
PUBLIC

DON PANNELL

21 APR 2020

1722B – PROPOSAL FOR ENHANCED CONTROL FORMATS – V3
(FOLLOW-ON PRESENTATION FROM “LARGER BUS ID SIZE – V2”)

PUBLIC 1

Overview – New Text in Red

• The need for enhancing the control formats in IEEE 1722b was discussed in

IEEE1722b-pannell-larger_bus_id_size-2019-12 with examples for CAN & LIN

• Being part of the approved PAR work, this presentation is an updated proposal for a

solution

• While the primary goal was to extend the bus_id sizes, a secondary goal emerged

to harmonize the various formats since it was clear new formats were needed

− The consistency of the formats allows for more efficient building & decoding of the frames

− The current proposal is thus different from the 2019-12 one & the 2020-03 one

• Updated: Optional ACF Validate message (containing validate_data on a preceding

message) is proposed for safety systems that can be added after any ACF message

• ACF Message values for the proposed formats are included

• In working on the details, it also became evident that CAN’s can_identifier bits

appear to be reversed – or at least need clarification

PUBLIC 2

PROPOSAL FOR

VERSION 2 CONTROL

FORMATS

PUBLIC 3

IEEE 1722b – Larger bus_id size – Proposal for CAN

• Move brs (bit rate switch), fdf (flexible data rate), & esi (error state indicator) bits to

previously reserved bits & remove the brs (bit rate switch) bit as shown

• Extend the can_bus_id to 12 11 bits (the lower 5 bits are in the same location)

• The CAN format requires the most bits, thus limiting the bus_id to 12 11 bits

• rtr (remote transmission request) & eff (extended frame format) are not moved

acf_msg_length

acf_msg_payload

acf_msg_type

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

CAN
Message

Info

CAN Payload

can_identifier

rtr eff

esi

can_bus_id[10:0]

can_msg_payload (0-16 quadlets)

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

fdfbrs

PUBLIC 4

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

CAN
Message

Info

can_identifier

rtr eff brs fdf esi can_bus_id

rsv

can_msg_payload (0-16 quadlets)

pad mtv rsv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp1722-2016

Proposal

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

CAN
Message

Info

CAN Payload

can_identifier

rtr eff

esi

can_bus_id[10:0]

can_msg_payload (0-16 quadlets)

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

fdfbrs

Larger bus_id size – Proposal for CAN – old vs. new

PUBLIC 5

IEEE 1722b – Larger bus_id size – Proposal for CAN BRIEF

• CAN BRIEF gets the same changes as were done with CAN

• Move brs (bit rate switch), fdf (flexible data rate), & esi (error state indicator) bits to

previously reserved bits & remove the brs (bit rate switch) bit as shown

• Extend the can_bus_id to 12 11 bits (the lower 5 bits are in the same location)

• rtr (remote transmission request) & eff (extended frame format) are not moved

acf_msg_length

acf_msg_payload

acf_msg_type

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

CAN
Message

Info

CAN Payload

can_identifier

rtr

esi

can_bus_id[10:0]

can_msg_payload (0-16 quadlets)

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

fdf

eff

brs

PUBLIC 6

1722-2016

Proposal

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

CAN Base Message

can_identifier

rtr eff brs fdf esi can_bus_id

rsv

can_msg_payload (0-16 quadlets)

pad mtv rsv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length
CAN Message Info

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

CAN
Message

Info

CAN Payload

can_identifier

rtr

esi

can_bus_id[10:0]

can_msg_payload (0-16 quadlets)

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

fdf

eff

brs

Larger bus_id size – Proposal for CAN BRIEF – old vs new

PUBLIC 7

IEEE 1722b – Larger bus_id size – Proposal for LIN

• LIN was fully packed, so a full quadlet needs to be added (added green quadlet)

• The lin_identifier is moved to the new quadlet in the same area as the

can_identifier (although its not as large as CAN’s)

• The lin_bus_id is shifted right by 8 bits & expanded to 12 11 bits leaving 2 a rsv bits

reserved

acf_msg_length

acf_msg_payload

acf_msg_type

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

LIN
Message

Info

LIN Payload

lin_identifier

rsv lin_bus_id[10:0]

lin_msg_payload (0-2 quadlets)

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

PUBLIC 8

1722-2016

Proposal

ACF AVTPDU Header
(Either NTSCF or TSCF header)

lin_msg_payload (0 - 2 quadlets)

lin_identifier

LIN Payload

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

LIN
Message

Info

lin_bus_idpad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

reserved

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

LIN
Message

Info

LIN Payload

lin_identifier

rsv lin_bus_id[10:0]

lin_msg_payload (0-2 quadlets)

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

Larger bus_id size – Proposal for LIN – old vs. new

PUBLIC 9

IEEE 1722b – Larger bus_id size – Proposal for FlexRay

• Move the chan (source channel), str (startup), syn (sync), pre (payload preamble),

& nfi (null frame indicator) bits to previously reserved bits as shown to free up room

for the expanded fr_bus_id

• The fr_bus_id is shifted right by 8 bits & expanded to 12 11 bits leaving 2 a rsv bits

fr_frame_id

acf_msg_length

acf_msg_payload

acf_msg_type

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

FlexRay
Message

Info

FlexRay Payload

cycle

rsv

nfi

fr_bus_id[10:0]

flexray_msg_payload (0-64 quadlets)

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

rsvpresynstrchanrsv

PUBLIC 10

ACF AVTPDU Header
(Either NTSCF or TSCF header)

reserved

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

cyclefr_frame_id

FlexRay
Message

Info

fr_bus_id

message_timestamp

nfipresynchanrsv strpad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

flexray_msg_payload (0-64 quadlets)

1722-2016

Proposal

Larger bus_id size – Proposal for FlexRay – old vs. new

fr_frame_id

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

FlexRay
Message

Info

FlexRay Payload

cycle

rsv

nfi

fr_bus_id[10:0]

flexray_msg_payload (0-64 quadlets)

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

rsvpresynstrchanrsv

PUBLIC 11

IEEE 1722b – Larger bus_id size – Proposal for MOST

• The most_net_id is shifted right by 8 bits & expanded to 12 11 bits leaving 2 a rsv

bits

• The lower 8-bits of the new most_net_id previously was reserved bits

acf_msg_length

acf_msg_payload

acf_msg_type

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

MOST
Message

Info

Most Payload

rsv most_net_id[10:0]

most_msg_payload

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

device_id fblock_id inst_id

reservedfunc_id op_type

PUBLIC 12

1722-2016

Proposal

ACF AVTPDU Header
(Either NTSCF or TSCF header)

device_id inst_idfblock_id

op_type reserved

most_msg_payload
MOST

Message

func_id

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

MOST
Message

Info

most_net_id reservedpad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

MOST
Message

Info

Most Payload

rsv most_net_id[10:0]

most_msg_payload

pad mtv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

device_id fblock_id inst_id

reservedfunc_id op_type

Larger bus_id size – Proposal for MOST– old vs. new

PUBLIC 13

PROPOSED NEW ACF

MESSAGE TYPES

FOR NEW VERSION 2

CONTROL FORMATS

PUBLIC 14

Proposed New Table 22 – ACF Message Types (9.4.1.2)

Since the V2 formats are very similar to the originals, the proposal
is to document them in the same Subclause as the originals

Value Name Description Subclause

0016 ACF_FLEXRAY FlexRay™ message 9.4.2

0116 ACF_CAN Controller Area Network (CAN)/CAN with Flexible Data-Rate

(CAN FD) message

9.4.3

0216 ACF_CAN_BRIEF Abbreviated CAN/CAN FD message 9.4.4

0316 ACF_LIN LIN® message 9.4.5

0416 ACF_MOST MOST® message 9.4.6

0516 ACF_GPC General purpose control message 9.4.7

0616 ACF_SERIAL Serial port message 9.4.8

0716 ACF_PARALLEL Parallel port message 9.4.9

0816 ACF_SENSOR Analog sensor message 9.4.10

0916 ACF_SENSOR_BRIEF Abbreviated sensor message 9.4.11

0A16 ACF_AECP IEEE Std 1722.1 AECP message 9.4.12

0B16 ACF_ANCILLARY Video ancillary data message 9.4.13

0C16 to 1F16 Reserved Reserved —

2016 ACF_FLEXRAY_V2 FlexRay™ message v2 9.4.2

2116 ACF_CAN_V2 Controller Area Network (CAN)/CAN with Flexible Data-Rate

(CAN FD) message v2

9.4.3

2216 ACF_CAN_BRIEF_V2 Abbreviated CAN/CAN FD message v2 9.4.4

2316 ACF_LIN_V2 LIN® message v2 9.4.5

2416 ACF_MOST_V2 MOST® message v2 9.4.6

2516 to 7716 Reserved Reserved —

7816 to 7F16 ACF_USER User-defined ACF message —

PUBLIC 15

PROPOSED NEW ACF

MESSAGE TYPES

FOR NEW VERSION 2

CONTROL FORMATS

PUBLIC 16

IEEE 1722b – Proposal for New Checksum Validate Message

• Some safety systems want to verify that a message has not been corrupted end-to-

end & this needs to be done after the Ethernet CRC has been removed

• This proposal is to support a new single quadlet Checksum Validate ACF Message

type that when used, carries the checksum validation data for the immediately

previous acf_msg in this same frame, for the previous message’s acf_msg_length

• This is mainly needed as an enhancement for CAN & LIN, but when done this way

it works for all acf_msg_types

• Rule of use: Before acting on a current message, a check needs to be made to

see if there is a subsequent Checksum Message or not – this is not hard to do

PUBLIC 17

IEEE 1722b – Proposal for New Validate Message

• Some safety systems applications only need a 8-bit Checksum while others need a

32-bit CRC, etc.

• This proposal defines the octet following the message’s acf_msg_length as a

validate_type

− This allows 256 different types where 0x00 is proposed to be an 8-bit Checksum and 0x80

is a 32-bit CRC (using the upper bits to define types and the lower bits as a size indicator)

− If only 8-bits of validate_data are needed this is a single quadlet message

− If the 32-bit validate_data is used, the 8-bit validate_data is 0x00 & ignored on read

acf_msg_length

acf_msg_payload

acf_msg_type

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Validate Message
optional 8-bit validate_data

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

optional 32-bit validate_ data

validate_type

PUBLIC 18

PROPOSED NEW ACF

MESSAGE TYPE FOR

NEW VALIDATE

CONTROL FORMATS

PUBLIC 19

Proposed New Table 22 – ACF Validate Message Type (9.4.1.2)

ACF_VALIDATE is placed at the end of the table as it can work
for all ACF_Message types & added at the end of the Subclause

Value Name Description Subclause

0016 ACF_FLEXRAY FlexRay™ message 9.4.2

0116 ACF_CAN Controller Area Network (CAN)/CAN with Flexible Data-Rate

(CAN FD) message

9.4.3

0216 ACF_CAN_BRIEF Abbreviated CAN/CAN FD message 9.4.4

0316 ACF_LIN LIN® message 9.4.5

0416 ACF_MOST MOST® message 9.4.6

0516 ACF_GPC General purpose control message 9.4.7

0616 ACF_SERIAL Serial port message 9.4.8

0716 ACF_PARALLEL Parallel port message 9.4.9

0816 ACF_SENSOR Analog sensor message 9.4.10

0916 ACF_SENSOR_BRIEF Abbreviated sensor message 9.4.11

0A16 ACF_AECP IEEE Std 1722.1 AECP message 9.4.12

0B16 ACF_ANCILLARY Video ancillary data message 9.4.13

0C16 to 1F16 Reserved Reserved —

2016 ACF_FLEXRAY_V2 FlexRay™ message v2 9.4.2

2116 ACF_CAN_V2 Controller Area Network (CAN)/CAN with Flexible Data-Rate

(CAN FD) message v2

9.4.3

2216 ACF_CAN_BRIEF_V2 Abbreviated CAN/CAN FD message v2 9.4.4

2316 ACF_LIN_V2 LIN® message v2 9.4.5

2416 ACF_MOST_V2 MOST® message v2 9.4.6

2516 to 7616 Reserved Reserved —

7716 ACF_VALIDATE Optional validation data for the immediately preceding ACF

message in the same frame

???

7816 to 7F16 ACF_USER User-defined ACF message —

PUBLIC 20

CAN_IDENTIFIER

PROPOSED DOC

CLARIFICATIONS

PUBLIC 21

Clarification of the can_identifier bits in CAN Messages

• IEEE 1722-2016 makes it clear the most significant bits are on the left as seen:

• Bit 03 in a 1722 CAN frame is the msb of the can_identifier, correct? It should be!

Represented as 0x01 Represented as 0x0102 0304

ACF AVTPDU Header
(Either NTSCF or TSCF header)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

CAN
Message

Info

can_identifier

rtr eff brs fdf esi can_bus_id

rsv

can_msg_payload (0-16 quadlets)

pad mtv rsv

ACF
AVTDPU
Header

acf_msg_type acf_msg_length

message_timestamp

PUBLIC 22

can_identifier’s usage from a CAN community point of view

• CAN & CAN-FD both support two can_identifier sizes:

− An 11-bit base ID identified as bits 28 to 18 of the ID where bits 17 to 0 do not exist

− 29-bit extended ID identified as bits 28 to 0 of the ID

▪ Bit 28 is the most significant bit in both sizes & it’s the 1st bit transmitted down the wire

• The ID is used for bus arbitration using a bit-by-bit comparison of what I transmitted

vs. what I see on the wire where a 0 is dominate (wins)

− Whenever I see a 0 when I transmitted a 1 during the ID phase, I have to stop

transmitting until the next transmit opportunity

− An 11-bit ID, written as: 0b000 0000 1111 or (by industry convention) 0x00F

− Wins over an ID of: 0b111 0000 0000 or (by industry convention) 0x700

▪ As the 1st 0b0 bit is the msb & 1st bit transmitted down the wire (& identified as bit 28 of the ID)

▪ In other words, the lowest ID number always wins the bus

PUBLIC 23

can_identifier’s problem

• IEEE 1722-2016 supports a 29-bit field for the can_identifier & the eff bit (extended

frame format) to indicate its size (0 = 11-bit, 1 = 29 bit)

• The standards states which of the 29-bits should be used for an 11-bit ID as:

• Which is backwards as bit 3 is the msb!

• Or is bit 31 is the msb and all 29 bits are swizzled compared to convention,

• Or is bit 11 the msb for 11-bit IDs & bit 3 is the msb for 29-bit IDs

PUBLIC 24

can_identifier’s solution defining bit 3 as msb for both sizes

• This at least needs to be clarified in IEEE 1722b

− The correct solution to me is define bit 3 in Fig 55 as the msb for both ID sizes, move the

v’s to bits 3:13 and update the text and figures accordingly:

• This could be done for all CAN formats on just the Proposed V2 Formats (above)

PUBLIC 25

can_identifier’s solution defining bit 31 as msb for both sizes

• Alternatively, define bit 31 in Fig 55 as the msb for both ID sizes:

• If the previous solution is not chosen for the existing CAN formats (assuming

people implemented it as shown in Fig 55) the msb must at least be labeled!

• But if the msb is bit 31 this goes against IEEE 1722’s convention & there is no

guarantee that implementers assumed this!

msb

PUBLIC 26

can_identifier’s solution defining bit 31 as msb for both sizes

• Alternatively, define bit 21 in Fig 55 as the msb for 11-bit ID sizes & bit 3 as the msb for
29-bit ID sizes:

• This keeps the msb to the left, but is weird to anyone used to CAN & how it is specified &
operates (i.e., the msb of the ID never moves & is always the 29th bit)

− An 11-bit ID of 0x3FF, seen as 0x0000 03FF, is higher priority than a 29-bit ID of 0x0FFF FFFF!

− The ID are priority bits and it is hard to tell the size without looking at the message’s eff bit.

• Because of these problems, some clarification is needed in 1722b!

− But which one for the current formats & should be different for the V2 formats?

msb

11-bit

msb

29-bit

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

