IEEE 1722a
Version 1 headers
0.3

Dave Olsen
dave.olsen@harman.com
Overview

• We need a method to secure data encapsulated within a 1722 stream
 – This could be control or Audio/Video stream data
• Two methods have been requested, these methods may be used separately or together
 – Encryption
 – Packet Signing
• This is NOT related to content-protection (HDCP/DTCP)
• We are not security experts and do not want to invent anything
• We would prefer to make use of methods described in IEEE Standards 1363 and 1363a
Version 1 Header

- Defines optional header extensions
 - Initially Signed Packet and Encrypted Packet
- A 1722a stream may contain 0 – 8 header extensions
- All packets in a stream shall use identical header extensions
- Header extensions shall always appear in a fixed order in the packet
- Offset to each header.
- Signed Packet header shall always be last
- If no header extensions are used then streams shall use version 0 headers
- All future header extensions shall be quadlet based
Version 1 Header

subtype data
00

SRP Stream ID
04 08

Header Extensions
12 16

Additional header and payload data
Header Extensions Detail

Enc – Encryption Header
Frag – Fragmentation Header
Pay – Payload
Sign – Signed Packet Header
Version 1 Header with Extensions

subtype data

subype sv version

stream_id

header_extensions

header_extension_0..6

header_extension_7

header_extension_0_offset

header_extension_1..6_offset

header_extension_7_offset

header_extension_0

header_extension_1..6

header_extension_7

Additional header and payload data
Version 1 Header with Extensions

- Header extension are in a fixed order
 - Extension 0 through extension 7
 - We need to consider the proper order since encryption should be the first and signed should be the last.
 - Payload is the standard 1722 data area, with the ability to map this data prior to the packet signature
- For each optional header extension an offset is included to the actual header extension (32 bits)
- Note: we may need to move the StreamID to after the header extensions in order for the StreamID to be encrypted, but this causes structural problems.
Encryption Header

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption Key ID</td>
<td>00 04</td>
<td></td>
</tr>
<tr>
<td>Magic Number</td>
<td>08</td>
<td>magic_number</td>
</tr>
<tr>
<td>Random Data</td>
<td></td>
<td>random_data</td>
</tr>
<tr>
<td>EUI-64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Encrypted Packet Question

• Encryption begins with the Magic Number and all contents of the packet are then encrypted.
• All sections of the packet are encrypted, including all subsequent header extensions
• Do we need an encryption trailer to guarantee packet integrity?
• The goal is to use IEEE Standard 1363 and 1363a to define encryption methods
Fragmentation Header

0
0 1 2 3 4 5 6 7 8 9 1 0 1 3 4 5 6 7 8 9 2 0 1 2 3 4 5 6 7 8 9 0 1
flags reserved fragment_offset

REJECTED
Fragmentation Header Questions

• This header extension is not related to security
• Allows transmission of management objects that are greater than 1 packet length
Payload

• The payload is the standard 1722a payload.
 – This could be data or control
 – This allows the payload to be mapped before the packet signature
 – The Payload extension should only be used in conjunction with the Signature extension
Signed Packet Questions

• Signature includes all packet data from DA to end of packet not including the Ethernet CRC

• Do we need a trailer for Signed Packets?
 – Does the new payload extension fill this requirement, by moving the payload before the Signed packet extension

• The packet signature should be at the end of the packets, especially if the packet is a data packet. Having to store the entire packet and then calculate the signature would increase latency.

• The goal is to use IEEE Standard 1363 and 1363a to define packet signing methods