putting in that slot. But if the stream setup routes the
mic preamp to a MIDI multiplexer, an error should be generated.

Figure 2 shows how the coding hierarchy works. In this picture, it should be noted that this is not a
diagram of data flow, or of a specific stream configuration; although this picture shows which coding types
could be multiplexed into which other types, it does not show which combinations can be combined in a
single connection (for example, AM824 can multiplex AES3, MIDI and PCM audio all at once, but further
to the right, an AVB stream can only carry one of AM824, 32-bit Float audio, MPEG or MMA).

3 Adamson Systems

Media Source/Sink Channel Code (MSCC)

Media Sources and Sinks, as well as Patch Cables used within the coding hierarchy, are all specified as
32-bit numbers, which are structured as follows, with a part that identifies the channel, and a tag that
identifies the type of coding carried in that channel:

32 bits, split as follows
o 16 bits define ‘channel within media source’
o 8 bits define media source within device [we should work on this split with JeffK]
o 8 bits define Channel Coding Format (CCF)

Every 32-bit slot that will be assigned in an AM824 packet must have an MSCC in the create message,
corresponding to the content that will be put in the slot.

CCF Function

0 Don’t use this code point

1 Unused Slot Use this code when there’s a slot reserved, but
nothing in it. The talker should talk zero in this slot,
the listener should ignore it.1

Primary Media Channel Types2

1 This function might be helpful on the talker if there’s some reason for an empty slot. But it’s critical on
the listener side to allow the listener to pick off one or two channels from a big bundle. Fill in Media Sink
information for the slots you want to hear, and Empty for the rest.

AVB
Stream

Create

AM824

Create

32b Float-
Audio

Create

MPEG-TS

Create

AES-3

Create

32b float audio

20/24b PCM audio

?? audio

?? video

MIDI Cable
MMA

Create

MIDI

Create

One-Bit Plain audio

One-Bit Encoded

Primary Media
Sources

Multiplex / Coding
Blocks

AVB Stream
Creation

Figure 2: AVB Stream Creation Hierarchy [This picture doesn’t contain all the
coding options and combinations yet!]

4 Adamson Systems

2 24-bit linear MBLA

3 20-bit linear MBLA

4 16-bit linear MBLA

5 One-bit audio

6 One bit audio encoded

7 MIDI Data AM824 tags are inserted at run-time depending on
whether there’s MIDI data to send or not.

8 First Word, high-precision MBLA

9 Second Word, high-precision MBLA

…

15 Eighth Word, high-precision MBLA

16 32-bit float

Multiplexed Channel Types

17 AM824-muxed channels

18 MPEG-muxed channels

 … plus many others for other 61883
formats …

Table 1: (Incomplete list of) Channel Coding Formats

1.1.2 Stream Creation Commands

To set up a complete stream (on the talker side), the Controller must start from the left, “creating” the
functional units. Each unit takes a list of inputs as its arguments, and returns an output handle (I’ve called
it a Patch Cable for now). The next unit to the right takes the patch cable(s) returned by the previous
one(s) as part of its input arg list.

Each unit may return some kind of bandwidth specification as well to feed into the next block down the
chain.

Note that these commands deal only with configuration, not data flow. Endpoint designers are free to
optimize their data paths any way they want; all these commands do is to say which multiplexers send
media content to what other blocks in the chain inside a single endpoint.

2 I’ve used “Primary” to describe channels that enter or leave the AVB subsystem, and Multiplexed to
describe channels that have undergone one or more stages of multiplexing within the AVB subsystem.
Note that these types aren’t immutable – for example, and AVB Endpoint with a capability to encode and
decode MPEG transport streams might consider MPEG as a “multiplexed” internal channel format, while
and AVB endpoint that could not decode MPEG could treat an MPEG TS as a “primary” channel type.

5 Adamson Systems

1.1.2.1 Stream Create Commands
The first level of hierarchical stream create is just the AVB stream itself. This module takes inputs that
identify the single source of media for the stream, as well as the traffic parameters required by AVB.

1.1.2.1.1 Talker_Stream_Create
Args:

 Stream Class (A or B)
 TSpec (Traffic Specification; this number gives the maximum size of the packets to be sent, and

the number of packets per “Class Interval”, i.e. number of packets per 125 usec interval for Class
A)

 Data Frame Priority and Rank
 Presentation time offset (default 2 msec)
 Stream Name
 Patch Cable input

Acceptable Input coding formats:
o AM824, MMA (Midi), MPEG-TS, 32-bit Float (and a couple of others)

Returns

 StreamID
 MAC Addr

Syntax

/avb/source/create/stream

[insert a proposal for command syntax here!]

If the requested stream has already been successfully created and the client requests a stream source to
be created with the exact same name and parameters, then the server will respond with the existing
stream information.

Stream source names must be unique within a single talker device.

Listener Stream Create

[The listener gets the Tspec, Class and Rank from the SRP advertisements, right?]

Args:

 StreamID
 MAC Address (if using Three-Step)
 Patch Cable output

Returns

 Ok/notOK

1.1.2.2 Media Coding and Multiplexing Block Creation Commands

1.1.2.2.1 AM824_Mux_Create
Args

 Sample Rate

6 Adamson Systems

 Channel Map with media sources or patch cables
 Acceptable Input coding formats:

o MBLA, OneBit, OneBit-Encoded, MIDI, high-precision MBLA, etc

Returns

 Patch Cable output
 Bandwidth params / TSpec

Syntax

/avb/source/create/am824 (Talker-side command)

Create an AM824 multiplexer to plug into an AVB stream source:

1 TX: ["/avb/source/create/am824" ,ib (number of channels) (media source channel code)...]

3 RX: ["/avb/source/create/am824" ,iiib (handle) (bandwidth param) (number of channels) (media source channel
code)...]

/avb/sink/create/am824 (Listener-side command)
[insert detailed syntax here]

The key idea for AM824 channel configuration is the creation of the channel map, the list of media
sources that will be packed into an AVB packet. Each entry in the channel-map list represents one slot in
a 61883-6 packet, in the order that the packet will be assembled.

A Talker can use the Unused_Slot code point as a place holder to indicate that a time slot should be
reserved, but it contains only zeros.

More important is the use of the Unused_Slot code at the listener; if a particular Listener wants to pick off
the third AM824 slot of six, it would put Unused_Slot as the first two elements in the list, then name the
Media Sink to which it wants to route the valid channel, and then Unused_Slot in the remaining three
elements of the list.

The Handle that’s returned by the AM824 Create command should be passed into a subsequent Stream
Create command.

1.1.2.2.2 AES-3_Create
Args

 Media source left
 Media source right
 Acceptable Input coding formats:

o MBLA

Returns

 Patch Cable Out
 (Bandwidth params are implicit; each AES-3 flow takes two slots in an AM824 Mux)

[And there are lots more commands like this to be figured out]

1.1.2.3 Stream Teardown
Each of the Create commands should be paired with a Delete command.

In addition, a Delete of an element in the hierarchy should imply a Delete of all the elements to the left of
the deleted element. In particular, to tear down a complete stream (looking at the Talker side again), use

7 Adamson Systems

a Delete Stream command; that will remove the stream and all the multiplexing blocks that had been
configured to feed media content into the stream.

1.1.2.4 A Note on Parameter Passing
The technique outlined above implies that all of the configuration information passing between blocks is
fully visible, so, for example, one Create command may return bandwidth parameters needed by the next
Create command in the hierarchy, in addition to returning the handle needed. This offers maximum
flexibility and visibility, but requires more information to get passed back and forth.

There are two possible optimizations

a) All the blocks being configured are inside the same endpoint, so the endpoints could associate
bandwidth parameters with handles and propagate them automatically as the blocks are
assembled. For example, the creation of an AM824 block returns a handle which would be used
in the creation of an AVB stream; when the stream create command is issued, it should contain
the handle, and the endpoint can look that up to find what bandwidth parameters should be
passed to SRP.

b) But a more serious performance issue with the approach outlined above is the number of round
trips needed to configure a complex stream. Each block in the hierarchy needs a round trip
command and response to deliver the handles needed for the next command.
A different approach would be to specify a command set that explicitly recognizes the hierarchy,
allowing a single command with nested components to set up a complex stream.3

create_stream(create_am824(primary_source1, primary_source2, create_aes2(primary_source3,
primary_source4), create_midi(primary_source5))

This approach gets a complex setup done in one step, hides all the bandwidth calculations, and
even eliminates the visible “patch cables”. But for AVBC or SNMP messaging, this approach is
not so good, as the messages for a complex stream could get quite long, making it much more
complicated to stick with UDP-based protocols like SNMP or AVBC.

1.2 Notes

1.2.1 Sections from P802.1Qat (SRP)
[This section quotes material relating to setup parameters from the SRP doc for ready reference]
Virtual Bridged Local Area Networks -Amendment XX: Stream Reservation Protocol (SRP) P802.1Qat/D4.2

35.2.2.8.4 TSpec
The 32-bit TSpec component is the Traffic Specification associated with a Stream. It consists of the following two
elements (which are encoded as described in 10.8.1.1):
a) MaxFrameSize:
The 16-bit unsigned MaxFrameSize component is used to allocate resources and adjust queue selection parameters
in order to supply the quality of service requested by an MSRP Talker Declaration. It represents the maximum frame
size that the Talker will produce, excluding any overhead for media specific framing (e.g., preamble, IEEE Std
802.3 header, Priority/VID tag, CRC, interframe gap). As the Talker or Bridge determines the amount of bandwidth

3 Think of this like a programming language where the argument list for a function call may itself contain
function calls.

8 Adamson Systems

to reserve on the egress port it will calculate the media specific framing overhead on that port and add it to the
number specified in the MaxFrameSize field.
b) MaxIntervalFrames:
The 16-bit unsigned MaxIntervalFrames component is used to allocate resources and adjust queue selection
parameters in order to supply the quality of service requested by an MSRP Talker Declaration. It represents the
maximum number of frames that the Talker may transmit in one “class measurement interval” (34.4) [i.e., 125 usec
for Class A]

35.2.3.1.1 [Talker] REGISTER_STREAM.request
REGISTER_STREAM.request (

StreamID,
Declaration Type,
DataFrameParameters,
TSpec,
Data Frame Priority,
Rank,
Accumulated Latency)

35.2.3.1.5 [Listener] REGISTER_ATTACH.request
REGISTER_ATTACH.request(

StreamID,
Declaration Type)

