
High speed and exception-free interval arithmetic,

from closed and bounded real intervals to

connected sets of real numbers

Ulrich W. Kulisch

Institut für Angewandte und Numerische Mathematik

Karlsruher Institut für Technologie, D-76128 Karlsruhe, Germany

Ulrich.Kulisch@kit.edu

Abstract

This paper gives a brief sketch of the development of interval arith-

metic. Early books consider interval arithmetic for closed and bounded

real intervals. It was then extended to unbounded real intervals. Consid-

ering −∞ and +∞ only as bounds but not as elements of unbounded real

intervals leads to an exception-free calculus.

Formulas for computing the lower and the upper bound of the interval

operations including the dot product are independent of each other. On

the computer high speed can and should be obtained by computing both

bounds in parallel and simultaneously. Another increase of speed and

accuracy can be obtained by computing dot products exactly.

Arithmetic for closed real intervals even can be extended to open and

half-open real intervals, to connected sets of real numbers. Also this leads

to a calculus that is free of exceptions.

1 Remarks on the History of Interval Arithmetic

In early books on Interval Arithmetic by R. E. Moore, [30], G. Alefeld and J.
Herzberger [7, 8], E. Hansen [15], and others interval arithmetic is defined and
studied for closed and bounded real intervals. Frequent attempts to extend it to
unbounded intervals [19, 20, 37] led to inconsistencies again and again. If −∞
and +∞ are considered as elements of a real interval, unsatisfactory operations
like ∞−∞, 0 · ∞, ∞/∞ occur and are to be dealt with.

The books [25, 27] eliminated these problems. Here interval arithmetic just
deals with closed and connected sets of real numbers. Since −∞ and +∞ are
not real numbers, they can not be elements of a real interval. They only serve
as bounds for the description of real intervals. In real analysis a set of real
numbers is called closed, if its complement is open. So intervals like (−∞, a] or
[b,+∞) with real numbers a and b nevertheless are closed real intervals.

1

2

Formulas for the operations for unbounded real intervals can now be obtained
from those for bounded real intervals by continuity considerations. Obscure
operations as mentioned above do not occur in the operations for unbounded
real intervals. For a proof of this assertion see section 4.10 in [27]. This result
also remains valid for floating-point interval arithmetic. For details and proof see
section 4.12 in [27]. Fortunately this understanding of arithmetic for unbounded
real and floating-point intervals was accepted by IEEE 1788.

Early books on interval arithmetic as mentioned in the first paragraph just
make use of the four basic arithmetic operations add, subtract, multiply, and
divide (+,−, ·, /) for real and floating-point intervals. The latter are provided
with maximum accuracy. Later books [16, 17, 18, 19, 20, 25, 27] in addition
provide and make use of an exact dot product.

2 High Speed Interval Arithmetic by

Exact Evaluation of Dot Products

Since 1989 major scientific communities like GAMM and the IFIP Working
Group on Numerical Software repeatedly required [1, 2, 5, 6] exact evaluation of
dot products of two floating-point vectors on computers. The exact dot product
(EDP) brings speed and accuracy to floating-point and interval arithmetic.

Solution of a system of linear equations is a central task of Numerical Analy-
sis. A guaranteed solution can be obtained in two steps. The first step computes
an approximate solution by some kind of Gaussian elimination in conventional
floating-point arithmetic. A second step, the verification step, then computes a
highly accurate enclosure of the solution.

By an early estimate of S. M. Rump [36] the verification step can be done
with less than 6 times the number of elementary floating-point operations needed
for computing an approximation in the first step.

The verification step just consists of dot products. For details see Section 9.5
on Verified Solution of Systems of Linear Equations, pp. 333-340 in [27]. Hard-
ware implementations of the EDP at Karlsruhe in 1993 [9, 10] and at Berkeley
in 2013 [11] show that it can be computed in about 1/6th of the time needed
for computing a possibly wrong result in conventional floating-point arithmetic!
So the EDP reduces the computing time needed for the verification step to the
one needed for computing an approximate solution by Gaussian elimination. In
other words: A guaranteed solution of a system of linear equations can be com-
puted in twice the time needed for computing an approximation in conventional
floating-point arithmetic.

The time needed for solving a system of linear equations can additionally be
reduced if the EDP is already applied during Gaussian elimination in the first
step. The inner loop here just consists of dot products. The EDP would reduce
the computing time and additionally increase the accuracy of the approximate
solution.

Using a software routine for a correctly rounded dot product as an alterna-

3

tive for a hardware implemented EDP leads to a comparatively slow process. A
correctly rounded dot product is built upon a computation of the dot product in
conventional floating-point arithmetic. This is already 5 to 6 times slower than
an EDP. High accuracy then is obtained by clever and sophisticated mathemati-
cal considerations which all together make it slower than the EDP by more than
one magnitude. High speed and accuracy, however, are essential for acceptance
and success of interval arithmetic.

The simplest and fastest way computing a dot product is to compute it
exactly. The unrounded products are accumulated into a modest fixed-point
register on the arithmetic unit with no memory involvement. By pipelining this
can be done in the time the processor needs to read the data, i.e., no other
method can be faster, pp. 267-268 in [27], and [28].

A frequent argument against computing dot products exactly is that it needs
an accumulator of about 4 thousand bits. This, however, is not well taken. The
4 thousand bits are a consequence of the huge exponent range of the IEEE 754
arithmetic standard. It aims for reducing the number of under- and overflows
in a floating-point computation. There is no under- and overflow, however,
in interval arithmetic. Interval arithmetic does not need an extreme exponent
range of 10±308 or 2±1023. If in an interval computation a bound becomes −∞
or +∞ the other bound still is a finite floating-point number. In a following
operation this interval can become finite again.

Program packages for interval arithmetic for the IBM /370 architecture de-
veloped by different commercial companies like IBM, Siemens and others in the
1980ies provide and make use of an exact dot product [38, 39, 40, 41]. See also
[42].

3 A Floating-point Number Format

Appropriate for Interval Arithmetic

Floating-point and interval arithmetic are distinct calculi. Floating-point arith-
metic as specified by IEEE 754 is full of complicated constructs, data and events
like rounding to nearest, overflow, underflow, +∞, −∞, +0, −0 as numbers,
or operations like ∞ − ∞, ∞/∞, 0 · ∞. All these constructs do not occur in
interval arithmetic. In contrast to this, reasonably defined interval arithmetic
leads to an exception-free calculus. It is thus only reasonable to keep the two
calculi strictly separate.

For interval arithmetic an exponent range between −77 and +77 seems to be
reasonable. This is a huge range of numbers.1 It is 1/4th of the exponent range
of the IEEE 754 floating-point format double precision. Then 9 bits suffice for
the representation of the exponent. So in comparison with the 11 bits of the
IEEE 754 number representation two bits are left for other purposes. We use
one of these bits for extending the number of fraction bits by one from 53 to
54 and the other bit to indicate whether the interval bracket is open or closed.

1The number of atoms in the universe is less than 1080.

4

s exponent e fraction f u

Figure 1: The floating-point number format.

In accordance with [14] we call this bit the ubit, u for short. A ubit u = 0
represents a closed and a ubit u = 1 an open interval bracket.

Figure 1 shows the format of a floating-point number.
So the ubit u allows to distinguish between open and closed interval bounds.

A bound of the result of an interval operation only can be closed, if both
operands are closed interval bounds. So in the majority of cases the bound
in the result will be open.

We now consider a general floating-point number system
S = S(b, f, emin, emax), with base b, f bits of the fraction, least and greatest
exponent emin and emax, respectively. Then a register of

L = k + 2emax + 2f + 2|emin|

bits suffices for computing dot products exactly. Here k denotes a number of
guard digits for counting intermediate overflows of the register. It is important
to note that the size of this register only depends on the data format. In
particular it is independent of the number n of components of the two vectors
to be multiplied.

In case of a 64-bit interval bound, one bit is used for the sign s, 9 bits are used
for the exponent, 53 bits for the fraction and one bit for the ubit u. As usual
the leading bit of the fraction of a normalized binary floating-point number is
not stored, so the fraction actually consists of 54 bits. For the exponent emin
subnormal numbers with a denormalized mantissa are permitted.

For this data format with f = 54, emax = |emin| = 256, and k = 20, we get
for L = 20 + 512 + 108 + 512 = 1152 bits. This register can be represented by
18 words of 64 bits.

As justification for the exponent range of emax = |emin| = 256 we just
mention that the data format long of the IBM /370 architecture covers a range
of about 10−75 to 1075. This architecture dominated the market for more than
25 years and most problems could conviniently be solved with machines of this
architecture within this range of numbers. We mention once more that there is
no under- and overflow in interval arithmetic.

A reduction of the exponent range to 8 bits with emax = |emin| = 128
would allow an extension of the fraction by one more bit to f = 55 bits. This
leads to a register of L = k+2emax+2f+2|emin| = k+256+110+256 = k+622
bits and with k = 18 to 10 words of 64 bits.

For the data format single precision with a word length of 32 bits the size
L of the register for computing dot products exactly even shrinks to 9 words of
64 bits: 1 bit is used for the sign, 8 bits are used for the exponent, 23 bits for
the fraction, one bit is used for the ubit u, emax = 128, and emin = −128. So

5

with k = 18 we get L = k + 2emax + 2f + 2|emin| = 18 + 256 + 46 + 256 = 576
bits. This register can be represented by 9 words of 64 bits.

The formulas for computing the lower and the upper bound of an interval
operation are independent of each other. This also holds for the EDP. So on the
computer the lower and the upper bound of the result of an interval operation
can and should be computed simultaneously in parallel. This allows performing
any interval operation at the speed of the corresponding floating-point operation.
For details see Section 7.3 in [27], or [29]. High speed is essential for acceptance
and success of interval arithmetic.

4 From Closed Real Intervals to

Connected Sets of real Numbers

For about 40 years interval arithmetic was defined for the set of closed and
bounded real intervals. The books [25, 27] extended it to unbounded real in-
tervals. The book The End of Error by John Gustafson [14] finally shows that
it even can be extended to just connected sets of real numbers. These can be
closed, open, half open, bounded or unbounded. The book shows that arith-
metic for this expanded set is closed under addition, subtraction, multiplication,
division, also square root, powers, logarithm, exponential, and many other el-
ementary functions needed for technical computing, i.e., arithmetic operations
for connected sets of real numbers always lead to a connected set of real num-
bers. The calculus is free of exceptions. It remains free of exceptions if the
bounds are restricted to a floating-point screen. John Gustafson shows in his
book that this extension of interval arithmetic opens new areas of applications.

A detailed description and analysis of this expanded interval arithmetic for
connected sets of real numbers including an exact dot product is given in [29].

References

[1] IMACS and GAMM, IMACS-GAMM resolution on computer arithmetic, Mathemat-
ics and Computers in Simulation 31 (1989), 297–298, or in Zeitschrift für Angewandte
Mathematik und Mechanik 70:4 (1990).

[2] GAMM-IMACS proposal for accurate floating-point vector arithmetic, GAMM Rundbrief
2 (1993), 9–16, and Mathematics and Computers in Simulation, Vol. 35, IMACS, North
Holland, 1993. News of IMACS, Vol. 35, No. 4, 375–382, Oct. 1993.

[3] American National Standards Institute / Institute of Electrical and Electronics Engineers:
A Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1987, New York,
1985. (reprinted in SIGPLAN 22, 2, pp. 9-25, 1987). Also adopted as IEC Standard
559:1989, Revised version 2008, and in ISO/IEC/IEEE 60559:2011.

[4] American National Standards Institute / Institute of Electrical and Electronics Engineers:
A Standard for Radix-Independent Floating-Point Arithmetic. ANSI/IEEE Std. 854-
1987, New York, 1987.

[5] The IFIP WG 2.5 - IEEE 754R letter, dated September 4, 2007.

[6] The IFIP WG 2.5 - IEEE P1788 letter, dated September 9, 2009.

6

[7] G. Alefeld and J. Herzberger, Einführung in die Intervallrechnung, Informatik 12,
Bibliographisches Institut, Mannheim Wien Zürich, 1974.

[8] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
New York, 1983.

[9] Ch. Baumhof, A new VLSI vector arithmetic coprocessor for the PC, in: Institute of
Electrical and Electronics Engineers (IEEE), S. Knowles and W.H. McAllister (eds.),
Proceedings of the 12th Symposium on Computer Arithmetic ARITH, Bath, England,
July 19–21, 1995, pp. 210–215, IEEE Computer Society Press, Piscataway, NJ, 1995.

[10] Ch. Baumhof, Ein Vektorarithmetik-Koprozessor in VLSI-Technik zur Unterstützung des
Wissenschaft-lichen Rechnens, Dissertation, Universität Karlsruhe, 1996.

[11] D. Biancolin and J. Koenig, Hardware Accelerator for Exact Dot Product,
ASPIRE Laboratory, University of California, Berkeley, 2015.

[12] G. Bohlender, Floating-Point Computation of Functions with Maximum Accuracy, IEEE
Transactions on Computers, Vol. C-26, no. 7, July 1977.

[13] G. Bohlender, Genaue Berechnung mehrfacher Summen, Produkte und Wurzeln von
Gleitkommazahlen und allgemeine Arithmetik in höheren Programmiersprachen, Disser-
tation, Universität Karlsruhe, 1978.

[14] J. L. Gustafson The End of Error. CRC Press, Taylor and Francis Group, A Chapman
and Hall Book, 2015.

[15] E.R. Hansen, Topics in Interval Analysis, Clarendon Press, Oxford, 1969.

[16] R. Klatte, U. Kulisch, M. Neaga, D. Ratz and Ch. Ullrich, PASCAL-XSC –
Sprachbeschreibung mit Beispielen, Springer, Berlin Heidelberg New York, 1991.
See also http://www2.math.uni-wuppertal.de/xsc/ or http://www.xsc.de/.

[17] R. Klatte, U. Kulisch, M. Neaga, D. Ratz and Ch. Ullrich, PASCAL-XSC – Language
Reference with Examples, Springer, Berlin Heidelberg New York, 1992.
See also http : //www2.math.uni − wuppertal.de/ ∼ xsc/ or http://www.xsc.de/.
Russian translation MIR, Moscow, 1995, third edition 2006.
See also http : //www2.math.uni − wuppertal.de/ ∼ xsc/ or http://www.xsc.de/.

[18] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, Numerical Toolbox for Verified Com-
puting I: Basic Numerical Problems (PASCAL-XSC), Springer, Berlin Heidelberg New
York, 1993.
Russian translation MIR, Moscow, 2005.

[19] R. Klatte, U. Kulisch, C. Lawo, M. Rauch and A. Wiethoff, C-XSC – A C++ Class
Library for Extended Scientific Computing, Springer, Berlin Heidelberg New York, 1993.
See also http://www2.math.uni-wuppertal.de/xsc/ or http://www.xsc.de/.

[20] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, C++ Toolbox for Verified Computing:
Basic Numerical Problems. Springer, Berlin Heidelberg New York, 1995.

[21] R. Kirchner, U. Kulisch, Hardware support for interval arithmetic. Reliable Computing,
225–237, 2006.

[22] U. Kulisch, An axiomatic approach to rounded computations, TS Report No. 1020, Math-
ematics Research Center, University of Wisconsin, Madison, Wisconsin, 1969, and Nu-
merische Mathematik 19 (1971), 1–17.

[23] U. Kulisch, Implementation and Formalization of Floating-Point Arithmetics, IBM T.
J. Watson-Research Center, Report Nr. RC 4608, 1 - 50, 1973. Invited talk at the
Caratheodory Symposium, Sept. 1973 in Athens, published in: The Greek Mathematical
Society, C. Caratheodory Symposium, 328 - 369, 1973, and in Computing 14, 323–348,
1975.

[24] U. Kulisch, Grundlagen des Numerischen Rechnens - Mathematische Begründung der
Rechnerarithmetik, Bibliographisches Institut, Mannheim Wien Zürich, 1976.

[25] U. Kulisch, Advanced Arithmetic for the Digital Computer – Design of Arithmetic Units,
Springer, 2002.

7

[26] U. Kulisch, An Axiomatic Approach to Computer Arithmetic with an appendix on In-
terval Hardware, LNCS, Springer-Verlag, Heidelberg, 484-495, 2012.

[27] U. Kulisch, Computer Arithmetic and Validity – Theory, Implementation, and Applica-
tions, de Gruyter, Berlin, 2008, second edition 2013.

[28] U. Kulisch and G. Bohlender, High Speed Associative Accumulation of Floating-point
Numbers and Floating-point Intervals, Reliable Computing-23-pp-141-153, 2016.

[29] U. Kulisch, Up-to-date Interval Arithmetic: From Closed Intervals to Connected Sets of
Real Numbers, in R. Wyrcykowski (Ed.): PPAM 2015, Part II, LNCS 9574, pp. 413-434,
2016.

[30] R. E. Moore, Interval Analysis, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1966.

[31] J. D. Pryce (Ed.), P1788, IEEE Standard for Interval Arithmetic,
http://grouper.ieee.org/groups/1788/email/pdfOWdtH2mOd9.pdf.

[32] F. Blomquist, W. Hofschuster, W. Krämer, A Modified Staggered Correction Arithmetic
with Enhanced Accuracy and Very Wide Exponent Range. In: A. Cuyt et al. (eds.):
Numerical Validation in Current Hardware Architectures, Lecture Notes in Computer
Science LNCS, vol. 5492, Springer-Verlag, Berlin Heidelberg, 41-67, 2009.

[33] M. Nehmeier, S. Siegel, J. Wolff von Gudenberg, Specification of Hardware for Interval
Arithmetic, Computing, 2012.

[34] S. Oishi, K. Tanabe, T. Ogita and S.M. Rump, Convergence of Rump’s method for in-
verting arbitrarily ill-conditioned matrices, Journal of Computational and Applied Math-
ematics 205 (2007), 533–544.

[35] S.M. Rump, Kleine Fehlerschranken bei Matrixproblemen, Dissertation, Universität
Karlsruhe, 1980.

[36] S.M. Rump and E. Kaucher, Small bounds for the Solution of Systems of Linear
Equa¡tions, Computing Supplementum 2 157–164, 1980.

[37] Sun Microsystems, Interval Arithmetic Programming Reference, Fortran 95, Sun Mi-
crosystems Inc., Palo Alto (2000).

[38] IBM, IBM System/370 RPQ. High Accuracy Arithmetic, SA 22-7093-0, IBM Deutsch-
land GmbH (Department 3282, Schönaicher Strasse 220, D-71032 Böblingen), 1984.

[39] IBM, IBM High-Accuracy Arithmetic Subroutine Library (ACRITH), IBM Deutschland
GmbH (Department 3282, Schönaicher Strasse 220, D-71032 Böblingen), third edition,
1986.

1. General Information Manual, GC 33-6163-02.

2. Program Description and User’s Guide, SC 33-6164-02.

3. Reference Summary, GX 33-9009-02.

[40] IBM, ACRITH–XSC: IBM High Accuracy Arithmetic – Extended Scientific Computa-
tion. Version 1, Release 1, IBM Deutschland GmbH (Department 3282, Schönaicher
Strasse 220, D-71032 Böblingen), 1990.

1. General Information, GC33-6461-01.

2. Reference, SC33-6462-00.

3. Sample Programs, SC33-6463-00.

4. How To Use, SC33-6464-00.

5. Syntax Diagrams, SC33-6466-00.

[41] SIEMENS, ARITHMOS (BS 2000) Unterprogrammbibliothek für Hochpräzisionsarith-
metik. Kurzbeschreibung, Tabellenheft, Benutzerhandbuch, SIEMENS AG, Bereich Da-
tentechnik, Postfach 83 09 51, D-8000 München 83, Bestellnummer U2900-J-Z87-1,
September 1986.

[42] INTEL, Intel Architecture Instruction Set Extensions Progamming Reference, 319433-
017, December 2013, http://software.intel.com/en-us/file/319433-017pdf.

