1722a Content Protection

Dave Olsen 4/17/2012
Agenda

- Content Protection and DRM
- DTCP Overview
- HDCP Overview
- DTCP versus HDCP Similarities
- DTCP versus HDCP Differences
- Next Steps
Content Protection and DRM

- **DRM (Digital Rights Management)**
 - Group of technologies that are used to determine and manage legal rights to view, copy (or not), or distribute (or not) digital audiovisual content
 - Available access rights are set by artists, studios, etc.

- **Content Protection**
 - Content protection is just one part of DRM
 - Content protection is used to protect authorized content from illegal copying, distribution, etc., as it is transmitted across various links or stored on media.

- **Example**
 - Purchasing a valid BluRay disk grants you legal access to view it on a valid BluRay player
 - Content protection is used to insure you or someone else can’t illegally copy and distribute it
Content Protection and DRM

- Digital rights management is outside the scope of 1722a
- 1722a is really only concerned about content link protection

Link Protection

- Digital Transmission Content Protection (DTCP)
 - Originally developed with 1394/61883 in mind
- High-Bandwidth Digital Content Protection (HDCP)
 - Originally developed for HDMI/DVI links. Now has IIA (Interface Independent Adaptation) for any transmission interface technology
DTCP Overview (1 of 2)

- **DTLA (Digital Transmission License Authority) History**
 - DTLA: “The 5C”: Hitachi, Intel, Panasonic, Sony, Toshiba
 - Released by DTCP in 1999, widely adopted by many content providers

- **What is DTCP?**
 - “Link Protection”
 - Using authentication and encryption, DTCP protects content from tampering, unauthorized copying, or retransmission, during transport on networks.
 - Copy Protection
 - DTCP enables content providers to enable/disable various levels of copy protection/access
 - Copy once
 - No more copies
 - Copy Never
 - Copy freely
What is DTCP? (continued)

- System Renewability
 - Compromised or rogue devices can have authentication “revoked”
 - Robustness of system is improved
 - Better long term integrity
DCP LLC - Digital Content Protection, LLC
- Intel Subsidiary for license management of HDCP technology
- Similar function to DTLA but for HDCP
- Originally developed for HDMI, DVI, now interface independent
- **No Approved Retransmission Technologies (ART)**
 - Example:
 - HDCP protected content cannot be retransmitted with DTCP. Must be transmitted using HDCP again.
What is HDCP?

- “Link Protection”
 - Using authentication and encryption, HDCP protects content from tampering, copying, or retransmission, during transport on networks.

- Copy Protection
 - By definition, HDCP has only one copy protection mode:
 - No copies. Period.

- System Renewability
 - Compromised or rogue devices can have authentication “revoked”
 - Robustness of system is improved
 - Better long term integrity
DTCP versus HDCP Similarities

- High level authentication and key exchange (AKE)
- System Renewability Messaging (SRM)
- Base encryption cipher: AES-128
- Implementations are self certified by the manufacturer
- Interoperability can be verified at a test house
DTCP versus HDCP Differences

- **Underlying cryptographic functions**
 - DTCP: SHA-1, Elliptic-Curve Cryptography (ECC), Diffie-Helman (EC-DH), Digital Signature Algorithm (EC-DSA)
 - HDCP: SHA-256, RSA, RSAASA-PKCS1

- **AKE Protocol**
 - HDCP requires additional locality check (maximum RTT of 7mS)
 - Stream startup
 - DTCP allows protected content transmission before AKE
 - HDCP requires AKE first, then content transmission
DTCP versus HDCP Differences

- **Protocol Support**
 - DTCP evolved with IEEE-1394 in mind
 - All 61883 formats are compatible with DTCP
 - SYN bit fields define encryption and copy protection modes
 - HDCP evolved from HDMI
 - HDCP IIA supports Transport Stream Data – 61883-4
 - Currently no bit in 1722 to indicate HDCP
DTCP versus HDCP Differences

- **Approved Retransmission**
 - DTCP can be transmitted as HDCP
 - HDCP has no approved retransmission technology
 - Any content that originates on HDMI or MHL must use HDCP
DTCP versus HDCP Differences

- **Copy Modes**
 - DTCP has multiple copy modes
 - Copy once, No more copies, Copy Never, Copy freely
 - HDCP has one copy mode
 - Copy Never
DTCP versus HDCP Differences

- **Approved methods**
 - DTCP requires a DTLA approved supplement
 - Incomplete informational docs are available online
 - Complete docs are available for purchase, subject to license agreement
 - Supplement for DTCP over 1722 has to be reviewed and approved by the DTLA
 - HDCP provides IIA
 - Documents are available for free online
 - Specification for HDCP over 1722 using the IIA needs no approval
 - Could be included as an annex in 1722a
Next Steps?

- **Does HDCP support all use cases?**
 - HDMI/MHL input is a requirement
 - DTCP can be retransmitted by HDCP
 - HDCP does not require documents to be purchased by each workgroup member
 - HDCP only supports Transport Streams with the IIA
 - Define HDCP bit

- **Does DTCP support all use cases?**
 - Satellite/Digital TV typically support DTCP
 - DLNA supports DTCP
 - Are DTCP copy modes important
Next Steps?

- Do we need to support both DTCP and HDCP?

- Possibility of reusing DTCP-IP if we had an alternate 1722 format that includes an IP header
More Information

- **DTLA**

- **Informational DTCP specifications**
 - Note: Full specifications only available in hardcopy from the DTLA to DTCP licensees.

- **DCP and HDCP IIA 2.0 Specification**
HARMAN
WHERE SOUND MATTERS