

Agenda

- Introduction
 - NAV Alliance
 - TWG4
- Encapsulation Proposal
- Request to IEEE 1722 WG
- Next steps

Introduction

- Networking for Autonomous Vehicles Alliance was announced in July of 2018 with a goal to standardize networking interfaces (and components) within an Autonomous system
- Founding Members: Volkswagen, Continental, Bosch, Nvidia and Aquantia (now Marvell)
- NAV currently has the following 5 WGs:
 - TWG1: 25G and 50G Automotive Ethernet PHY
 - TWG2: EMC requirements and limits (on hold)
 - TWG3: Physical layer system and component integration
 - TWG4: Protocol Encapsulation over Ethernet
 - TWG5: System Controls and Management
- RAND IPR policy (similar to IEEE)
 - Open to making the encapsulation spec (to be published by TWG4) public for a 'reasonable' fee.
- More info can be found here: https://nav-alliance.org/

The Path Towards Full Autonomy

Level 4-5 Self Driving

Level 2-3
Decision
Assistant

Level 1-2 Simple Aid

2010 - 2015

2015 - 2020

2020 - 2025

Use case – Top View

PHYs/Bridges

Ethernet link – 2.5 / 5 / 10G

Ethernet link – 25G

Why Standardize?

- Bridges/Switches are already encapsulating cross-domain traffic today
- Proprietary methods leading to non-standard encapsulation
- Proprietary HW, SW and debug methods make system integration difficult
- Encapsulation in a generic manner means more complex HW and SW
 - Identifying and differentiating the encapsulated protocol allows for efficient HW offloads

TWG4 does not intend to define a transport protocol using the 1722 subtype. The idea is to standardize encapsulation of the existing 'protocols' in/out of the Ethernet domains using the existing transport mechanisms.

We are unaware of any standards body doing this work at this time.

1722 Common Header Format

Evaluating two possible options using the common header format

Preamble /SFD	MAC DA		802.1Q (optional)	1722 Ethertype		h/ver	NAV header	NAV Payload	CRC
8B	6	6	4	2	1	0.5	?	variable	4

1722 Payload

Preamble /SFD	MAC DA	MAC SA	802.1Q (optional)		1722 NAV subtype	h/ver	NAV type	NAV Payload	CRC
8B	6	6	4	2	1	0.5	?	variable	4

Request to the IEEE 1722 WG

 NAV requests assignment of a 1722 subtype to TWG4 for the protocol encapsulation over Ethernet work

Thank you

backup

1722 Control Header Format

1722 Streaming Header Format

