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This paper is intended to provide an introductory tour of the modal intervals. It is 

geared for people who already have a set-theoretic background and are interested 

to learn about the modal interval perspective. The purpose is to present a practical 

introduction to a subject that otherwise seems to have received little attention over 

the years, perhaps because it has a reputation of being difficult to understand. This 

paper also presents some new and recent work of Sunfish, so it captures our 

perspective on modal intervals as it relates to interval standardization. For all these 

reasons, only the most relevant details are presented. The interested reader can find 

a wealth of deeper discussion in the references. 

1 Background 

The common and popular notion of interval arithmetic is based on the fundamental 

premise that intervals are sets of numbers and that arithmetic operations can be 

performed on these sets. This interpretation of interval arithmetic, popularized by 

Ramon E. Moore, has received a great deal of attention and development by interval 

researchers. It is sometimes referred to as the “classical” interval arithmetic, and it 

is purely set-theoretic in nature. 

Modal intervals, conceived by E. Gardenes in 1985 and studied earlier in various 

forms by mathematicians such as M. Warmus (1956), T. Sunaga (1958), H. J. Ortolf 

(1969), E. Kaucher (1973) and N. Dimitrova, S.  Markov and E. Popova (1992), can 

be thought of as an extension of the classical intervals. Before starting a discussion 

of modal intervals, though, many people often want to know “why?” In other words, 

what is the need for the modal intervals? Why aren’t the set-theoretic intervals 

“good enough?” What kind of “extensions” do the modal intervals really provide? 

These are good questions, and this paper will try to answer them in a simple and 

straightforward manner. One way to see a motivation for the modal intervals is to 

take a closer look at some of the shortcomings of a purely set-theoretic approach. So 

this is where the paper begins. 
                                                        
1 Special thanks to G. W. Walster, E. Hansen, A. Neumaier and S. Markov for helpful and productive 
discussions, as well as M. A. Sainz and E. Popova for reviewing this paper. Positions presented are my 
own and not necessarily those of these persons. 
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1.1 Classical Intervals 

The set of real numbers 𝐑 is uncountable, therefore a computer must perform 

calculations upon a finite subset of 𝐑. A digital scale is such a subset. Each mark in a 

digital scale is represented in a computer by a bit-pattern and corresponds to a 

particular element of 𝐑 (the same applies if 𝐑∗, the set of extended-reals, is 

considered, but for the sake of simplicity this paper only considers 𝐑). 

For all that computationally matters, the real operators are introduced into the 

system of set-theoretic intervals 

𝐼 𝐑 ∶=    𝑎, 𝑏    𝑎 ∈ 𝐑, 𝑏 ∈ 𝐑, 𝑎 ≤ 𝑏   

by defining interval operators for addition, subtraction, multiplication and division 

such that any two interval operands produce an interval result which contains every 

arithmetical combination of numbers belonging to the operands. If computing on a 

digital scale, interval operators employ an outer rounding to guarantee containment 

of the interval operands in the interval result. 

The interval functions 𝑓𝑅 of system 𝐼 𝐑  are then defined by replacing the real 

operators of the real functions by the respective interval operators. By means of this 

process the guarantee promised by the fundamental theorem of interval arithmetic 

is obtained, i.e., all solutions are contained in the interval result. This forms the basis 

of a large body of work made famous by classical interval analysis. For this reason, it 

won’t be reiterated here in any further detail.  

1.2 Amplification of Dependence 

For any number of set-theoretic interval operands 𝑋1, … , 𝑋𝑛 ∈ 𝐼 𝐑 , the amount of 

pessimism, even when exact arithmetic on 𝐑 is used, between the set of values of a 

real function 

  𝑓 𝑥1, … , 𝑥𝑛    𝑥1, … , 𝑥𝑛 ∈ 𝑋1, … , 𝑋𝑛    

and the enclosure of its interval computation 𝑓𝑅(𝑋1, … , 𝑋𝑛) is often greater than a 

reasonable expected approximation when some argument variables 𝑥1, … , 𝑥𝑛  appear 

multiple times in the expression of the real function 𝑓(… ), i.e., when some 

components of argument 𝑥 = (𝑥1, … , 𝑥𝑛) are multi-incident in the syntax tree of the 

function 𝑓(… ). 

As an example, it is enough to compare, for 𝑥 ∈ 𝑋 = [1,2], the set of values of the 

real function 𝑓 𝑥 ≔ 𝑥 − 𝑥, which is   𝑥 − 𝑥   𝑥 ∈  1,2   = [0,0], with the result of 

the interval operation on 𝐼 𝐑 , 

𝑓𝑅 𝑋 ∶= 𝑋 − 𝑋 =  1,2 −  1,2 ∶=   𝑥 − 𝑦   𝑥 ∈  1,2 , 𝑦 ∈  1,2   = [−1,1]. 

This phenomenon is called “amplification of dependence.” It is a well-known and 
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familiar difficulty with interval computations, as it often leads to overly pessimistic 

results. 

1.3 Sub-distributive Law 

In the system 𝐼 𝐑 , the distributive property of multiplication is weakened with 

regard to addition and becomes a sub-distributive law, i.e., 

𝐴 ⋅  𝐵 + 𝐶 ⊆ 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐶. 

As an example, consider 

 1,3 ⋅   1,1 +  −1,−1  =  0,0 ⊆  1,3 ⋅  1,1 +  1,3 ⋅  −1,−1 = [−2,2]. 

The unwanted consequence of a sub-distributive law is increased pessimism similar 

to the amplification of dependence. However, the dependence in this case is due 

specifically to the weakened distributive properties of multiplication over addition 

in the system 𝐼 𝐑 . 

1.4 Empty Set 

In mathematics, a lattice is a partially ordered set for which the subsets of any two 

elements have a unique infimum and supremum. The real numbers ordered by the 

less-or-equal relation ≤ forms a lattice, and the breaking points ( 𝑥 ≤ 𝑦 | 𝑥 ≥ 𝑦 ) for 

any 𝑥, 𝑦 ∈ 𝐑 is binary. For example, 𝑥 and 𝑦 have two possible situations relative to 

each other, i.e., either 𝑥 ≤ 𝑦 or 𝑥 ≥ 𝑦. By comparison, the lattice on 𝐼 𝐑  has four 

breaking points according to 

  𝑋 ⊆ 𝑌   𝑋 ⊇ 𝑌   𝑋 ≤ 𝑌   𝑋 ≥ 𝑌 ) 

for any 𝑋, 𝑌 ∈ 𝐼 𝐑 . The system of comparison relations (𝐼 𝐑 ,≤,≥) is the partial 

order complementary to the partial order (𝐼 𝐑 ,⊆,⊇). 

Intersection, i.e., the system (𝐼 𝐑 ,∩), is not closed with respect to the inclusion 

relations (𝐼 𝐑 ,⊆,⊇). If classical intervals 𝐴 and 𝐵 are disjoint, the operation 𝐴 ∩ 𝐵 

produces the empty set, which is not an element of 𝐼 𝐑 . 

It is remarkable how, in classical analysis, the empty set is taken for granted. In 

some cases it is used constructively, as in proving the non-existence of zeros in the 

interval Newton method. In other cases it can add a great deal of special handling to 

algorithms and interval libraries. Modal intervals, however, reveal that the empty 

set is an unnecessary consequence of an incomplete interval structure. It is also an 

obstacle to important numerical capabilities, such as computing the inner rounding 

or enclosure of an expression. Even without an empty set, the modal intervals are 

capable of providing proofs of non-existence, as in the case of the interval Newton 

method. More on this topic will be discussed later. 
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2 Logic 

Unlike classical intervals, the set-membership reasoning of modal intervals is based 

entirely on predicate logic. For this reason, modal intervals are grounded not only in 

set-theory but also in the theory of propositions and logic. 

While it is a broad subject and runs very deep in the literature on modal intervals, 

the purpose of this paper is to introduce and illustrate the basic concepts. For this 

reason, some boilerplate material is quickly reviewed. 

2.1 Propositions 

A proposition is a statement that is either true or false, but not both. Propositional 

logic, in general, lends itself well to digital computing because computers operate in 

terms of binary representations, e.g., “true” or “false,” “on” or “off,” etc. 

Truth tables define various propositional operators. Negation (¬) is the simplest. 

It makes a true statement false and a false statement true. 

 

P ¬P 

T F 
F T 

Table 1: Negation 

2.2 Conjunction and Disjunction 

Conjunction  ∧  and disjunction  ∨  are propositional operators, sometimes more 

commonly known as AND and OR. 

 

P Q P ∧ Q P ∨ Q 

T T T T 
T F F T 
F T F T 
F F F F 

Table 2: Conjunction and Disjunction 

2.3 Condition and Bicondition 

Condition  →  draws a connection between a hypothesis and a conclusion. Namely, 

if the hypothesis is true but the conclusion is false, the condition must also be false; 

otherwise the condition is (or may be) true. Bicondition  ↔  is true only when the 

hypothesis and conclusion have the same truth values. In the following table, P is a 

hypothesis and Q is a conclusion. 
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P Q P → Q P ↔ Q 

T T T T 
T F F F 
F T T F 
F F T T 

Table 3: Condition and Bicondition 

2.4 Logical Equivalence and Implication 

A tautology is a propositional formula that is always true for any possible evaluation 

of its propositional variables. Logical equivalence  ⇔  is a bicondition  ↔  that is a 

tautology, and logical implication  ⇒  is a condition  →  that is a tautology. For any 

implication P ⇒ Q it can also be said that Q is logically deducible from P. 

2.5 Predicates and Quantifiers 

Predicates and quantifiers are the foundation of modal theory. Together, they form 

the essential mathematical engine used to define the modal interval solution sets of 

real expressions. It is even from the meaning of the word “quantifier” that the modal 

intervals get their name. 

The following is an example of a predicate. 

 

𝑃 𝑥  : 𝑥 is greater than 3 

 𝑃 𝑥  is the statement 

 𝑃 is the propositional function 

 𝑥 is the subject 

 “is greater than 3” is the predicate  a property the subject can have) 

 

The breakdown of the constituent parts of the propositional statement are defined 

and labeled as bullet points under the given example. The purpose of the predicate 

is to transform the subject of the statement into a standard of truth, i.e., true or false. 

For this reason, the propositional function can be thought of as a Boolean function of 

one more variables (subjects). 

The following are some examples: 

 

Example 1  Example 2 

𝑃 𝑥 ∶ 𝑥 > 3 
𝑃 4 = true 
𝑃 2 = false 

 𝑄 𝑥, 𝑦 ∶ 𝑥 = 𝑦 + 3 
𝑄 1,2 = false 
𝑄 3,0 = true 
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Quantifiers “quantify” the truth of a statement by providing a mode of selection 

for a given variable in the predicate. There are exactly two modes to choose from, 

namely, ∀  universal  and ∃  existential). The ∀ and ∃ symbols are read “for all” and 

“there exists,” respectively. 

Given a statement 𝑃(𝑥) and 𝑥 ∈ 𝐷, where 𝑥 is a variable and 𝐷 is a domain of 

values 𝑥 may take on, the proposition 

(∀𝑥 ∈ 𝐷)𝑃(𝑥) 

requires 𝑃(𝑥) to be true “for all” values in the domain of 𝑥 while 

(∃𝑥 ∈ 𝐷)𝑃(𝑥) 

requires 𝑃(𝑥) to be true for at least one value in the domain of 𝑥, i.e., “there exists” 

in the domain of 𝑥 an element such that 𝑃(𝑥) is true. 

For example, consider the proposition 

(∀𝑥 ∈ 𝐑)𝑃 𝑥 ∶ 𝑥 − 𝑥 = 0. 

It is true because the predicate is an identity, i.e., for all real numbers 𝑥 the predicate 

𝑥 − 𝑥 = 0 is true. Consider the similar proposition 

(∀𝑥 ∈ 𝐑)(∀𝑦 ∈ 𝐑)𝑄 𝑥, 𝑦 ∶ 𝑥 − 𝑦 = 0. 

It is false because the predicate is a conditional equation, i.e., there are combinations 

of real numbers 𝑥 and 𝑦 where for any 𝑥 the predicate 𝑥 − 𝑦 = 0 is not true for all 𝑦. 

However, if the quantifier mode of 𝑦 is changed, i.e., 

(∀𝑥 ∈ 𝐑)(∃𝑦 ∈ 𝐑)𝑄 𝑥, 𝑦 ∶ 𝑥 − 𝑦 = 0, 

the proposition then becomes true because for all real numbers 𝑥 there exists a real 

number 𝑦 such that 𝑥 − 𝑦 = 0. More specifically, the predicate is true when 𝑦 = 𝑥, 

therefore, 

(∀𝑥 ∈ 𝐑)(∃𝑦 ∈ 𝐑)𝑄 𝑥, 𝑦 ⇒ (∀𝑥 ∈ 𝐑)𝑃 𝑥 . 

In words, changing the quantifier mode of 𝑦 from “for all” to “there exists” implies a 

constraint 𝑦 = 𝑥 is applied to the conditional equation 𝑥 − 𝑦 = 0 so that it is always 

true, similar to the identity 𝑥 − 𝑥 = 0. 

3 Modal Intervals 

This section describes the ground construction of modal intervals. It also introduces 

canonical notation and presents the geometric structure of modal intervals, which 

can be visualized in two dimensions using an isomorphic construction known as the 

(Inf, Sup)-diagram. 
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3.1 Ground Construction of Modal Intervals 

The ground construction of modal intervals is provided by 

 

 The set of real numbers 𝐑 

 The set of set-theoretic intervals 𝐼 𝐑  

 The set of classic predicates on the real line, 𝑃 .  ∶ 𝐑 →   true, false  . 

 

More particularly, if 

Pred(𝐑) ∶=   𝑃(. )   𝑃 .  ∶ 𝐑 →   true,  false     

is the set of classic predicates on the real line and 

Pred(𝑥) ∶=   𝑃(. ) ∈ Pred(𝐑)   𝑃 𝑥 = true   

is the set of predicates a real number 𝑥 accepts, then modal analysis stands on the 

identification 

𝑥 ⟷ Pred(𝑥). 

This is the main point of departure from the classical analysis which instead builds 

on a singleton interpretation of real numbers 𝑥 ⟷  𝑥 . 

A modal interval 𝑋 is an element of the cartesian product (𝑋′, 𝑄) where 𝑋′ ∈ 𝐼 𝐑  

is a set-theoretic interval and 𝑄 ∈   ∃, ∀   is one of the classic quantifier modes. In 

the modal interval literature, it is traditional to delimit set-theoretic intervals with 

an apostrophe to distinguish them from modal intervals. The remainder of this 

paper follows this convention. 

From this perspective, it is common to think of the modal intervals 

𝐼∗ 𝐑 ∶=    𝑋′, 𝑄    𝑋′ ∈ 𝐼 𝐑 ,  𝑄 ∈   ∀, ∃     

as quantified set-theoretic intervals. This is a similar method to that in which real 

numbers are associated in pairs having the same absolute value but opposite signs. 

Modal intervals in the system 𝐼∗ 𝐑  are likewise associated in pairs having the same 

set but opposite modes. 

For any modal interval, the quantifier “for all” or “there exists” describes how the 

set-theoretic component must be used in a propositional statement. For example, if 

𝐴 =   1,2 ′, ∀  and 𝐵 =   1,2 ′, ∃  are universal and existential modal intervals, and if 

𝑃(𝑥) is a real predicate, then the proposition 

 ∀𝑎 ∈ 𝐴′ 𝑃(𝑎) 

requires the predicate 𝑃(𝑎) to be true for all 𝑎 ∈ [1,2]′ and the proposition 

 ∃𝑏 ∈ 𝐵′ 𝑃(𝑏) 

requires the predicate 𝑃(𝑏) to be true only for at least one 𝑏 ∈ [1,2]′. 
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These concepts connect intuitively to the fact that in computational operations on 

digital numerical information, an interval result 𝑋′ points to, and bounds, some real 

number 𝑥 (or set of numbers) holding a determinate property 𝑃(𝑥). For example, an 

interval may specify a tolerable limit of some unknown value, like a measurement. 

In this case, it is important that a reliable solution must consider all of the possible 

elements within the interval. But an interval may also specify a predetermined error 

bound from which elements must be drawn or selected “a posteriori” in order to 

regulate a system or solve an equation. In both examples the interval is interpreted 

in one of two different ways: the former according to a universal and the latter to an 

existential mode. 

This idea is generalized even further by considering the set of real predicates 

accepted by a modal interval, i.e., 

Pred((𝑋′, 𝑄)) ∶=   𝑃(. ) ∈ Pred(𝐑)    𝑄𝑥 ∈ 𝑋′ 𝑃 𝑥 = true  . 

By this definition it is possible to consider the entire family of propositions 

 𝑄𝑥 ∈ 𝑋′ 𝑃 𝑥  

which a modal interval (𝑋′, 𝑄) validates. 

3.2 Canonical Notation and Coordinates 

For 𝑎, 𝑏 ∈ 𝐑, the canonical notation of a modal interval is 

 𝑎, 𝑏 ∶=   
  𝑎, 𝑏 ′, ∃ 𝑖𝑓 𝑎 ≤ 𝑏

  𝑏, 𝑎 ′, ∀ 𝑖𝑓 𝑎 ≥ 𝑏
  

With canonical notation, it is possible to express the set 𝐼∗ 𝐑  of modal intervals 

in “natural” terms, i.e., 

𝐼∗ 𝐑 ∶=    𝑎, 𝑏    𝑎 ∈ 𝐑, 𝑏 ∈ 𝐑  . 

This reveals another reason why modal intervals are an extension of the classical 

intervals. In words, 𝐼 𝐑  is isomorphic to a portion of 𝐼∗ 𝐑 , namely the existential 

modal intervals. 

Canonical notation is a convenient notational scheme. Many practical theorems, 

formulas and implementation strategies take advantage of canonical notation. In all 

cases, the true mathematical properties of a modal interval can be deduced from the 

canonical notation. 

Coordinates describe the intrinsic properties of a modal interval. Because this is 

an introductory paper, definitions are given without justification. For a canonical 

modal interval 𝑋 = [𝑎, 𝑏], the coordinates are 

Inf(𝑋) ∶= 𝑎 Sup(𝑋) ∶= 𝑏 Mode(𝑋) ∶=   
∃ 𝑖𝑓 𝑎 ≤ 𝑏
∀ 𝑖𝑓 𝑎 ≥ 𝑏
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and the set-theoretical component is obtained by 

Set 𝑋 ∶= [min 𝑎, 𝑏 , max 𝑎, 𝑏 ]′. 

For example, if [5,9] and [3,2] are canonical modal intervals, then 

 

 Inf Sup Mode Set 

[5,9] 5 9 ∃ [5,9]′ 
[3,2] 3 2 ∀ [2,3]′ 

 

 Canonical notation and coordinates provide a useful geometric interpretation of 

the modal intervals. This interpretation, called the (Inf, Sup)-diagram, is depicted in 

Figure 1. Every modal interval 𝑋 ∈ 𝐼∗ 𝐑  appears in the diagram as a point with the 

coordinates (Inf(𝑋), Sup(𝑋)). The diagram is isomorphic to 𝐼∗ 𝐑 , and it is useful 

because it reveals the underlying structure of the modal intervals. The Inf = Sup line 

is the set of all real numbers, i.e., the set of degenerate modal intervals. The half 

plane above is the set of existential intervals, and the half plane below is the set of 

universal modal intervals. For degenerate modal intervals, quantifier modes “for all” 

and “there exists” coincide, i.e., they have the same meaning. 

The (Inf, Sup)-diagram reveals the structural difference between the classical and 

modal intervals. For example, the shaded area below the Inf = Sup line represents a 

 

Figure 1: (Inf, Sup)-diagram 

Sup

Inf

A (existential)

B (universal)

C (point)

R (the real numbers)
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set of invalid intervals that do not belong to the 𝐼 𝐑  system. But this is the set of 

universal modal intervals in the 𝐼∗ 𝐑  system. If one views the (Inf, Sup)-diagram as 

an interval analogy of 𝐑 divided into complementary sets of positive and negative 

real numbers, a geometric insight is then provided into why 𝐼 𝐑  is not structurally 

complete. Restricting interval arithmetic to 𝐼 𝐑  is, by analogy, like restricting real 

arithmetic on 𝐑 to the non-negative real numbers. Only the system 𝐼∗ 𝐑  completes 

the analogy by providing complementary sets of intervals, i.e., the existential and 

universal modal intervals. 

4 Relations and Lattice Operators 

The modal interval comparison relations on 𝐼∗ 𝐑  are mostly analogous to their set-

theoretic counterparts on 𝐼 𝐑 . However there is also a surprising difference. This 

section of the paper presents an overview of this important distinction. 

4.1 Comparison Relations 

For any 𝐴, 𝐵 ∈ 𝐼∗ 𝐑 , the identification of modal intervals with the sets of predicates 

they accept is consistently used by the definition of modal inclusion 

𝐴 ⊆ 𝐵 ∶= Pred(𝐴) ⊆ Pred(𝐵). 

This leads to the implication 

Pred(𝐴) ⇒ Pred(𝐵), 

and the set-theoretic projection of modal inclusion is subsequently established. The 

following table is a summary of the results: 

 

Mode(𝐴) Mode(𝐵) Relation  Projection 
∃ ∃ 𝐴 ⊆ 𝐵 ⇔ Set(𝐴) ⊆ Set(𝐵) 
∀ ∀ 𝐴 ⊆ 𝐵 ⇔ Set(𝐴) ⊇ Set(𝐵) 
∀ ∃ 𝐴 ⊆ 𝐵 ⇔ Set(𝐴) ∩ Set(𝐵) ≠ ∅ 
∃ ∀ 𝐴 ⊆ 𝐵 ⇔ Inf 𝐴 = Sup 𝐴 = Inf 𝐵 = Sup 𝐵  

 

Modal intervals may also be associated with the set of real predicates they reject. 

This provides a dual semantic in 𝐼∗ 𝐑 , i.e., for any modal interval 𝑋 

Copred 𝑋 ∶= Pred 𝐑 − Pred(𝑋). 

There is a complement between predicate and copredicate by means of the duality 

operator 

Dual  𝑎, 𝑏  ∶=  𝑏, 𝑎 . 

Modal inclusion is antitonic for the Dual and Copred operators, i.e., 
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𝐴 ⊆ 𝐵 ⇔ Dual(𝐴) ⊇ Dual(𝐵) ⇔ Copred(A) ⊇ Copred(B). 

In words, if 𝐵 contains 𝐴, the dual of 𝐴 contains the dual of 𝐵 and the copredicate of 

𝐴 contains the copredicate of 𝐵. 

All of these considerations lead to definitions for the modal interval comparison 

relations 

 𝑎1, 𝑎2 ⊆  𝑏1, 𝑏2 ∶=  𝑎1 ≥ 𝑏1 ∧ 𝑎2 ≤ 𝑏2  

 𝑎1, 𝑎2 ⊇  𝑏1, 𝑏2 ∶=  𝑎1 ≤ 𝑏1 ∧ 𝑎2 ≥ 𝑏2  

 𝑎1, 𝑎2 ≤  𝑏1, 𝑏2 ∶=  𝑎1 ≤ 𝑏1 ∧ 𝑎2 ≤ 𝑏2  

 𝑎1, 𝑎2 ≥  𝑏1, 𝑏2 ∶=  𝑎1 ≥ 𝑏1 ∧ 𝑎2 ≥ 𝑏2  

Figure 2 is an (Inf, Sup)-diagram which reveals the breaking points of the lattice 

on 𝐼∗ 𝐑  according to 

  𝑋 ⊆ 𝑌   𝑋 ⊇ 𝑌   𝑋 ≤ 𝑌   𝑋 ≥ 𝑌 ) 

for any 𝑋, 𝑌 ∈ 𝐼∗ 𝐑 , where the system of comparison relations (𝐼∗ 𝐑 ,≤,≥) is the 

partial order complementary to the partial order (𝐼∗ 𝐑 ,⊆,⊇). In other words, one 

of these four relations is always true between any two modal intervals, even when 

one modal interval is existential and the other is universal. 

 

Figure 2: Complementary Partial Orders 

Sup

Inf

D  ≥ AB  ⊇ A

C  ≤ A E  ⊆ A

A
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4.2 Lattice Operators 

The lattice on 𝐼∗ 𝐑  leads to one of the most surprising and useful properties of the 

modal intervals: no empty set. 

Lattice axioms require existence of binary conjunction  ∧  and disjunction  ∨ . In 

𝐼∗ 𝐑  these operators are defined as 

 𝑎1, 𝑎2 ∧  𝑏1, 𝑏2 ∶=  max 𝑎1, 𝑏1 , min 𝑎2, 𝑏2   

 𝑎1, 𝑎2 ∨  𝑏1, 𝑏2 ∶=  min 𝑎1, 𝑏1 , max 𝑎2, 𝑏2   

The system (𝐼∗ 𝐑 ,∧,∨) is therefore 𝐼∗ 𝐑  analogy of the classical system (𝐼 𝐑 ,∩,∪). 

Figure 3 provides a geometric interpretation with an (Inf, Sup)-diagram. 

An important difference between (𝐼∗ 𝐑 ,∧,∨) and (𝐼 𝐑 ,∩,∪) is due to the logical 

equivalence 

𝐴 ⊆ 𝐵 ⇔ Dual(𝐴) ⊇ Dual(𝐵) 

which appears in the modal interval inclusion relations (𝐼∗ 𝐑 ,⊆,⊇) but does not 

exist in the classical analogy (𝐼 𝐑 ,⊆,⊇). For this reason, the modal interval system 

(𝐼∗ 𝐑 ,∧,∨) is closed and the classical system (𝐼 𝐑 ,∩,∪) is not. 

 For example, the 𝐼 𝐑  operation Set(𝐴) ∩ Set(𝐵) on the modal intervals 𝐴 and 𝐵 

 

Figure 3: Conjunction and Disjunction 
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depicted in Figure 3 is equivalent to the classical analogy of an intersection between 

the disjoint set-theoretic intervals 𝐴′ and 𝐵′. In this case, 𝐴′ ∩ 𝐵′ ∉ 𝐼 𝐑  is the empty 

set. The (Inf, Sup)-diagram reveals a geometric interpretation. The operation 𝐴′ ∩ 𝐵′ 

produces a result in the shaded area of the diagram representing invalid classical 

intervals, i.e., the intervals which do not belong to the 𝐼 𝐑  system. By comparison, 

𝐴 ∧ 𝐵 ∈ 𝐼∗ 𝐑  is a universal modal interval, which is a member of the 𝐼∗ 𝐑  system. 

For this reason, the modal interval conjunction operator (∧) is closed. 

This finding is often met with disbelief or received as a very shocking result of the 

modal intervals, especially when one is accustomed to the classical intervals which 

require an empty set. However, readers familiar with properties of convex duality 

between points and planes in the study of oriented projective geometry may find the 

equivalence of the relations 

𝐴 ⊆ 𝐵 ⇔ Dual(𝐴) ⊇ Dual(𝐵), 

as well as the closed and orderly structure of the system (𝐼∗ 𝐑 ,∧,∨), to be familiar 

ideas. See, for example, “Oriented Projective Geometry, A Framework for Geometric 

Computations,” Stolfi, Jorge, Academic Press, Inc., 1991, in which similar ideas and 

concepts occur in the study of convex sets. 

From a practical point of view, the closure of (𝐼∗ 𝐑 ,∧,∨) with respect to inclusion 

means the empty set never appears in modal theory. This leads, however, to useful 

computational abilities which will be explained in following sections. Any standard 

aiming at modal interval compatibility does not need to provide an empty set for the 

modal intervals, although such a standard may still provide an empty set for other 

reasons. Classical interval algorithms such as interval Newton, for example, use the 

empty set constructively in order to prove the non-existence of zeros. However, it is 

also possible to modify the interval Newton method to prove non-existence of zeros 

when universal intervals, and not empty intervals, are encountered. 

4.3 Strict Comparison Relations 

In addition to the two partial orders (𝐼∗ 𝐑 ,≤,≥) and (𝐼∗ 𝐑 ,⊆,⊇), the strict modal 

interval comparison relations are defined 

 𝑎1, 𝑎2 <  𝑏1, 𝑏2 ∶=  𝑎1 < 𝑏1 ∧ 𝑎2 < 𝑏2 ∧ 𝑎1 < 𝑏2 ∧ 𝑎2 < 𝑏1  

 𝑎1, 𝑎2 >  𝑏1, 𝑏2 ∶=  𝑎1 > 𝑏1 ∧ 𝑎2 > 𝑏2 ∧ 𝑎1 > 𝑏2 ∧ 𝑎2 > 𝑏1  

Figure 4 shows the entire family of comparison relations for the modal interval 𝐴. 

The relations 𝐶 < 𝐴 and 𝐷 > 𝐴 are the dark regions in the lower left and upper right 

corners of the (Inf, Sup)-diagram. Note that two modal intervals 𝑋 and 𝑌 are disjoint 

if 𝑋 < 𝑌 or 𝑋 > 𝑌. 
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5 Arithmetic Operators 

Modal interval arithmetic in 𝐼∗ 𝐑  aligns in an expected and compatible manner to 

the classical arithmetic, but also with important differences. This chapter provides a 

summary. 

5.1 Modal Interval Containment 

The combined notion of predicate and quantifier, in conjunction with the definition 

of a modal interval, is grounds for the theory of modal interval containment. 

Given any 𝑋1, … , 𝑋𝑛 ∈ 𝐼∗ 𝐑 , if 𝑃 𝑥1, … , 𝑥𝑛  is a predicate for 𝑥1, … , 𝑥𝑛 ∈ 𝐑, the  

modal interval solution set is defined by 

   𝑄1𝑥1 ∈ 𝑋′1  …   𝑄𝑛𝑥𝑛 ∈ 𝑋′𝑛    𝑃 𝑥1, … , 𝑥𝑛 = true  . 

In words, all of the quantified values  𝑄1𝑥1 ∈ 𝑋′1  …   𝑄𝑛𝑥𝑛 ∈ 𝑋′𝑛  which cause the 

predicate 𝑃 𝑥1, … , 𝑥𝑛  to be true belong to the solution set.  

For example, the predicate 

𝑃 𝑥, 𝑦 ∶ 𝑦 = 3𝑥 + 1, 

 

Figure 4: Family of Comparison Relations 
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gives true propositions for some 𝑥, 𝑦 ∈ 𝐑 and false propositions for the rest. The set 

of all (𝑥, 𝑦) pairs causing the predicate to be true forms a constraint, i.e., a graph of a 

line. The predicate is false for any (𝑥, 𝑦) pair not on the line because it violates the 

constraint. The predicate therefore divides all (𝑥, 𝑦) pairs into one of two sets, and 

the set of all pairs for which the predicate is true is the solution set. 

Note that the truth of a proposition of predicate 𝑃 𝑥, 𝑦  depends on the quantifier 

modes of 𝑥 and 𝑦. For example, the proposition 

(∀𝑥 ∈ 𝐑)(∀𝑦 ∈ 𝐑)𝑃 𝑥, 𝑦 ∶ 𝑦 = 3𝑥 + 1 

is false because for any 𝑥 the predicate 𝑦 = 3𝑥 + 1 is not true for all 𝑦. However, the 

proposition 

(∀𝑥 ∈ 𝐑)(∃𝑦 ∈ 𝐑)𝑃 𝑥, 𝑦 ∶ 𝑦 = 3𝑥 + 1 

is true because for all 𝑥 there exists 𝑦 such that the predicate is true. 

Modal theory generalizes these ideas to quantified interval equations. Given a 

binary arithmetic operator  ∘  and the real predicate 𝑃 𝑎, 𝑏, 𝑐 ∶ 𝑎 ∘ 𝑏 = 𝑐, the modal 

interval equation 𝐴 ∘ 𝐵 = 𝐶 leads to one the following propositions 

 

Proposition 1.         ∀𝑎 ∈ 𝐴′  ∀𝑏 ∈ 𝐵′  ∃𝑐 ∈ 𝐶′ 𝑃 𝑎, 𝑏, 𝑐  

Proposition 2.         ∀𝑎 ∈ 𝐴′  𝒬𝑐 ∈ 𝐶′  ∃𝑏 ∈ 𝐵′ 𝑃 𝑎, 𝑏, 𝑐  

Proposition 3.         ∀𝑏 ∈ 𝐵′  𝒬𝑐 ∈ 𝐶′  ∃𝑎 ∈ 𝐴′ 𝑃 𝑎, 𝑏, 𝑐  

Proposition 4.         ∀𝑐 ∈ 𝐶′  ∃𝑏 ∈ 𝐵′  ∃𝑎 ∈ 𝐴′ 𝑃 𝑎, 𝑏, 𝑐  

 

The scripted letter 𝒬 indicates the mode of 𝐶 depends on 𝐴 and 𝐵. Because “for all” 

and “there exists” quantifiers are not generally commutative, an ordering problem 

may arise. For this reason, only propositions with “for all” before “there exists” are 

considered (and hence the re-ordering of the quantified variables). 

The modal interval “Semantic Theorem for 𝑓*” then gives 

 min
𝑎∈𝐴
𝑏∈𝐵

𝑎 ∘ 𝑏 , max
𝑎∈𝐴
𝑏∈𝐵

𝑎 ∘ 𝑏 ⊆ 𝐶 ⇔  ∀𝑎 ∈ 𝐴′  ∀𝑏 ∈ 𝐵′  ∃𝑐 ∈ 𝐶′ 𝑃 𝑎, 𝑏, 𝑐  

 min
𝑎∈𝐴

max
𝑏∈𝐵

𝑎 ∘ 𝑏 , max
𝑎∈𝐴

min
𝑏∈𝐵

𝑎 ∘ 𝑏 ⊆ 𝐶 ⇔  ∀𝑎 ∈ 𝐴′  𝒬𝑐 ∈ 𝐶′  ∃𝑏 ∈ 𝐵′ 𝑃 𝑎, 𝑏, 𝑐  

 min
𝑏∈𝐵

max
𝑎∈𝐴

𝑎 ∘ 𝑏 , max
𝑏∈𝐵

min
𝑎∈𝐴

𝑎 ∘ 𝑏 ⊆ 𝐶 ⇔  ∀𝑏 ∈ 𝐵′  𝒬𝑐 ∈ 𝐶′  ∃𝑎 ∈ 𝐴′ 𝑃 𝑎, 𝑏, 𝑐  

 max
𝑏∈𝐵
𝑎∈𝐴

𝑎 ∘ 𝑏 , min
𝑏∈𝐵
𝑎∈𝐴

𝑎 ∘ 𝑏 ⊆ 𝐶 ⇔  ∀𝑐 ∈ 𝐶′  ∃𝑏 ∈ 𝐵′  ∃𝑎 ∈ 𝐴′ 𝑃 𝑎, 𝑏, 𝑐  

These equivalences therefore provide both the mode and the range enclosure of any 

arithmetic operation between two modal intervals. 
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This shows the difference between modal and classical theory, i.e., the classical 

theory is concerned only about the set-membership logic of Proposition 1. But this is 

just one of several possible cases. Modal intervals are therefore an extension of the 

classical intervals to the set-membership logic of all four cases. It is interesting to 

note classical theory already uses the quantifiers, e.g., the real variables 𝑎, 𝑏 and 𝑐 in 

Proposition 1 are quantified by universal and existential selection modes. Notation 

styles in the classical literature do not always make this quantification explicit. But 

even then the quantifier modes of Proposition 1 are assumed, i.e., they are implicit. 

From a standards perspective, these are reasons why the modal and classical 

approaches can be compatible. 

Translation of Propositions 1-4 into formulas which can be easily implemented 

inside a computer for the operations of addition, subtraction, multiplication and 

division are given on p. 88 in the publication “Modal Intervals,” Gardenes, E. et. al., 

Reliable Computing 7.2, 2001, pp. 77-111. Addition and subtraction are trivial, and 

multiplication and division are most efficiently implemented by creating a bit-mask 

of the signs of the endpoints of the interval operands (the bit-mask can then be used 

as an index into a single jump-table or switch statement). 

It can also be shown modal intervals are isomorphic to the Kaucher intervals. As 

an example, see Markov, S., “On Directed Interval Arithmetic and its Applications,” 

Journal of Universal Computer Science 1.7, 1995, pp. 514-526. In an algebraic sense, 

existential and universal modal intervals map to the proper and improper Kaucher 

intervals. The operations of modal interval addition, subtraction, multiplication and 

division then provide the same results as the Kaucher arithmetic, as do the lattice 

operators and comparison relations. 

5.2 Addition 

In 𝐼 𝐑 , it is known that if  𝑎, 𝑏 ′ is a non-degenerate interval (𝑎 < 𝑏), there is no 

interval  𝑥, 𝑦 ′ such that 

 𝑎, 𝑏 ′ +  𝑥, 𝑦 ′ =  0,0 ′ 

and the equation 

 𝑎, 𝑏 ′ +  𝑥, 𝑦 ′ =  𝑐, 𝑑 ′ 

has an interval solution only when 𝑏 − 𝑎 ≤ 𝑑 − 𝑐. Even in this case, the 𝐼 𝐑 -system 

fails to obtain the solution from any set-theoretic interval operation between  𝑎, 𝑏 ′ 

and  𝑐, 𝑑 ′. 

For example, consider finding a solution for 

 1,2 ′ +  𝑥, 𝑦 ′ =  3,5 ′ 

using the usual set-theoretic interval operations 
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 𝑥, 𝑦 ′ =  3,5 ′ −  1,2 ′ =  1,4 ′. 

In this case, addition has lost some of its group properties, i.e., the answer  1,4 ′ is 

an overestimation of the correct answer  2,3 ′. Also, the lack of any solution to the 

previously mentioned equation 

 𝑎, 𝑏 ′ +  𝑥, 𝑦 ′ =  0,0 ′ 

shows that no additive inverse element exists in 𝐼 𝐑 . 

However, for any modal interval 𝑋, 

𝑋 − Dual(𝑋) =  0,0  

is an identity, i.e., the modal interval −Dual(𝑋) is the additive inverse element of 𝑋. 

So the modal interval equation 𝐴 + 𝑋 = 𝐵 has the unique algebraic solution 

𝑋 = 𝐵 − Dual(𝐴).  

For example, consider an algebraic solution to the modal interval equation 

 1,3 +  𝑥, 𝑦 =  0,0  

using the modal interval operations 

 𝑥, 𝑦 =  0,0 − Dual  1,3  =  0,0 −  3,1 =  −1,−3 . 

The answer is a universal modal interval. Substituting the answer into the original 

equation results in 

 1,3 +  −1,−3 =  0,0 . 

For these reasons, modal interval addition is a group. In particular, it is abelian, 

since the commutative property also holds. It can be shown containment is always 

achieved even in the presence of directed rounding on floating-point numbers and 

inexact results (see Section 5.4 of this paper). 

5.3 Multiplication 

As for addition, some of the group properties of multiplication in 𝐼 𝐑  are lost. For 

example, consider finding a solution for 

 1,3 ′ ⋅  𝑥, 𝑦 ′ =  1,1 ′ 

using the usual set-theoretic interval operations 

 𝑥, 𝑦 ′ =  1,1 ′/  1,3 ′ =  1/3,1 ′. 

Substituting the answer  1/3,1 ′ into the original equation yields 

 1,3 ′ ⋅  1/3,1 ′ =  1/3,3 ′. 

The interval  1/3,3 ′ is not equal to  1,1 ′, i.e., it is an overestimation of the right side 
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of the original equation. The lack of an algebraic solution to the equation 

 1,3 ′ ⋅  𝑥, 𝑦 ′ =  1,1 ′ 

therefore shows no multiplicative inverse element exists in 𝐼 𝐑 . This is a reason the 

distributive property in 𝐼 𝐑  is weakened and becomes a sub-distributive law 

𝐴 ⋅  𝐵 + 𝐶 ⊆ 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐶. 

However, for any modal interval 𝑋 such that 0 ∉ Set(𝑋), 

𝑋 Dual(𝑋) =  1,1  

is an identity, i.e., the modal interval 1 Dual(𝑋)  is the multiplicative inverse element 

of 𝑋. The modal interval equation 𝐴 ⋅ 𝑋 = 𝐵 has the unique algebraic solution 

𝑋 = 𝐵 Dual(𝐴)  

so long as 0 ∉ Set(𝐴). 

For example, consider an algebraic solution to the modal interval equation 

 1,3 ⋅  𝑥, 𝑦 =  1,1  

using the modal interval operations 

 𝑥, 𝑦 =  1,1 Dual  1,3   =  1,1  3,1  =  1,1/3 . 

The answer is a universal modal interval. Substituting the answer into the original 

equation results in 

 1,3 ⋅  1,1/3 =  1,1 . 

For these reasons, modal interval multiplication is a group for the set of all modal 

intervals 𝑋 such that 0 ∉ Set(𝑋). In particular, it is abelian, since the commutative 

property also holds. As for addition, it can be shown containment is always achieved 

even in the presence of directed rounding on floating-point numbers and inexact 

results (see Section 5.4 of this paper). 

The sub-distributive property of 𝐼∗ 𝐑  therefore becomes much stronger than in 

𝐼 𝐑 . Given the operators 

Prop  𝑎, 𝑏  ∶=  min 𝑎, 𝑏 , max(𝑎, 𝑏)  

Impr  𝑎, 𝑏  ∶=  max 𝑎, 𝑏 , min(𝑎, 𝑏)  

the sub-distributive law in 𝐼∗ 𝐑  is 

Impr 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐶 ⊆ 𝐴 ⋅  𝐵 + 𝐶 ⊆ Prop 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐶. 

For example, 

 1,3 ⋅   1,1 +  −1,−1  =  0,0 =  3,1 ⋅  1,1 +  1,3 ⋅  −1,−1 . 

This can be compared to the classical computation 
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 1,3 ′ ⋅  1,1 ′ +  1,3 ′ ⋅  −1,−1 ′ =  −2,2 ′. 

As can be seen, the distributive property is stronger for modal intervals. All of the 

valid distributive relations between modal intervals are many more than those for 

the classical intervals, e.g., Popova, E. D., “Multiplication Distributivity of Proper and 

Improper Intervals,” Reliable Computing 7.2, 2001, pp. 129-140. 

5.4 Dual Computing Process 

The “Dual Computing Process,” i.e., Theorem 4.5 in the 2001 reference by Gardenes 

et. al., transforms the problem of finding an inner rounding of a numerical problem 

into an equivalent computation that uses only the outer rounding. 

Given Left 𝑥 ≤ 𝑥 and Right 𝑥 ≥ 𝑥 as the closest machine numbers adjacent to 

the real number 𝑥, the outer and inner roundings are defined by 

Out  𝑎, 𝑏  ∶=  Left 𝑎 , Right 𝑏   

Inn  𝑎, 𝑏  ∶=  Right 𝑎 , Left 𝑏   

The inner rounding of any interval arithmetic operation (∘) can then be computed 

entirely in terms of outer rounding by 

Inn 𝑋 ∘ 𝑌 ∶= Dual  Out Dual 𝑋 ∘ Dual 𝑌   . 

This is true since 

Inn(𝑋) ⊆ 𝑋 ⊆ Out(𝑋), 

which means the predicates of 𝑋 also satisfy the same inclusion relations (and the 

copredicates satisfy in an antitonic manner). For this reason, the dual computing 

process is an application of the logical equivalences 

𝐴 ⊆ 𝐵 ⇔ Dual(𝐴) ⊇ Dual(𝐵) ⇔ Copred(A) ⊇ Copred(B), 

which were presented earlier in Section 4.1 of this paper. 

The dual computing process is important, because outward rounded data are not 

always enough to obtain outward rounded results. For example, the exact equation 

 4/3,5/3 +  𝑥, 𝑦 =  2,7 ⇒  𝑥, 𝑦 =  2/3,16/3 . 

But for Out 𝐴 + 𝑋 = 𝐵 

 1.3,1.7 +  𝑥, 𝑦 =  2,7 ⇒  𝑥, 𝑦 =  0.7,5.3 , 

which is not even the outer rounding of the exact result! For Inn 𝐴 + 𝑋 = 𝐵 

 1.4,1.6 +  𝑥, 𝑦 =  2,7 ⇒  𝑥, 𝑦 =  0.6,5.4 , 

which is the outer rounding of the exact result  2/3,16/3 . 

From a standards perspective, this property of the modal intervals is a highly 
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advantageous feature. Hardware vendors only need to provide an outer rounding on 

interval processors, for example, and users can then compute inner estimations and 

roundings of numerical problems via the dual computing process. The same is true 

even in software implementations. An application of this property for computing the 

inner estimation of a parametric solution set hull can be found in Popova, E. and W. 

Kraemer, “Inner and Outer Bounds for Parametric Linear Systems,” Journal of 

Computational and Applied Mathematics 199.2, 2007, 310-316. 

The dual computing process is a consequence of the unique properties of 𝐼∗ 𝐑 , 

e.g., the logical equivalence 

𝐴 ⊆ 𝐵 ⇔ Dual(𝐴) ⊇ Dual(𝐵), 

which implies no empty set. These are reasons why an equivalent dual computing 

process does not exist in 𝐼 𝐑 . 

5.5 Arithmetic Facts 

Kaucher interval arithmetic structure provides the algebraic completion of classical 

interval arithmetic. The modal intervals, as mentioned previously, are isomorphism. 

Summarizing, the following facts are relevant: 

 

1. For any binary arithmetic operator (∘) and 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝐼∗ 𝐑 , 

𝐴 ⊆ 𝐵, 𝐶 ⊆ 𝐷 ⇒ 𝐴 ∘ 𝐶 ⊆ 𝐵 ∘ 𝐷. 

2. For any two modal intervals, there always exists at least one true relation in 

the system (𝐼∗ 𝐑 ,⊆,⊇,≤,≥). 

3. (𝐼∗ 𝐑 ,∧,∨) is closed with respect to inclusion. 

4. (𝐼∗ 𝐑 , +) is an abelian group. 

5. For any 𝑋 ∈ 𝐼∗ 𝐑 , multiplicative inverse element 1 Dual(𝑋)  exists so long as 

0 ∉ Set(𝑋). 

6. Multiplication is an abelian group for the set of all modal intervals with an 

inverse element. 

7. The distributive property in 𝐼∗ 𝐑  is stronger than in 𝐼 𝐑 . 

8. The equation 𝐴 + 𝑋 = 𝐵 has a unique solution 𝑋 = 𝐵 − Dual(𝐴). 

9. If 0 ∉ Set(𝐴), the equation 𝐴 ⋅ 𝑋 = 𝐵 has a unique solution 𝑋 = 𝐵 Dual(𝐴) . 

10. The dual computing process requires only one mode of directed rounding to 

compute both inner and outer estimations. 

11. The modal interval comparison relations, as well as the lattice and arithmetic 

operators, provide the same results as definitions provided by E. Kaucher for 

intervals in the extended space of proper and improper intervals. 

 

Modal intervals therefore provide an important connection between numeric and 
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symbolic interval computations. For example, symbolic rearrangement of algebraic 

expressions is an important application of computer science often ignored by the 

classical interval community. This is due to the fact that classical intervals have no 

group properties. However, modal intervals allow algebraic expressions to be safely 

rearranged in compilers. They also provide foundation for robust Computer Algebra 

Systems (CAS) that operate on algebraic expressions. 

In the publication “Directed Interval Arithmetic in Mathematica: Implementation 

and Applications,” Popova, E. D. and C. P. Ullrich, Technical Report 96-3, Universitaet 

Basel, January 1996, the authors appeal to directed (modal) intervals: 

 

Although conventional interval arithmetic is widely used in interval analysis 

and has numerous applications, it possesses only few algebraic properties. 

Lattice operations are not closed with respect to the inclusion relation. Due 

to the lack of inverse elements with respect to the addition and 

multiplication operations, the solution of the algebraic interval equations 

𝐴 + 𝑋 = 𝐵 and 𝐴 ⋅ 𝑋 = 𝐵 cannot be generally expressed in terms of the 

interval operations even if they actually exist. There is no distributivity 

between addition and multiplication except for certain special cases. A 

considerable scientific effort is put into developing special methods and 

algorithms that try to overcome the difficulties imposed by the algebraic 

incompleteness of the conventional interval arithmetic structure. For 

example, arithmetic operations between conventional intervals can be used 

for rough outer inclusion of functional ranges. But the bounds computed by 

naïve interval evaluation are often too pessimistic to be useful. Again several 

strategies have been developed to compute tighter bounds. Arithmetic 

operations between conventional intervals are also of little use for the 

computation of inner inclusions. 

 

This outlines a distinction between “interval arithmetic” and “interval analysis.” 

Popova points out how a great deal of effort is often spent trying to overcome the 

incomplete structure of classical interval arithmetic, and this is a reference to 

various interval analysis techniques in the interval literature. 

From a standards perspective, this can be important to consider. It is without 

doubt that interval analysis plays a crucial role in interval computations. But it is 

also beyond the purview of a standard such as IEEE 1788 to standardize “interval 

analysis” and not “interval arithmetic.” 

For this reason, it is particularly relevant to consider the arithmetical properties 

of intervals which are to be included in such a standard. Since the modal intervals 

are the algebraic completion of the classical intervals, it is clear they provide the 

most natural and reasonable choice. 

People unfamiliar with the modal intervals may naturally resist this idea, but it 
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should be remembered they are compatible, i.e., it is easy to perform purely classical 

interval arithmetic with a modal interval datatype. If all inputs are existential, and if 

no Dual(.) operators appear in the computation, the result coincides exactly with the 

classical set-theoretic answer. The only exception is that conjunction (intersection) 

of two disjoint intervals produces a universal interval. But this coincides with the 

case where the classical operation provides an empty result, anyway. So it already 

requires special handling in 𝐼 𝐑 . 

5.6 Historical Context 

The history of modal intervals goes back to the very first publications on the topic of 

interval calculus. There are two papers considered as the pioneering works in this 

field: one by Japanese mathematician T. Sunaga in 1958, and another by the Polish 

mathematician M. Warmus in 1956. Both were apparently completed independent 

of each other. In 1961, a second paper appeared by Warmus. 

In the paper by Sunaga, almost all foundational elements of the interval calculus, 

as known today, are presented. This includes the concept of the interval lattice 𝐼(𝐑), 

the system of relations (𝐼 𝐑 ,⊆,⊇), the system of operators (𝐼 𝐑 ,∩,∪), the interval 

arithmetic 

𝑋 + 𝑌 =   𝑥 + 𝑦   𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌   

𝑋 − 𝑌 =   𝑥 − 𝑦   𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌   

𝑋𝑌 =   𝑥𝑦   𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌   

𝑋 𝑌 =   𝑥 𝑦    𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌   

and the sub-distributive law 

𝐴 ⋅  𝐵 + 𝐶 ⊆ 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐶. 

Modal intervals are not formally developed, but in Example 3.4 on p. 32 of his paper, 

Sunaga provides the interval  1,3  as the solution to the equation 

 1,2 + 𝑋 =  2,5 . 

This is a remarkable anticipation of the formal (algebraic) solution provided by the 

modal interval arithmetic, i.e., 

𝑋 =  2,5 − Dual  1,2  =  2,5 −  2,1 =  1,3 . 

Perhaps even more remarkable, in the 1956 paper by Warmus, the system 

𝐼∗ 𝐑 ∶=    𝑎, 𝑏    𝑎 ∈ 𝐑, 𝑏 ∈ 𝐑   

is considered, along with the remark “there is now no need to assume 𝑎 ≤ 𝑏” for the 

interval  𝑎, 𝑏 . Midpoint-radius form is also considered, and the sign of the radius is 
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used to distinguish proper and improper intervals. He defines arithmetic operators 

that provide inverse elements, noting the intervals then “form a ring with respect to 

addition and regular multiplication.” He also points out that for system 𝐼∗ 𝐑  there 

is “one-to-one correspondence between the approximate numbers, i.e., the intervals, 

and the points on a plane.” This is a reference to geometric isomorphisms such as an 

(Inf, Sup)-diagram, and in his 1961 paper he presents a graphical depiction in which 

the entire plane is covered by the elements of 𝐼∗ 𝐑 . In this later paper he concludes 

with an example 

 4, −2 ⋅ 𝑋 +  −6,−2 ⊃ 0 

which he rearranges into 

 4, −2 ⋅ 𝑋 ⊃  6,2 . 

This is equivalent to adding the modal interval inverse element −Dual  −6,−2   to 

both sides of the inequality! 

Since the publications of Sunaga and Warmus, classical interval analysis has been 

greatly popularized by Ramon E. Moore, who accomplished his dissertation on the 

subject in 1962 and then published a monograph in 1966. Although less known, the 

ideas of Sunaga and Warmus have also been advanced by others. Formal algebraic 

properties of proper and improper intervals were independently studied in 1968 by 

H. J. Ortolf and in 1973 by E. Kaucher. Inner arithmetic operations for the proper 

intervals were developed in 1977 by S. Markov. In 1985, E. Gardenes conceived the 

modal intervals, i.e., the grounding of modal analysis in predicate logic. In 1992, N. 

Dimitrova, S. Markov and E. Popova studied important relations between Kaucher 

intervals and inner operations on proper intervals. This work was later generalized 

to the system of directed intervals in 1995 by S. Markov. 

Directed intervals (S. Markov) coincide with the logical equivalences provided by 

“Semantic Theorem for 𝑓*” in Propositions 1-4 (Gardenes, et. al.) presented earlier 

in Section 5.1 of this paper. Directed intervals are also isomorphic to the Kaucher 

intervals, as shown by S. Markov in 1995. For this reason, all prior investigations of 

interval algebraic structures lead to a single system of interval arithmetic. Because 

of the papers by T. Sunaga and M. Warmus, the modern view of the modal arithmetic 

traces all the way back to the historical inception of the interval calculus. Most 

remarkably, it is largely the same now as it was over fifty years ago. 

6 Applications to Computer Graphics 

This section of the paper presents an application of the modal interval analysis to 

computer graphics and Computer Aided Design (CAD), namely the computation of 

narrow bounds on Bezier and B-Spline curves. 
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6.1 Polynomial and Rational Functions 

A polynomial is a mathematical function involving the sum of powers of a function 

variable, 𝑥, multiplied by coefficients 𝑎0, 𝑎1, 𝑎2, …, 𝑎𝑛 . A polynomial has the general 

analytic form 

𝑓 𝑥 = 𝑎𝑛𝑥
𝑛 + ⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0. 

The degree of a polynomial is the number 𝑛 characterizing the largest power of the 

polynomial. The ratio of two polynomial functions is called a rational function. If 

𝑓 𝑥  and 𝑔 𝑥  are two polynomial functions, then 

𝑕 𝑥 =
𝑓(𝑥)

𝑔(𝑥)
 

is a rational function. 

The most efficient method to evaluate a polynomial function is by using Horner’s 

rule, which factors out powers of 𝑥, giving 

𝑓 𝑥 =   𝑎𝑛𝑥 + 𝑎𝑛−1 𝑥 + ⋯ 𝑥 + 𝑎0. 

This method minimizes the number of arithmetical operations and results in less 

numerical instability than a more naïve computational approach. 

Although Horner’s rule is the most computationally efficient method to evaluate a 

polynomial function, it has several disadvantages. Namely, the coefficients of the 

polynomial have little geometric relation to the shape of the curve, and the method 

is not numerically stable if the coefficients vary greatly in magnitude. 

6.2 Bezier Curves 

Popular and ubiquitous applications such as desktop publishing, computer graphics, 

and Computer Aided Design (CAD) put the focus on interactive shape design, that is, 

the emphasis of the polynomial computations are geometric in nature. This is in 

contrast to the “algebraic flavor” of Horner’s rule and the analytic form of a 

polynomial as previously presented. 

For these reasons, alternative computational methods for polynomials were 

developed in the 1960’s. These innovations were due largely to competition in the 

automotive industry, occurring over a period of time when the availability of 

computers and CAD software was replacing traditional paper and pencil design 

methods. The breakthrough insight was to use control polygons, a technique that 

was never used before. The polynomial is defined such that the coefficients are the 

control points of a control polygon. This innovation greatly facilitates interactive 

shape design, as changes to the control polygon cause the polynomial curve to 

follow in a very intuitive way. 
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To this day, such polynomial forms are known simply as “Bezier curves,” after 

Pierre Bezier, the mathematician who first published them. Evaluating a point on a 

Bezier curve can be done by a process similar to Horner’s rule. The method was 

developed by Paul de Casteljau, and it uses recursive linear interpolation of control 

points of a control polygon of a Bezier curve. 

Figure 4 shows how a point on a Bezier curve is evaluated using the de Casteljau 

method. The control polygon of an 𝑛th-degree Bezier curve is comprised of 𝑛 + 1 

control points, 𝐛0, 𝐛1, 𝐛2, …, 𝐛𝑛 . Each control point is a vector, and the dimension of 

all control points is the same. The curve is further parameterized by a scalar 

function variable 𝑢 such that 0 ≤ 𝑢 ≤ 1. A point on the Bezier curve is computed by 

a recursive process of linear interpolation of the control points of the control 

polygon. Each linear interpolation is a function of 𝑢, namely 

𝐛𝑖
𝑟 𝑢 =  1 − 𝑢 ⋅ 𝐛𝑖

𝑟−1 𝑢 + 𝑢 ⋅ 𝐛𝑖+1
𝑟−1(𝑢)  

𝑟 = 1,… , 𝑛
𝑖 = 0,… , 𝑛 − 𝑟

𝐛𝑖
0 𝑢 = 𝐛𝑖

  

For any parameter value of 𝑢, evaluating 𝐛0
𝑛 𝑢  computes the point on the Bezier 

curve. 

From a computational perspective, the de Casteljau method for evaluating points 

on a Bezier curve is only slightly more expensive than Horner’s rule. However, the 

 

Figure 4: De Casteljau Evaluation of a Bezier Curve 
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de Casteljau method is more numerically stable. These qualities, as well as their 

geometric nature, are the main reason why the Bezier curve and the de Casteljau 

method are so common and ubiquitous in geometric applications such as desktop 

publishing, computer graphics and CAD. 

6.3 Interval Dependence 

To compute interval bounds on a Bezier curve in which both the function variable 

and “control points” are all intervals, a simple but naïve approach is to perform the 

computations of the de Casteljau method directly on the interval operands, i.e., to 

substitute all non-interval arguments with their respective interval counterparts 

and then perform the same computational operations. This will produce a correct 

interval result, but it will also be hopelessly pessimistic. Even for curves of low 

degree, the pessimism will be severe, but as the degree of the curve increases, the 

pessimism will quickly explode into astronomical magnitudes, making the interval 

result unacceptable and worthless for almost all practical applications. 

The source of pessimism is in the interval dependence that occurs in each linear 

interpolation of control points. For example, given an interval variable 𝑈 ⊆ [0,1], the 

expression of an interval linear interpolation between 𝐴 and 𝐵 is 

 1 − 𝑈 ⋅ 𝐴 + 𝑈 ⋅ 𝐵. 

In this case, the interval variable 𝑈 occurs twice in the expression and this causes 

interval dependence to occur in the computation. Similarly, the expression can be 

rearranged into the equivalent form 

𝐴 + 𝑈 ⋅ (𝐵 − 𝐴). 

In this case, the interval variable 𝑈 only appears once in the expression, but 𝐴 now 

appears twice. This means that interval dependence will still occur in the linear 

interpolation. 

This is not the worst of the problem, however, because pessimism caused by the 

interval dependence is cumulative. As the number of linear interpolations in the de 

Casteljau method increases due to the degree of the curve, the pessimism likewise 

propagates through the computation, causing a cumulative and cascading growth in 

the pessimism. Even for a Bezier curve with 𝑛 = 3, the cumulative effect of interval 

dependence is devastating. In such a case, the pessimism in the final result is often 

greater than an order of magnitude. 

For these reasons, it is a widely held belief that evaluating an interval curve by a 

recursive process of interval linear interpolation of control points is perhaps the 

worst possible method to accomplish the goal of computing a narrow interval result. 

Instead, expensive “divide and conquer” or restrictive pseudo-interval methods are 

used to obtain non-pessimistic results. 
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Examples of “divide and conquer” include recursive bisection, endpoint analysis, 

interval “tightening” methods, or a combination thereof, e.g., Stahl, Volker, “Interval 

Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear 

Equations,” Johannes Kepler University, Austria, 1995. Such methods generally 

require special knowledge of the polynomial function and often require explicit 

computation of derivatives. When the full arsenal of such methods is employed, 

pessimism can often be defeated, but typically at great computational expense. For 

example, the prospect of embedding such complex and dynamic methods into a 

simple hardware circuit seem far-fetched. 

By contrast, pseudo-interval methods provide simple and elegant ways to defeat 

pessimism, but only by restricting the types of interval polynomial functions which 

can be solved. Examples include “Approximation by Interval Bezier Curves,” 

Sederberg, T. W. and Farouki, IEEE Computer Graphics and Applications 12.5, 1992, 

pp. 87-95 and “Compensated Horner Scheme,” Graillat, S., et. al., Research Report 

No. RR2005-04, Universite de Perpignan Via Domitia, 2005. The shortcoming of 

these approaches is that 𝑢 must be a point, that is, it is not possible to evaluate the 

Bezier curve over an interval domain [𝑢1, 𝑢2] such that 𝑢1 < 𝑢2 . As a result, there is 

less opportunity for dependence to occur, and this makes computing results with no 

pessimism quite a bit “easier.” However, such methods are unsuitable for use in true 

interval analysis problems where 𝑢 is an interval [𝑢1, 𝑢2] with 𝑢1 < 𝑢2 . This includes 

the interval rendering software being developed at Sunfish. 

6.4 Modal Interval Bezier Curves 

As described previously, it is a common belief that evaluating an interval curve by a 

recursive process of interval linear interpolation of control points is perhaps the 

worst possible method to accomplish the goal of computing a narrow interval result 

for an interval polynomial. This section introduces a new method to show how this 

belief is false. The solution is reached by performing a modal analysis, which in turn 

facilitates the embodiment of a simple and elegant system and method in hardware 

or software. 

Monotonicity analysis of the real expression 

𝑎 + 𝑢 ⋅  𝑏 − 𝑎  

is considered for 𝑎, 𝑏 ∈ 𝐑 and 0 ≤ 𝑢 ≤ 1. Since 𝑎 is the multi-incident variable, the 

derivative with respect to 𝑎 is examined, i.e., 

𝑑

𝑑𝑎
 𝑎 + 𝑢 ⋅  𝑏 − 𝑎  = 1 − 𝑢. 

The derivative does not contain zero as an interior point for the entire domain of 𝑢, 

and this is a necessary precondition for an optimal range enclosure according to the 
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modal analysis. Next, each instance of 𝑎 is treated as an independent variable, e.g., 

𝑎0 + 𝑢 ⋅  𝑏 − 𝑎1 , 

each instance 𝑎0 and 𝑎1 an independent variable, and the derivatives 

𝑑

𝑑𝑎0
 𝑎0 + 𝑢 ⋅  𝑏 − 𝑎1  = 1        and        

𝑑

𝑑𝑎1
 𝑎0 + 𝑢 ⋅  𝑏 − 𝑎1  = −𝑢 

are examined. The derivatives with respect to 𝑎0 and 𝑎1 have opposite signs, and the 

instance 𝑎0 shares the same sign in the derivative as 𝑎 (the instance 𝑎1 does not). In 

the publication “Modal Intervals,” Gardenes, E. et. al., Reliable Computing 7.2, 2001, 

pp. 77-111, by Theorem 5.4, i.e., by the “Coercion to Optimality,” the instance 𝑎1 is 

therefore dualized and the interval linear interpolation becomes 

𝐴 + 𝑈 ⋅ (𝐵 − Dual(𝐴)). 

In other words, the linear interpolation operation is now an optimal modal interval 

expression. 

This optimal form of the interval linear interpolation cannot be overemphasized. 

It is a total defeat of interval dependence as discussed in the previous section. Most 

importantly, since 𝑈 ⊆ [0,1] is true for every step of the de Casteljau method, it can 

be used recursively to compute narrow bounds on an interval Bezier curve. 

Figure 5 is a modal interval Bezier curve. The control polygon of an 𝑛th-degree 

modal interval Bezier curve is comprised of 𝑛 + 1 modal interval “control points,” 

𝐁0, 𝐁1, 𝐁2, …, 𝐁𝑛 . The curve is further parameterized by a modal interval function 

variable 𝑈 ⊆ [0,1]. A bound on a modal interval Bezier curve is computed using a 

modal interval extension of the de Casteljau method, i.e., by a recursive process of 

optimal interval linear interpolation of control points of the control polygon. Each 

linear interpolation is a function of 𝑈, namely 

𝐁𝑖
𝑟 𝑈 = 𝐁𝑖

𝑟−1 𝑈 + 𝑈 ⋅ (𝐁𝑖+1
𝑟−1 𝑈 − Dual(𝐁𝑖

𝑟−1(𝑈)))  

𝑟 = 1,… , 𝑛
𝑖 = 0,… , 𝑛 − 𝑟

𝐁𝑖
0 𝑈 = 𝐁𝑖

  

For any parameter value of 𝑈, evaluating 𝐁0
𝑛(𝑈) computes a bound on the modal 

interval Bezier curve. 

A similar modal analysis for the equivalent real expression 

 1 − 𝑢 ⋅ 𝑎 + 𝑢 ⋅ 𝑏 

of the linear interpolation operation can also lead to optimal results and a similar 

interval de Casteljau algorithm. In this case, 𝑢 is now the multi-incident variable, so 

the derivative with respect to 𝑢 is examined, i.e., 

𝑑

𝑑𝑎
  1 − 𝑢 ⋅ 𝑎 + 𝑢 ⋅ 𝑏 = 𝑏 − 𝑎. 
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However in this case zero may be an interior point in the derivative, so the modal 

analysis requires branch conditions. For this reason it is not the preferred method, 

e.g., it does not lead to the most efficient implementations. Nevertheless, it is an 

obvious alternative that can lead to similar results. 

In either case, the modal interval formulation of a Bezier curve is simple enough 

that it can be easily implemented as a dedicated hardware circuit. If a modal interval 

processor is available, the optimal interval linear interpolations can be managed by 

a simple memory addressing unit and the modal interval arithmetic can be deeply 

pipelined. If a modal interval processor is not available, it is easy to emulate by 

disassembling the modal arithmetic into elementary floating-point operations and 

then providing an appropriate sequence of machine instructions to a floating-point 

processor. Emulation in software can also be achieved by using similar strategies. 

All of these implementation choices follow naturally as a consequence of the modal 

analysis. 

6.5 Comparison of Results 

Figure 6 is a side-by-side comparison of a Bezier curve with 𝑛 = 5. The interval 

polynomial is computed with classical interval arithmetic on the left and optimal 

interval linear interpolation on the right. In both cases, the entire domain 𝑈 = [0,1] 

 

Figure 5: Modal Interval Bezier Curve 
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is subdivided into the same number of small, equal-width intervals. Each domain 

interval is then used to perform a recursive sequence of linear interpolations of the 

interval control points. 

As can be clearly seen, interval dependence is severe in the purely set-theoretic 

interval curve on the left. In many cases, the computed bounds are pessimistic by an 

order of magnitude or greater. By contrast, the interval curve computed on the right 

uses optimal linear interpolation and therefore defeats the pessimism. The same 

number of interval arithmetic operations is used in both portions of the figure. This 

demonstrates how the modal interval approach, i.e., the optimal interval linear 

interpolation, reaches significantly narrower results by using the same amount of 

computational effort. 

6.6 B-Splines and NURBS 

Bezier curves are a special case of the B-Splines, which are a much more general 

parameterization of a polynomial. Rational functions which are formed by the ratio 

of two B-Splines are known as NURBS, i.e., Non-Uniform Rational B-Splines. NURBS 

are very popular and enjoy a “most favored” status in the CAD industry due to their 

generality and flexibility. 

A method similar to the de Cateljau method developed by C. de Boor applies to 

the B-Spline form of a polynomial. It shares all of the positive characteristics of the 

de Casteljau method, with the added benefit of increased generality. The de Boor 

method is a reason why NURBS are popular and ubiquitous in high-end CAD and 

computer animation applications, as it provides a simple and efficient method to 

evaluate NURBS and B-Splines in a numerically stable manner. 

 

Figure 6: Set-theoretic (left) and Modal Interval (right) Bezier Curve 
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The modal interval methods and techniques described in this paper generalize 

trivially to B-Splines and NURBS. 

6.7 Comparison with Classical Approaches 

Classical endpoint analysis for the real expression 

𝑎 + 𝑢 ⋅  𝑏 − 𝑎  

also examines the derivative with respect to 𝑎, i.e., 

𝑑

𝑑𝑎
 𝑎 + 𝑢 ⋅  𝑏 − 𝑎  = 1 − 𝑢. 

In this case, since the derivative is non-negative for the entire domain of 𝑢, the lower 

and upper bound of 𝑎 can be used, respectively, in the lower and upper evaluation of 

the range enclosure, i.e., 

  Inf(Inf(𝐴) + 𝑈 ⋅ (𝐵 − Inf(𝐴))), Sup(Sup(𝐴) + 𝑈 ⋅ (𝐵 − Sup(𝐴)))  . 

This leads to the same optimal result as the modal analysis. However, it requires six 

interval arithmetic operations, i.e., twice the number of operations required for the 

modal interval expression 

𝐴 + 𝑈 ⋅ (𝐵 − Dual(𝐴)), 

which requires only three. 

In any case, for an expression as simple as the linear interpolation operation, it 

should not come as a surprise that classical endpoint analysis arrives at the same 

range enclosure. Modal intervals are an extension of the classical intervals, and the 

coercion theorems are based on monotonicity analysis. For these reasons, a modal 

analysis includes traditional methods, such as classical endpoint analysis, as obvious 

and alternative paths to the same destination. 

In regards to computing narrow bounds on interval polynomials by using optimal 

interval linear interpolation, however, there is not a prior solution, either classical 

or modal, in the literature. There are also no publications, which we are aware of, 

that discuss or show how to perform an optimal interval linear interpolation. We 

believe optimal interval linear interpolation, either classical or modal, and its use in 

recursive methods to compute narrow bounds on interval polynomials are unique 

contributions to the interval community. 

6.8 Linear Interpolation in the Vienna Proposal 

It has been suggested in the public forum by Arnold Neumaier that optimal linear 

interpolation does not require modal intervals. For set-theoretic intervals xx, yy and 

tt, the optimal modal interval linear interpolation xx+tt*(yy-dual(xx)) is replaced 
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by the library routine linearInt(xx,yy,tt), which uses the following recipe: 

set round down 
dl = yl-xl; tl1=(tl if dl>=0 else tu); l=xl+tl1*dl; 
set round up 
du = yu-xu; tu1=(tu if du>=0 else tl); u=xu+tu1*du; 

The inclusion of the linearInt() recipe in Version 3.0 of the Vienna Proposal, Nov. 

21, 2008, was motivated by personal discussions on the topic of modal intervals and 

optimal linear interpolation with Neumaier. 

Following the obvious course mentioned at the end of Section 6.4 of this paper, 

Neumaier obtains the linearInt() recipe (personal communication) from Hayes, 

Nathan T., “System and Method to Compute Narrow Bounds on a Modal Interval 

Polynomial Function,” Pub. No. WO/2007/041523, by disassembling the modal 

interval arithmetic xx+tt*(yy-dual(xx)) into elementary floating-point operations! 

For example, 

[dl,du] = [yl-xl,yu-xu] = yy-dual(xx). 

Similarly, the values of tl1 and tu1 in the linearInt() recipe come from the modal 

interval multiplication table shown on p. 88 of Gardenes, E. et. al., “Modal Intervals,” 

Reliable Computing 7.2, 2001, pp. 77-111. For example, since tt is a non-negative 

interval, the modal interval multiplication tt*[dl,du] depends only on the signs of 

dl and du. This means 

[tl1*dl,tu1*du] = tt*[dl,du]. 

The addition of xl and xu in the lower and upper bounds of the linearInt() recipe, 

respectively, follows from the interval addition operation, also depicted on p. 88 of 

the Gardenes reference. In words, Neumaier simply rewrites the modal interval 

expression in component-wise form. 

Classical endpoint analysis does not disassemble into the same efficient recipe as 

the modal analysis (see, for example, Section 6.7 of this paper). In the publication 

“Computer graphics, linear interpolation and nonstandard intervals,” Dec. 22, 2008, 

Neumaier provides an “a posteriori” change to a classical endpoint analysis to obtain 

more efficient computation. But this change, i.e., the linearInt() recipe, is simply 

the component-wise form of the modal interval arithmetic. 

For example, a compiler can also disassemble the expression 

𝐴 + 𝑈 ⋅ (𝐵 − Dual(𝐴)) 

into elementary floating-point operations and automatically obtain the linearInt() 

recipe. Expert use of programming languages, such as C++ expression templates, 

can also lead to similar results. 

All of this shows why modal intervals may provide a fantastic opportunity for 

advancements in linguistic interval technologies such as compilers or programming 
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languages, e.g., a compiler or C++ class library may disassemble the modal interval 

arithmetic to automatically obtain an optimal sequence of elementary operations for 

a floating-point processor. Contrary to his claim, however, Neumaier demonstrates 

that optimal linear interpolation does require modal intervals. In words, the most 

efficient implementation is obtained directly from the modal arithmetic. Prohibiting 

standardization of a modal interval datatype and requiring the linearInt() recipe, 

as suggested in the Vienna Proposal, does not change this fact. 

7 Modal Interval Schema 

Modal intervals are an interval extension of the real numbers. Efforts to generalize 

to the extended reals have been made by Miguel A. Sainz (personal communication) 

and other mathematicians, e.g., E. Popova (1994), S. Markov (1996) and E. Popova 

and C. Ullrich (1997). 

An unresolved question in the modal interval literature is how to handle the IEEE 

754 infinities in a practical implementation of modal intervals inside a computer. 

These issues have been studied at Sunfish. We take the approach that infinities are 

not allowed to be members of the modal interval. 

This section summarizes an extension of modal intervals to the set of unbounded 

modal intervals, along with a suitable schema for a practical implementation within 

a computer. It compares in spirit to the purely set-theoretic schema presented in the 

monograph “Self-Validated Numerical Methods and Applications,” Stolfi, Jorge and L. 

H. de Figueirdedo, Brazilian Mathematics Colloquium, IMPA, Rio de Janeiro, Brazil, 

1997.  But the new schema presented in this chapter provides reliable and efficient 

overflow tracking for unbounded modal intervals that do not contain infinites as 

members. This schema is a prototype, and likely requires further development. 

7.1 Background 

Translating interval mathematics into practical computational methods that can be 

performed within a computer is the purpose of the P1788 working group. IEEE 754 

specifies exceptionally particular semantics for binary floating-point arithmetic and 

enjoys pervasive and worldwide use in modern computer hardware. For this reason, 

efforts focus on creating practical interval arithmetic implementations that build on 

the reputation and legacy of this standard. 

IEEE 754 specifies bit-patterns to represent real floating-point numbers as well 

as +∞, −∞, −0, +0 and the pseudo-numbers, i.e., NaNs (Not-a-Number). Although 

the standard defines results for the arithmetical combination of all permutations of 

bit-patterns between two floating-point values, the translation of these results into 

arithmetical combinations of intervals is unclear. This problem was first posed in 
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Popova, E. D., “Extended Interval Arithmetic in IEEE Floating-Point Environment,” 

Interval Computations, No. 4, 1994, pp. 100-129, and a model that makes IEEE 754 

floating-point arithmetic and interval arithmetic compliant is presented. 

Several efforts to map IEEE 754 to set-theoretic intervals have been made. In the 

previously cited monograph, Stolfi presents a mapping to the real numbers. A more 

ambitious mapping to the extended-reals is made by Walster in U.S. Pat. 6,658,443. 

More recently, Steele, Jr. provides alternate results for invalid IEEE 754 arithmetic 

operations in U.S. Pat. 7,069,288. For example, Steele defines 

 +∞ +  −∞ = +∞ 

when rounding towards positive infinity and 

 +∞ +  −∞ = −∞ 

when rounding in the opposite direction. In words, the alternate results depend on 

rounding mode. These methods are not compatible with modal intervals, so a new 

representation is needed. 

7.2 Digital Scales 

The set of real numbers 𝐑 is uncountable, so computers must therefore perform 

calculations upon a finite subset of 𝐑. A digital scale is such a subset. Each mark in a 

digital scale is represented in a computer by a bit-pattern and corresponds to a 

particular element of 𝐑. Due to its finite nature, every digital scale is characterized 

by a mark which represents a largest and a smallest real number. 

Arithmetic operations performed on a digital scale may result in a number that is 

not representable by any mark. If this occurs, the result is “correctly rounded” if the 

exact answer is rounded to the nearest mark according to some specified rounding 

convention. In interval arithmetic, two rounding conventions are used, i.e., round 

down (towards negative infinity) and round up (towards positive infinity). 

Overflow is a condition that occurs when a result of an arithmetic operation 

exceeds the largest or smallest mark of the digital scale. To help track overflow in a 

reliable manner, a digital scale can specify the two special marks −∞ and +∞ to 

represent, respectively, overflow of the smaller or larger end of the digital scale. 

More specifically, in IEEE 754 the marks −∞ and +∞ represent true infinite values, 

i.e., they are not real numbers. 

7.3 Bounded Modal Intervals 

In a computer, a modal interval is comprised of a first and a second mark of a digital 

scale. If both marks are real numbers, the set-theoretic component of the modal 

interval is the closed set of all real numbers between and including the marks. The 
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quantifier mode is deduced by the relative signed magnitude of the two marks. If the 

first mark is less-than the second mark, the quantifier is existential. If the first mark 

is greater-than the second mark, the quantifier is universal. If the two marks are 

equal, the modal interval is a point and it represents a single real number with a 

degenerate quantifier, i.e., the quantifiers “for all” and “there exists” have the same 

meaning when the modal interval is a point. 

7.4 Unbounded Modal Intervals 

Prior methods of overflow tracking for modal intervals have been considered in the 

literature, e.g., the previously mentioned references by Popova and Markov. We take 

a different approach in which infinities are not allowed to be members of the modal 

interval. The method presented here was developed several years ago at Sunfish 

and has been used with success in practical implementations. It begins with the 

introduction and treatment of unbounded modal intervals. 

An unbounded modal interval is represented by a first and a second mark of a 

digital scale, where at least one mark is a signed infinity, i.e., −∞ or +∞. 

Strictly speaking, the presence of infinity in an unbounded modal interval is a 

token which indicates an open and unbounded endpoint. The actual infinity is not 

contained in the modal interval, but all real numbers 𝑥 approaching the infinity in 

the limit are. For this reason, the unbounded modal interval is different from the 

“extended-real” modal interval. The former contains only real numbers, while the 

latter contains the infinity, which is not a real number. For example, the canonical 

modal interval (−∞, 5] contains all real numbers 𝑥 ≤ 5 but not the infinity. 

7.5 Special Modal Intervals 

If both marks of a modal interval are infinities of the same sign, the modal interval is 

a “point in the limit.” More specifically, the modal interval is a real number 𝑥 that 

approaches infinity in the limit. The infinity approached by 𝑥 is the same as the two 

endpoints of the interval. For example, 

(+∞, +∞) 

represents a real number 𝑥 in the limit as it approaches +∞, and 

(−∞,−∞) 

represents a real number 𝑥 in the limit as it approaches −∞. As is the case with all 

points, the quantifier of a “point in the limit” is degenerate. 

Other special modal intervals are the intervals comprising at least one signed 

zero. IEEE 754 specifies distinct marks for −0 and +0, which are both aliases for 

true mathematical zero. For this reason, zero has four aliases in the modal interval 
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schema, i.e., one for each pair of zeros having one of the four possible permutations 

of signs. All four aliases are points and have the same degenerate quantifier. As 

should be obvious, this also means a bounded or unbounded modal interval which 

contains the mark −0 or +0 in one endpoint is an alias for the same modal interval 

with a zero of complimentary sign located in the same position, e.g., [−12, −0] and 

[−12, +0] are aliases of each-other. 

7.6 Indefinite Modal Intervals 

So far, the modal interval schema has assigned a meaning for every permutation of 

bit-pattern between two marks of a digital scale selected from the group of finite 

real numbers, signed infinities and signed zeros. IEEE 754 also defines the pseudo-

numbers, called NaNs (Not-a-Number). If at least one mark of a modal interval is a 

NaN, then the modal interval is indefinite or NaI (Not-an-Interval). 

Indefinite modal intervals serve the same purpose as the NaNs do in IEEE 754, 

i.e., they can be used to propagate errors through a computation. If a modal interval 

operand is indefinite, the result of any lattice or arithmetic operation on it must also 

be indefinite. It is always true that an indefinite modal interval is not equal to itself 

or any other modal interval. All other comparison relations on an indefinite modal 

interval are false. 

Note that an indefinite interval is not the same as an empty interval, as the two 

generally have different properties. For example, if 𝑋′ ∈ 𝐼(𝐑) is a classical interval, 

then 

𝑋′ ∪ ∅ = 𝑋′. 

But if NaI is an indefinite interval, then 

𝑋′ ∪ NaI = NaI. 

Since modal intervals do not require the empty set, it is not specified in the schema. 

However, classical interval algorithms can still operate properly with a modal 

interval datatype by treating the universal intervals  𝑏, 𝑎  such that 𝑏 > 𝑎 as empty 

intervals. Consistent application of this rule always leads to the correct classical 

results and allows the traditional interval algorithms such as the interval Newton 

method to prove non-existence of zeros. For example, if all inputs to the algorithm 

are existential intervals  𝑎, 𝑏  such that 𝑎 ≤ 𝑏, then any occurrence of a universal 

interval is proof of non-existence of zeros. 

7.7 Unbounded Addition 

A complete mapping of IEEE 754 to the unbounded modal intervals has been given, 

i.e., the schema has assigned meaning to every permutation of bit-pattern between 
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two marks selected from the group of finite numbers, NaNs, signed infinities, and 

signed zeros. This mapping provides representation for unbounded modal intervals. 

The modal interval literature, however, provides no treatment of unbounded modal 

intervals or how to perform arithmetic operations on them. What remains to be 

done is to specify the operational semantics of unbounded modal intervals in the 

context of modal interval arithmetic computations. 

Consider an example of modal interval addition,  3, +∞ + (−∞, 2]. Semantically 

speaking, this represents addition of two unbounded existential modal intervals. 

IEEE arithmetic provides the result 

 3 + (−∞ ,  +∞) + 2 = (−∞, +∞). 

Because the infinity in each operand represents a real number in the limit, the sums 

of the endpoints are likewise real numbers in the limit. In this case, using IEEE 

arithmetic to calculate the result provides the desired answer. 

Consider a similar example where the modality of the first operand is universal, 

i.e.,  +∞, 3 + (−∞, 2]. In this case, IEEE arithmetic provides the result 

[ +∞) +  −∞ , 3 + 2 = [NaN, 5]. 

The presence of NaN in the result is a consequence of an invalid operation. Namely, 

the arithmetic operation (+∞) + (−∞) is invalid, and IEEE 754 specifies NaN as the 

result. In this case, IEEE arithmetic does not work. 

At this point, it is critically important to remember that due to the representation 

of the present schema, the infinity is not actually contained in the modal interval. On 

the contrary, it is in fact only a token to indicate a real number in the limit as it 

approaches the infinity. This is in contrast to IEEE arithmetic, which does not treat 

the infinity as a real number. It turns out that performing IEEE arithmetic directly 

on the infinities in the first example provides the desired result. However, this is 

only a fortunate coincidence. As the second example shows, such a computational 

trick does not always provide the desired answer. 

Remembering that the presence of infinities in a modal interval is only a token for 

a real number in the limit as it approaches the infinity, a closer examination of the 

two examples using substitution is helpful and revealing. 

In the first example, substituting the infinite values for increasingly large real 

magnitudes reveals the following trend 

[3 +  −1000 ,  +1000 + 2]  

= [−997,1002]  

[3 +  −1000000 ,  +1000000 + 2]  

= [−999997,1000002]  
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[3 +  −1000000000 ,  +1000000000 + 2]  

= [−999999997,1000000002]. 

As larger and larger magnitudes are substituted for the infinite values, the sums 

eventually overflow the digital scale, providing a result of (−∞, +∞) to represent an 

unbounded interval. In this case, it is a coincidence that performing IEEE arithmetic 

directly on the unbounded endpoints provides the desired result. 

In the second example, substituting the infinite values for increasingly large real 

magnitudes reveals the following trend 

[ +1000 +  −1000 , 3 + 2]  

= [0,5]  

[ +1000000 +  −1000000 , 3 + 2]  

= [0,5]  

[ +1000000000 +  −1000000000 , 3 + 2]  

= [0,5]. 

As larger and larger magnitudes are substituted for the infinite values, the sums of 

equal magnitude continually cancel each-other out, resulting in the modal interval 

[0,5]. In this case, the computational trick of performing IEEE arithmetic directly on 

the unbounded endpoints does not work. 

As a conclusion to be drawn from these examples, it is a fortunate coincidence 

that addition of unbounded modal intervals can be calculated using IEEE arithmetic 

for any case where the result is not a NaN. Specifically, the exceptional conditions of 

IEEE addition are (+∞) + (−∞) and (−∞) + (+∞). Special instruction is required 

in these cases to return +0 as the proper result, except when rounding down the 

result should be −0. Note the sign of the result coincides with the rules of IEEE 754 

addition for finite numbers. 

As it should be obvious, the same conclusion and results are obtained for the 

subtraction of unbounded modal intervals. 

7.8 Conversion of Digital Scales 

An important point regarding the unbounded modal interval schema can be made 

by considering further the example of unbounded modal interval addition. 

Substituting the infinities for increasingly large real magnitudes in the example 

 +∞, 3 + (−∞, 2] reveals the answer is [0,5]. 

If an implementation does not support unbounded calculations, they must be 

approximated to avoid generating unwanted NaNs. This can be accomplished by 

replacing the true unbounded endpoints with large finite numbers, which then take 
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on aliases as the “unbounded” endpoints. 

As already demonstrated, if the true unbounded values are substituted by finite 

approximations of equal magnitudes, a result is obtained. If the substitution does 

not use equal magnitudes of approximation, the result becomes pessimistic. For 

example, 

[ +999 +  −1001 , 3 + 2]  

= [−2,5]  

[ +9999 +  −1000001 , 3 + 2]  

= [−990002,5]  

[ +99999 +  −1000000001 , 3 + 2]  

= [−999900002,5]. 

But pessimism is not even the worst problem which can occur. In some cases, the 

computation is totally unreliable. For example, if the magnitudes of approximation 

in the previous example are exchanged, 

[ +1001 +  −999 , 3 + 2]  

= [2,5]  

[ +1000001 +  −9999 , 3 + 2]  

= [990002,5]  

[ +1000000001 +  −99999 , 3 + 2]  

= [999900002,5]. 

The answer [0,5] is not even a subset of any result! This represents a total failure of 

the modal interval containment theory, i.e., it is a containment violation. In plainly 

spoken words, the results are bogus. 

This problem may occur in computational programs which only use the bounded 

modal intervals. For example, the true unbounded endpoints are all initialized with 

the same finite approximation, but during computation, accumulations of rounding 

errors cause each approximation to “drift” randomly from the initial common value. 

Eventually it is the case all or many of the approximations are no longer equal, and 

pessimism or containment failure, as previously described, is therefore introduced 

into the computation. 

The problem is exacerbated when computations operate on mixed digital scales. 

Conversion between digital scales often generates catastrophic rounding errors, and 

this can cause dramatic changes to the magnitude of a finite approximation which 

acts as the alias of an unbounded value. It can therefore also introduce staggering 
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amounts of pessimism or even total failure into a computation. 

7.9 Unbounded Multiplication 

As in the case of addition, unbounded modal interval multiplication is considered in 

a similar manner, i.e., substitution of the infinities by increasingly large magnitudes 

provides a mechanism to obtain results. Performing this analysis yields the same 

conclusion as before, that IEEE arithmetic conveniently works for any case that does 

not result in a NaN. 

Specifically, the exceptional conditions of IEEE multiplication are  ±∞ × (±0) 

and  ±0 × (±∞). Special instruction is required in these cases to return the result 

±0, where the sign of the result is equal to the sign of the product of the signs of the 

operands, regardless of rounding mode. Note that the sign of the result coincides 

with the rules of IEEE 754 multiplication for finite numbers. 

7.10 Unbounded Division 

As in the cases of addition and multiplication, the case of unbounded modal interval 

division is considered. Again, the substitution of infinities by increasingly large 

magnitudes provides a mechanism to obtain results. Performing this analysis yields 

the same conclusion as before, that IEEE arithmetic conveniently works for any case 

that does not result in a NaN. 

Specifically, the exceptional conditions of IEEE division are (±∞)/(±∞). Special 

instruction is required in these cases to return the result ±1, where the sign of the 

result is equal to the sign of the product of the signs of the operands regardless of 

rounding mode. Note that the sign of the result coincides with the rules of IEEE 754 

division for finite numbers. 

Division by an interval with zero as an element is undefined for the unbounded 

modal intervals, just as it is for the bounded modal intervals. Any attempt to divide 

by an interval with zero as an element should result in NaI. 

7.11 Underflow and Negative Zero 

Unlike standard mathematics, IEEE 754 defines −0 and +0 as unique elements with 

different algebraic properties. This mnemonic device solves some design problems 

related to a floating-point standard, but it also leads to interpretations that do not 

have true mathematical counterparts. For example, IEEE 754 specifies 

 −0 = −0. 

In his previously cited monograph on self-validated numerical methods, Jorge Stolfi 

makes the following remark about the special treatment of negative zero in interval 
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computations: 

 

One of the most controversial features of the IEEE standard is the existence 

of a negative zero, that is, −0 = 1/(−∞). While it is possible to concoct 

examples where this feature saves an instruction or two, in the vast majority 

of applications this value is an annoying distraction, and a possible source of 

subtle bugs. 

 

Unlike infinite values, he argues, which extend the domain of arithmetic operations 

naturally, negative zero affects the semantics of many operations in “non-obvious 

and mathematically inconsistent ways.” 

For example, the IEEE 754 standard defines 

1/(−0 ) = −∞        and        1/(+0 ) = +∞. 

If 𝑎 is a positive real number, interval reciprocals such as 

1/[−𝑎,−0]  = (−∞,−1/𝑎]        and        1/[+0, +𝑎]  = [+1/𝑎, +∞) 

are nicely accommodated by this convenience. The parenthesis “ ” and “ ” represent 

endpoints that are open, i.e., the endpoint is not a member of the interval. This 

requires, however, that +0 must always appear in the lower bound and −0 must 

always appear in the upper bound. Even if the other arithmetic operations take 

great care to produce intervals with signed zeros in the correct locations, such an 

implementation may be easily defeated by a user who simply provides an input with 

a signed zero in the wrong location, i.e., 

1/[−𝑎, +0]  = (+∞,−1/𝑎]        and        1/[−0, +𝑎]  = [+1/𝑎,−∞). 

This issue can be resolved by explicitly using the sign of the zero to define if the 

interval represents underflow towards zero or not. For example, Walster uses this 

convention for set-theoretic intervals in U.S. Pat. No. 6,658,443. If the zero endpoint 

has the same sign as the other endpoint, the interval is treated as underflow toward 

zero. Otherwise the interval contains zero as a member. For example,   

[−𝑎,−0)       and        (+0, +𝑎] 

are treated as underflow towards zero while 

[−𝑎, +0]        and        [−0, +𝑎] 

are treated as intervals which include zero as a member. This also implies that 

[−0, +0] 

must be the true containment of mathematical zero. 

In practice, users and implementers alike must then take care to ensure zeros in 

interval endpoints always have the correct sign, otherwise unreliable or unexpected 
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results may occur. A paragraph from Popova, E. D., “Interval Operations Involving 

NaNs,” Reliable Computing 2.2, 1996, pp. 161-165, provides a summary: 

 

Two implementing paradigms are possible with respect to the zero elements 

of the IEEE system. One is the algebraic sign of zero not to be interpreted by 

the interval arithmetic which will lead to a simpler but restricted 

implementation. The other is to consider the algebraic sign of zero as 

specified by the Standard. This will complicate the basic interval software 

but will allow implementation of a wider understanding of intervals (e.g. 

Kahan intervals). We can consider interval with end-points zero as open or 

closed; for instance [−0,1] includes 0 as an internal point but [+0,1] does 

not. Whatever is the implementer’s decision about these two paradigms, it 

should be followed for all interval operations. 

 

At Sunfish, we come to the same conclusion as Stolfi on this topic and therefore 

choose the first paradigm described by Popova. Our arrival at this position is due to 

trials and tribulations with the various implementations already described. We find 

these design options look good on paper but are often difficult and prone to error in 

practice. Also, underflow can be handled simply by other methods. For example, if ε 

is the smallest finite machine number, then intersecting the denominator with 

 (−∞,−ε]        or        [+ε, +∞) 

provides the desired result, e.g., 

1

 −∞,−ε ⋀ −𝑎,±0 
= (−∞,−1/𝑎]        and        

1

 ±0,+𝑎 ⋀ +ε,+∞ 
= [+1/𝑎, +∞). 

For these reasons, we do not require implicit underflow tracking in the modal 

interval schema. Users (or interval tools) can achieve the same results by explicitly 

performing an intersection in the dominator when it is needed. Instead, the modal 

interval schema defines an interval with ±0 in an endpoint to be an alias of the 

modal interval with the zero of complementary sign in the same endpoint. 

This design allows the sign of any zero produced by any arithmetic operation to 

match existing IEEE 754 rounding conventions, i.e., it does not require any deviant 

behavior except to otherwise treat the infinities as real numbers in the limit. From a 

standards perspective, this makes it an attractive option, since it represents the 

most minimal departure from IEEE 754 of previous schemas while providing an 

exception-free interval arithmetic (except for division by an interval containing 

zero). It therefore maximizes existing IEEE 754 investments and minimizes the risks 

of new hardware designs. 
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7.12 Summary 

A complete mapping of the IEEE 754 standard to the unbounded modal intervals 

has been given. The schema provides a meaning for every permutation of a modal 

interval bit-image comprised of two IEEE 754 bit-patterns selected from the group 

of finite number, NaN, signed infinity, or signed zero. A modal interval bit-image is 

64-bits, for example, if each of the two IEEE 754 bit patterns are single-precision. 

The result is a set of 264  modal interval bit-images. The schema presented in this 

chapter provides a standardized meaning for each member of such a set. 

The schema also provides a complete representation for the unbounded modal 

intervals, as well as the arithmetical operations performed on them. The cases for 

IEEE 754 arithmetic operations requiring special instruction have been presented 

and classified, along with the set of required alternate results. In this case, every 

alternate result coincides exactly to the IEEE 754 standard except that operations 

must treat infinities as finite real numbers in the limit. The modal interval schema 

therefore requires only a minimal departure from the existing IEEE 754 standard, 

and future versions of that standard could easily facilitate the new schema with an 

“infinity in the limit” attribute to control how the infinities are handled.  

A tabulated summary of the modal interval schema, as well as the required 

deviations from the IEEE 754 standard, are provided in the Appendices. 

By combination of these parts and methods, the modal interval schema provides 

a mathematically and computationally correct overflow tracking system and method 

for the unbounded modal interval calculations, as well as an exception-free modal 

interval arithmetic (except for division by an interval containing zero, which is still 

undefined). Among other things, this facilitates reliable calculation of modal interval 

arithmetic operations between mixed digital scales while providing opportunities 

for compatibility with classical intervals. 

Unbounded modal interval arithmetic remains a controversial topic, since group 

properties are lost. The use of correlated magnitudes also appears to require further 

constraints to obtain zero in the lower bound of an operation such as  +∞, 3 +

 −∞, 2 = [0,5]. For these reasons, the treatment of infinities in this schema is not a 

fully developed solution and requires further study. 

8 Advanced Topics 

This section of the paper touches on some areas of potential difficulty in a standard 

that would have the primary aim of supporting classical intervals in a manner that is 

not mutually exclusive to modal intervals. There is a large area of common ground 

between the two theories, but certain design choices have the potential to lead to 

incompatibility. 
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8.1 Kahan vs. Kaucher Intervals 

Kahan introduced the notion of a projective interval 

 −∞, 𝑎 ∪ [𝑏, +∞) ∪∞, 

where  −∞, +∞  are the affine infinities and ∞ is the projective infinity (the affine 

infinities are not members of the projective interval but the projective infinity is).  

Kahan used the notation [𝑏, 𝑎] with 𝑏 > 𝑎 to denote a projective interval. Similarly, 

Kaucher uses [𝑏, 𝑎] to represent the improper intervals in his completed interval 

arithmetic. Modal intervals also compete with this notation by designating [𝑏, 𝑎] to 

represent a universal modal interval. 

All of these approaches share a common notation, but only two of the approaches 

share a common meaning. Modal intervals are isomorphic to the Kaucher intervals 

for the arithmetical operations of addition, subtraction, multiplication and division, 

e.g., Markov, S., “On Directed Interval Arithmetic and its Applications,” Journal of 

Universal Computer Science 1.7, 1995, pp. 514-526. The same is true for the lattice 

operators and comparison relations. In an algebraic sense, existential and universal 

modal intervals map to the proper and improper Kaucher intervals. The systems are 

therefore compatible. 

Projective intervals are useful mainly in theoretical reasoning, although practical 

applications may yet be discovered. It is also important not to make the mistake that 

they are relevant only to set-theoretic intervals. Projective intervals appear in modal 

interval reasoning, as well, and may have unknown but practical uses in future 

modal interval applications. 

Kahan’s notational scheme for projective intervals, however, is just a special case 

of a more general idea, i.e., of multi-intervals (a union of disjoint interval sets which 

are operated on in parallel). Multi-intervals already appear in popular commercial 

applications as lists or arrays of intervals. 

Oriented projective intervals are another generalization of Kahan intervals, e.g., 

Michelucci, D., “Reliable Representations of Strange Attractors,” In: Kramer, W. and J. 

Wolff von Gudenberg, Scientific Computing, Validated Numerics, Interval Methods, 

Kluwer, 2001, pp. 379-390. An oriented projective interval (OPI for short) is a 

couple (𝑋,𝑊) of intervals 𝑋,𝑊 ∈ 𝐼(𝐑) equal to the ratio 𝑋 𝑊 . More precisely, 

(𝑋,𝑊) ∶=   𝑥/𝑤   𝑥 ∈ 𝑋,𝑤 ∈ 𝑊 −  0   . 

Since the OPI does not allow zero in the denominator, it is therefore a set of entirely 

real numbers. Basic arithmetic operations are defined 

 𝑋,𝑊 +  𝐴, 𝐵 ∶= (𝑋𝐵 + 𝐴𝑊,𝑊𝐵) 

 𝑋,𝑊  𝐴, 𝐵 ∶= (𝑋𝐴,𝑊𝐵) 

 𝑋,𝑊 −1 ∶= (𝑊,𝑋). 
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The arithmetic calculations are performed with an OPI datatype, and only after the 

calculation is finished is the ratio 𝑋 𝑊  considered. When 0 ∉ 𝑊, the OPI is equal to 

a finite interval, otherwise the OPI is some unbounded and possibly disconnected 

set of real numbers. 

A rationale for adopting the Kaucher model as a least common denominator in an 

interval standard could therefore be: (a) set-theoretic intervals coincide with the 

proper Kaucher intervals, and improper intervals can be ignored or treated as 

empty intervals by users who wish to perform only set-theoretic calculations; (b) 

users who wish to use Kaucher intervals are afforded a one-to-one mapping in their 

applications; (c) modal interval users can, in a natural way, attach the semantics of 

“for all” and “there exists” to the improper and proper intervals, respectively; and 

(d) projective intervals, which are potentially useful to classical, Kaucher and modal 

interval users, could share a common but more general mechanism for handling 

multi-intervals or an OPI datatype (and perhaps such a mechanism is a C++ library 

or some other facility left out of the standard).  

As an example, the popular Mathematica software by Wolfram already provides 

multi-interval support, i.e., an “interval” is represented by a list of one or more set-

theoretic intervals. Interestingly enough, the designers of the Mathematica software 

appear to have made this choice independently of any consideration for Kaucher 

intervals. In any case, this support for multi-intervals motivated the design decisions 

of Popova and Ulrich, as described in the previously cited 1996 technical report, 

when they added Kaucher intervals, i.e., directed intervals, to Mathematica: 

 

Designing directed interval arithmetic for Mathematica we tried to keep and 

preserve all the functionality provided by the kernel… since conventional 

interval arithmetic is a special case of directed interval arithmetic. Interval 

data object supports conventional multi-intervals and thus the so called 

Kahan’s intervals and the arithmetic on them as a special case. This and 

versatility that provide list data structures and computer algebra system 

itself gave us good reasons to implement Kahan’s intervals extended to inner 

and outer directed intervals… furthermore that multi-intervals have 

attracted some researchers to use them in a variety of algorithms and 

programming systems. 

 

Both of these examples, as well as the reference by Michelucci, support the rationale 

presented in this paper, i.e., that methods such as multi-intervals or an OPI datatype 

are the correct generalization of the Kahan intervals. 

8.2 Functions vs. Relations 

A relation is a set of ordered pairs, e.g., (𝑥, 𝑦). The relation may be specified by an 
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equation, a rule or a table. A function is a relation for which each element of the 

domain corresponds exactly to one element of the range, e.g., (𝑥, 𝑓(𝑥)). 

Consider the function 

𝑓 𝑥 ∶=
 𝑥 − 2 

𝑥 − 2
 

for all 𝑥 ∈ 𝐑. From a purely algebraic point of view, it is undefined when 𝑥 = 2 

because 2 − 2 = 0 in the denominator results in division by zero. Calculus can be 

used to examine the limit of 𝑓 𝑥  as 𝑥 approaches 2, but in this case a unique limit 

does not exist. For example, the limit is −1 or 1 depending if the limit is examined 

from the left or right. Therefore in its one-sided limits 𝑓 𝑥  is not a function because 

there is more than one element in the range which corresponds exactly to the one 

element 𝑥 = 2 in the domain. 

A classical solution to this problem is to use power sets, i.e., the group operator 

does not operate on the real numbers but instead operates on the set of all subsets 

of the real numbers. This allows the set  −1,1  to be the correct answer. 

Modal intervals use propositional logic and real analysis to define solution sets 

from the truth of conditional equations and identities. All quantified values causing 

the proposition to be true are the members of the solution set. This requires that an 

equation must always represent an absolute standard of truth, i.e., it must always be 

decidable. This criteria is always valid for functions, but not for relations. In the 

given example, 𝑓 .   is not a group operator of 𝐑 because 𝑓(2) ∉ 𝐑, i.e., it is not a 

function but rather an “undecidable” relation. 

For these reasons, the classical approach of using relations to define solution sets 

is incompatible with modal intervals. For example, the function 𝑓 𝑥  evaluated over 

an interval domain with 𝑥 = 2 as an element must be undefined, i.e., the result must 

be NaI and not the undecidable answer  −1,1 . 

Even for the classical intervals, undecidable relations can lead to a troublesome 

state of affairs. For example, they often lead to large-width intervals that provide no 

meaningful information to a user. Branch-and-bound algorithms can also crash or 

hang after a state of deadlock is reached due to an undecidable relation. This state 

happens when the algorithm bisects the problem domain down to a single machine-

representable number, but the width of the range refuses to narrow because of the 

undecidable nature of the relation. For example, if 𝑓𝑅(.) is the interval extension 

of 𝑓 .  , then 

𝑓𝑅 [2,2] = [−1,1] 

is an example of a potential deadlock situation. In this case, it is not possible to 

bisect the interval domain [2,2] any further, yet the range [−1,1] has not likewise 

narrowed to a point. If the interval width of [−1,1] is not an acceptable tolerance 
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according to the branch-and-bound algorithm and further narrowing of the range is 

required, a state of deadlock results. 

8.3 Natural Domains of Functions 

The “natural domain” of a function is the set of real numbers for which the function 

is defined. Some elementary functions, such as square root or natural logarithm, are 

defined only for a proper subset of the real numbers. Even division, an arithmetic 

operation, is defined only for all real numbers except zero.  

This poses a question of how to handle cases when an interval argument is not a 

subset of the natural domain of a function. For example, 

  −3,1  

is defined only for the interval  0,1 , which is a subset of the argument  −3,1 . What 

then is the correct interval result? 

Generally speaking, there are two options. The elementary function may ignore 

the portion of the interval argument which is outside the natural domain of the 

function and return 

  −3,1 = [0,1] 

 or it may return an undefined result, i.e., 

  −3,1 = NaI. 

It is often the case that both options are convenient or necessary. For example, 

sometimes a user may be interested in the range enclosure over the natural domain 

of the function, so it is desirable to ignore a portion of the interval argument which 

is outside the natural domain of the function. However, the user may seek values of 

𝑦 for which the proposition 

 ∀𝑥 ∈  −3,1 ′ 𝑃 𝑥, 𝑦 ∶ 𝑦 =  𝑥 

is true. In this case, the user specifically requires the proposition to be true “for all” 

values of 𝑥 in the interval  −3,1 ′. Because the square root is not defined for all such 

elements, the result must be undefined. 

By returning NaI as the default behavior, both cases can be accommodated. For 

example, 

  −3,1 = NaI 

is the default case. In the other case, users (or interval tools) can explicitly intersect 

the interval argument with the natural domain of the function, e.g., 

  −3,1 ⋀[0, +∞) = [0,1]. 
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The same reasoning also applies to division, e.g., 

1 [−3,1] = NaI 

is the default case. But if 𝜀 is the smallest finite machine number, division can also be 

performed over the natural domain of the operator, e.g., 

1

 −∞,−𝜀 ⋀ −3,1 
= (−∞,−1/3]        and        

1

 −3,1 ⋀[+𝜀,+∞)
= [1, +∞). 

For this reason, modal intervals can still be used in the extended interval Newton 

method. For example, when the denominator of an interval Newton step contains 

zero, the algorithm only requires division over the natural domain of the reciprocal 

operator, i.e., over the domain  −∞,−𝜀 ∪ [+𝜀, +∞). 

In summary, if the default behavior does not return NaI, there is no method to 

detect the case when the result is undefined. For this reason, the interval standard 

must return NaI if an interval argument is not a subset of the natural domain of a 

function. Users (or interval tools) can then override the default behavior when 

necessary by providing explicit domain restrictions.  

8.4 Division by Zero 

Interval reciprocal is a simple way to reveal subtle differences in modal and classical 

reasoning. From a standards perspective, it therefore provides a means to explore 

the requirements of each approach.  

The modal interval predicate 

 ∀𝑥 ∈  −1,2 ′ 𝑃 𝑥, 𝑦 ∶ 𝑦 =
1

𝑥
  

with 𝑦 as a free variable is chosen as a convenient example because it matches the 

natural line of classical reasoning, i.e., it agrees with the usual set-theoretic sense of 

finding a solution set for an equation 𝑦 = 1/𝑥 when 𝑥 takes on all of the values from 

an interval [−1,2]′. 

Note that the predicate specifies in purely algebraic terms all that topologically 

matters to find a set 𝑌′ such that the proposition 

 ∀𝑥 ∈  −1,2 ′  ∃𝑦 ∈ 𝑌′ 𝑃 𝑥, 𝑦 ∶ 𝑦 =
1

𝑥
  

is true. In particular, there must be an element 𝑦 in the set 𝑌′ when the variable 𝑥 is 

zero. This is required because the predicate is “for all” 𝑥 ∈  −1,2 ′ and 𝑥 = 0 is an 

element of the set  −1,2 ′. Therefore the solution is 

𝑌′ = (−∞,−1] ∪ [1/2, +∞) ∪ NaI = NaI. 

The endpoints with parenthesis “ “ or “ ” indicate the infinity is not a member of the 

interval set. The solution is undefined because 𝑥 = 0 is an element of  −1,2 ′ and the 
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predicate is undefined at this value. 

A purely set-theoretic approach, however, may define the solution set by instead 

considering division as the inverse operation of multiplication, i.e., 

𝑌′ ∶=   𝑦   𝑥 ⋅ 𝑦 = 1  ,    𝑥 ∈  −1,2 ′. 

This reasoning may lead to the solution 

𝑌′ = (−∞,−1] ∪ [1/2, +∞) ∪ ∅ = (−∞,−1] ∪ [1/2, +∞). 

In this case, there is no solution to 𝑥 ⋅ 𝑦 = 1 when 𝑥 = 0. It is therefore argued that 

𝑥 = 0 is not in the natural domain of the function so the solution at this value is the 

empty set ∅. 

From the modal interval perspective, this is not valid. To find a set 𝑌′ so that the 

proposition 

 ∀𝑥 ∈  −1,2 ′  ∃𝑦 ∈ 𝑌′ 𝑄 𝑥, 𝑦 ∶ 𝑥 ⋅ 𝑦 = 1  

is true, as before, there must be an element 𝑦 in the set 𝑌′ such that the predicate is 

true when the variable 𝑥 is zero. This is because the predicate is “for all” 𝑥 ∈  −1,2 ′ 

and 𝑥 = 0 is an element of the set  −1,2 ′. If 𝑥 is zero, there is no 𝑦 ∈ 𝐑 to make the 

equation 0 ⋅ 𝑦 = 1 true. For this reason, the solution to the proposition 𝑄 𝑥, 𝑦  is the 

same as the solution to the proposition 𝑃 𝑥, 𝑦 , namely 

𝑌′ = (−∞,−1] ∪ [1/2, +∞) ∪ NaI = NaI. 

Similar results are obtained even if zero is not an interior point of the denominator, 

e.g., if either of the modal interval predicates 𝑃 𝑥, 𝑦  or 𝑄 𝑥, 𝑦  are quantified in 𝑥 as 

∀𝑥 ∈  −1,0 ′ or ∀𝑥 ∈  0,2 ′. In these cases, the solution for 𝑌′ must also be the same 

undefined result, i.e., NaI. 

For modal intervals, the set of quantified variables which cause the proposition to 

be true forms the solution set. Classical reasoning in this example therefore leads to 

incompatible results, i.e., it is a containment violation. 

Similar problems occur when efforts are made to define the reciprocal operation 

over the extended-reals. A classical containment-set (c-set) solution is to examine 

𝑦 = 1/𝑥 in its limits and allow 𝑦 =  −∞, +∞  when 𝑥 = 0. However, this is not a 

valid predicate because it is an undecidable relation, i.e., the predicate 

𝑦 =
1

𝑥
  

is undecidable when 𝑥 = 0. In words, it is not possible to determine if 

−∞ =
1

𝑥
 or +∞ =

1

𝑥
 

is true when 𝑥 = 0. The predicate is therefore not reducible to an absolute standard 

of truth, so any proposition based on this predicate is undefined. 
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For this reason, modal intervals are not entirely compatible with c-sets. It reveals 

the difference between c-set theory as a “theory of relations” and modal intervals as 

a “theory of functions.” For example, the modal intervals use propositions to define 

solution sets of functions. Relations are not allowed because they are not always 

decidable and therefore do not satisfy the requirements of propositional logic. This 

is different than the aim of c-set theory, which is to contain all the possible limiting 

values of a relation, particularly when the relation is multi-valued and undecidable 

for one or more elements in the domain. 

For these reasons, the c-sets and modal intervals represent different theories that 

provide answers to complementary questions: 

 

 Theory of Relations (c-sets). This approach is useful when one wants to know 

all possible values, i.e., the c-set, of a relation for a given domain, particularly 

if the relation is multi-valued. However in this case it is not decidable if an 

element of the c-set is uniquely related to an element of the domain. 

 Theory of Functions (modal intervals). This is useful when one wants to know 

all decidable values of a function for a given domain. However in this case it is 

not possible to consider relations, since they may be undecidable. 

 

We believe both approaches are important and relevant to interval computations, 

and that knowing the decidable values of a function over a given domain is more 

fundamental. In the field of computer graphics, it has also been our experience that a 

“theory of functions” approach is an essential requirement for efficient and robust 

implementations. 

8.5 Compatibility with Classical Intervals 

Perhaps the biggest concern for people who do not currently use modal intervals is, 

how do modal intervals affect the existing algorithms and implementations which 

are based only on classical intervals? The answer is, hardly at all. 

As mentioned previously in Section 5.1, classical intervals are a special case of the 

modal intervals, i.e., classical theory is concerned only about the set-membership 

logic of Proposition 1. For this reason, any arithmetical operation on two existential 

modal intervals produces the exact same result as the classical interval arithmetic. 

This maps naturally to the notion that 𝑎 ≤ 𝑏 for any interval  𝑎, 𝑏  in the classical 

interval arithmetic is treated as an existential modal interval. Consistent application 

of this rule leads to the usual classical results. 

The only exception to this rule is intersection of two disjoint existential modal 

intervals. In classical theory, the result is empty. But for modal theory, the result is a 

universal modal interval. So it represents the one condition that must be specially 
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checked for. As an example, the classical interval Newton method can be adapted to 

operate on existential modal intervals. If an intersection in a Newton step produces 

a universal modal interval, this is proof of non-existence of the zero. In this way, the 

classical algorithms only have to be modified to treat any interval  𝑏, 𝑎  such that 

𝑏 > 𝑎 as an empty set. Consistent application of this rule, again, leads to the usual 

classical results. 

In terms of interval libraries which must implement an interval datatype, modal 

intervals require little or no overhead. In fact, many times modal intervals simplify 

the implementation, because it is no longer necessary to validate the user input and 

ensure that 𝑎 ≤ 𝑏 for an interval argument  𝑎, 𝑏 . The operations of addition and 

subtraction are a good example. In this case, the formulas for modal intervals 

 𝑎, 𝑏 +  𝑐, 𝑑 ∶=  𝑎 + 𝑐, 𝑏 + 𝑑  

 𝑎, 𝑏 −  𝑐, 𝑑 ∶=  𝑎 − 𝑑, 𝑏 − 𝑐  

are exactly the same as for classical intervals, except that the constraint 𝑎 ≤ 𝑏 and 

𝑐 ≤ 𝑑 is relaxed in both cases. Therefore a modal interval implementation does not 

need to check for invalid user input. 

The same is true for modal interval multiplication and division, except in this case 

the formula requires a few extra cases. For example, classical interval multiplication 

can be broken into nine cases based on the signs of the endpoints of the two interval 

operands. But modal interval multiplication requires sixteen cases. However, these 

cases are all dependent on the signs of the endpoints of the two interval operands, 

just as in the classical implementation. So if a bit-mask is created from the sign bits 

of the two interval operands, modal interval multiplication then requires no extra 

overhead from classical interval multiplication, i.e., the bit-mask can be used as an 

index into a jump table or switch statement containing all sixteen cases instead of 

the usual nine. The same is true for division. 

8.6 Optimality 

One of the practical benefits of modal intervals is their improved ability to remove 

pessimism from interval computations at the arithmetic level. In the modal interval 

literature, this search for perfectly narrow results is called “optimality.” 

Optimality is found by examining the derivatives of a function and searching for 

monotonicity, much like classical endpoint analysis. However, the modal intervals 

promote the concept of endpoint analysis, via optimality, to a “first class” idea which 

is supported directly by the interval datatype. Including such a feature in an interval 

standard can therefore provide a strong incentive for hardware vendors to develop 

interval processors. 

Classical endpoint analysis, for example, requires the user to manually calculate 
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the endpoints according to the 

set round down 
perform lower bound calculation... 
set round up 
perform upper bound calculation... 

paradigm. This can be a source of performance loss and programming bugs. Since 

switching of the rounding mode can flush the floating-point pipeline, it often leads 

to processor stalls. Not to mention it also falls entirely outside the purview of any 

standard for interval arithmetic. For example, it provides little or no incentive for 

hardware vendors to invest in the design or manufacture of interval processors that 

perform interval arithmetic operations in specialized hardware circuits. 

At Sunfish, we are designing a deeply pipelined modal interval processor. In this 

case, endpoint analysis can be performed entirely within the purview of a standard 

(and implemented efficiently in hardware) by operating directly on a modal interval 

datatype, i.e., certain instances of interval variables in an expression are dualized, as 

prescribed by the optimality theorem, and the Kaucher arithmetic then computes 

the optimal results. 

For example, consider the real expression 

𝑓 𝑥, 𝑦 ∶= (𝑥𝑦)/(𝑥 + 𝑦 + 1) 

for all non-negative 𝑥 and 𝑦. To find the range enclosure of 𝑓(𝑥, 𝑦) over 𝑥, 𝑦 ∈ [0,2], 

classical interval arithmetic yields 

𝑓𝑅  0,2 ,  0,2  ∶= ( 0,2 ⋅  0,2 ) ( 0,2 +  0,2 + 1 ) = [0,4]. 

The result is poor, since the actual range enclosure over the given domain is [0,0.8]. 

Monotonicity, however, proves that 𝑓 can be coerced into the optimal form 

𝑓𝑅 𝑋, 𝑌 ∶= (𝑋𝑌) (Dual 𝑋 + Dual 𝑌 + 1) , 

and the modal interval arithmetic 

𝑓𝑅  0,2 ,  0,2  ∶= ( 0,2 ⋅  0,2 ) (Dual( 0,2 ) + Dual( 0,2 ) + 1) = [0,0.8] 

produces the optimal range enclosure. 

In the previous example, 𝑓 was totally monotonic with respect to each variable, 

but this condition does not always exist. Consider, for example, 

𝑔 𝑥, 𝑦 ∶= (𝑥𝑦 − 1) (𝑥 + 𝑦 + 1 ). 

Classical interval arithmetic yields the poor enclosure 

𝑔𝑅  0,2 ,  0,2  ∶= ( 0,2 ⋅  0,2 − 1) ( 0,2 +  0,2 + 1 ) = [−1,3.8]. 

Considering the modal analysis, 𝑔 is not totally monotonic. So it cannot be coerced 

directly, but it is easy to factor into the equivalent expression 
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𝑔 𝑥, 𝑦 ∶= (𝑥𝑦) (𝑥 + 𝑦 + 1) − 1 (𝑥 + 𝑦 + 1) . 

In this case we already know the sub-expression (𝑥𝑦)/(𝑥 + 𝑦 + 1) can be coerced 

into optimality. It is also clear that 1 (𝑥 + 𝑦 + 1)  is optimal due to the uni-incidence 

of  𝑥 and 𝑦. For these reasons, 

𝑔𝑅 𝑋, 𝑌 ∶= (𝑋𝑌) (Dual 𝑋 + Dual 𝑌 + 1) − 1 (𝑋 + 𝑌 + 1)  

is optimal, and the modal interval computation 

𝑔𝑅  0,2 ,  0,2  = [−1,0.6] 

produces the optimal range enclosure. 

A final example demonstrates how the group property of the Kaucher arithmetic 

can be directly responsible for the optimal range enclosure. This example occurs 

frequently in computer graphics. Consider the function 

𝑕 𝑥, 𝑦 ∶=
𝑥

 𝑥2 + 𝑦2
 

for non-negative 𝑥, 𝑦 ∈ 𝐑. Monotonicity analysis reveals that 

𝑕𝑅 𝑋, 𝑌 ∶=
𝑋

 Dual(𝑋)2 + 𝑌2
 

is a valid coercion to optimality. In the case that 𝑋 and 𝑌 are intervals not containing 

zero (at the same time), the bounds are optimal, e.g., 

𝑕𝑅([1,3], [0,4] )  ∶=  
[1,3]

 Dual([1,3])2 + [0,4] 2
= [0.242,1] 

and 

𝑕𝑅([0,4], [1,3] )  ∶=  
[0,4]

 Dual([0,4])2 + [1,3] 2
= [0,0.971] 

are optimal enclosures. If 𝑋 =  0,0 , the function reduces to [0,0] for any 𝑌 that does 

not have zero as an element. It is often the case in the real-world computer graphics 

problem that 𝑌 =  0,0 , and the function then reduces to the identity 

𝑋

 Dual(𝑋)2 + 02
 =

𝑋

 Dual(𝑋)2
=

𝑋

Dual(𝑋)
= [1,1] 

for any interval 𝑋 that does not have zero as an element. In this case, the optimal 

range enclosure is due to the group property of the modal intervals. 

A generalization of the modal interval function 

𝑕𝑅 𝑋, 𝑌 ∶=
𝑋

 Dual(𝑋)2 + 𝑌2
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to all four quadrants of the plane (from which an atan2 function for modal intervals 

can be derived), as well as a generalization to higher dimensions, is presented in 

Hayes, Nathan T., “System and Method to Compute Narrow Bounds on a Modal 

Interval Spherical Projection,” Pub. No. WO/2007/041653. 

9 Conclusion 

This paper is an attempt to give an introductory tour of the modal intervals. In this 

respect, it is only a primer. Should the reader wish to explore the subject further, the 

references would be a good starting point. 

To this author it is ironic that modal intervals have received so little attention in 

the 50 years since T. Sunaga and M. Warmus first explored them. It is clear that an 

applied science of modal analysis has tremendous commercial potential. Examples 

of this would be products such as Computer Algebra Systems (CAS) and interval 

compilers. These are important areas of computer science that seem to be ignored 

by much of the classical interval community. The same is true about inner roundings 

and enclosures. The ability of modal arithmetic to compute narrow range enclosures 

of interval expressions provides strong market incentives for hardware vendors to 

design and manufacture deeply pipelined modal interval processors with multiple 

cores. Traditional approaches such as classical endpoint analysis provide little or no 

motivation for the production of an interval processor at all. For these reasons, an 

IEEE 1788 standard that does not include modal intervals would fail to inspire a full 

range of potential interval products and applications. 

At Sunfish, we use classical and modal interval algorithms. Both operate upon a 

modal interval datatype as describe in this paper. For example, the classical interval 

Newton method is adapted to operate on existential modal intervals. We therefore 

transition into quantified modal interval computing while protecting our investment 

in the classical algorithms, which still work properly even when the implementation 

employs a modal interval datatype. We have been doing this for many years with 

success, and we benefit from the best of both worlds. Furthermore, our investigation 

into the design of a modal interval processor leads us to believe the interval schema 

(or one similar to it) presented in this paper satisfies the needs of classical and 

modal intervals. However, further investigation into the use of infinites in the modal 

arithmetic is required. We believe modal intervals provide computational benefits 

that can incentivize hardware vendors to capitalize on existing investments in IEEE 

754 as they consider a transition into mainstream support for interval processors, 

providing a motivation that could help promote widespread commercial success of 

intervals in the marketplace. For these reasons, we encourage the P1788 group to 

include the modal intervals in the standard.   
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Appendix A: Modal Interval Schema 

 

REPRESENTATION MODE SET 

    
Bounded modal intervals: 
 𝑎, 𝑎  𝑎 ∈ 𝐑 E/U   𝑎   
 𝑎, 𝑏  𝑎 < 𝑏 𝑎 ∈ 𝐑 𝑏 ∈ 𝐑 E   𝑥 ∈ 𝐑   𝑎 ≤ 𝑥 ≤ 𝑏   
 𝑏, 𝑎  𝑏 > 𝑎 𝑎 ∈ 𝐑 𝑏 ∈ 𝐑 U   𝑥 ∈ 𝐑   𝑎 ≤ 𝑥 ≤ 𝑏   
    
Unbounded modal intervals: 
(−∞, +∞)  E   𝐑   
(−∞, 𝑎] 𝑎 ∈ 𝐑 E   𝑥 ∈ 𝐑   𝑥 ≤ 𝑎   
[𝑎, −∞) 𝑎 ∈ 𝐑 U   𝑥 ∈ 𝐑   𝑥 ≤ 𝑎   
[𝑎, +∞) 𝑎 ∈ 𝐑 E   𝑥 ∈ 𝐑   𝑎 ≤ 𝑥   
(+∞, 𝑎] 𝑎 ∈ 𝐑 U   𝑥 ∈ 𝐑   𝑎 ≤ 𝑥   
(+∞,−∞)  U   𝐑   
    
Special modal intervals (points): 
(−∞,−∞)  E/U   𝑥 ∈ 𝐑 →  −∞    
[−0,−0]  E/U   0   
[−0, +0]  E/U   0   
[+0,−0]  E/U   0   
[+0, +0]  E/U   0   
(+∞, +∞)  E/U   𝑥 ∈ 𝐑 →  +∞    
    
Indefinite modal intervals: 
[NaN, NaN]  N/A N/A 
[NaN, ±∞)  N/A N/A 
[NaN, 𝑎] 𝑎 ∈ 𝐑 N/A N/A 
[𝑎, NaN] 𝑎 ∈ 𝐑 N/A N/A 
(±∞, NaN]  N/A N/A 
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Appendix B: Deviations from IEEE 754 

 

OPERATION IEEE 754 DEVIATION* 

 −∞ + (+∞) NaN +0 
 −∞ − (−∞) NaN +0 
 +∞ + (−∞) NaN +0 
 +∞ − (+∞) NaN +0 

* The sign of the zero is negative when rounding down. 

 

OPERATION IEEE 754 DEVIATION 

 −∞ ⋅ (−0) NaN +0 
 −∞ ⋅ (+0) NaN −0 
 −0 ⋅ (−∞) NaN +0 
 −0 ⋅ (+∞) NaN −0 
 +0 ⋅ (−∞) NaN −0 
 +0 ⋅ (+∞) NaN +0 
 +∞ ⋅ (−0) NaN −0 
 +∞ ⋅ (+0) NaN +0 

 

OPERATION IEEE 754 DEVIATION 

(−∞)/(−∞) NaN +1 
(−∞)/(+∞) NaN −1 
(−∞)/(−0) +∞ NaN 
(−∞)/(+0) −∞ NaN 
(−𝑎)/(−0) 𝑎 ∈ 𝐑+ +∞ NaN 
(−𝑎)/(+0) 𝑎 ∈ 𝐑+ −∞ NaN 
(+𝑎)/(−0) 𝑎 ∈ 𝐑+ −∞ NaN 
(+𝑎)/(+0) 𝑎 ∈ 𝐑+ +∞ NaN 
(+∞)/(−0) −∞ NaN 
(+∞)/(+0) +∞ NaN 
(+∞)/(−∞) NaN −1 
(+∞)/(+∞) NaN +1 
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