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Abstract

We investigate some abstract algebraic properties of the
system of intervals with respect to the arithmetic operations
and the relation inclusion and derive certain practical con-
sequences from these properties. In particular, we discuss
the use of improper intervals (in addition to proper ones)
and of midpoint-radius presentation of intervals. This work
is a theoretical introduction to interval arithmetic involving
improper intervals. We especially stress on the existence of
special “quasi”-multiplications in interval arithmetic and
their role in relevant symbolic computations.

1. Introduction

In this work we discuss several algebraic properties of
the system of intervals with the arithmetic operations ad-
dition and multiplication and the relation inclusion. Our
aim is to point out certain practical advantages of using im-
proper intervals and midpoint-radius presentation of inter-
vals.

Denote byIR the set of all compact intervals on the real
line R and byIRn the set of alln-tuples of intervals. For
A, B ∈ IRn, α, β ∈ Rn, γ ∈ R, one defines addition,
multiplication by scalars and inclusion, resp., by:

A + B = {α + β | α ∈ A, β ∈ B}, (1)

γ ∗ B = {γβ | β ∈ B}, (2)

A ⊆ B ⇐⇒ (α ∈ A =⇒ α ∈ B), (3)

where all operations/relations are understood component-
wise. We thus obtain the system(IRn, +, R, ∗,⊆) to be
discussed in the sequel.

We shall refer to the definitions of the opera-
tions/relations (1)–(3) asset-theoretic. These definitions are
not suitable for computations with intervals. Our final aim
is to derive computationally efficient expressions for these
operations based on the intrinsic properties of intervals.

In our study we follow the algebraically natural approach
of completing the setIRn up to the setIRn involving im-
proper intervals. Thus, starting from the above threeba-
sic operations/relations (1)–(3), we arrive to the system
(IRn, +, R, ∗,⊆). In the next Section 2 we briefly recall
the above mentioned algebraic construction and the conse-
quent quasivector spaces. It is to be noted that everything
said in this section for intervals is also true for the more gen-
eral case of convex bodies and briefly repeats already pub-
lished materials, cf. [7], [8]. In Section 3 we concentrate
on the system(IRn, +, R, ∗,⊆) obtained by algebraic com-
pletion. Using the theoretical foundations given in Section
2 and some specific properties of intervals (distinct from
those of general convex bodies) we derive formulae for the
operations/relations involved. We show that the familiar
midpoint-radius presentation of intervals is a special case of
the presentation of elements in a quasivector space. Section
4 is devoted to the system(IR, +,×,⊆) involving multi-
plication of one-dimensional intervals. In the Conclusion
we discuss various topics like computer implementation of
interval arithmetic, symbolic computations, etc.

2. Quasivector spaces

The system(IRn, +) is a commutative monoid (semi-
group with null) with cancellation law. There is no opposite
operator in(IRn, +). The operator multiplication by the
scalar−1: ¬A = (−1) ∗ A = {−α | α ∈ A}, A ∈ IR,
briefly callednegation(that may be suspected for opposite),
is not an opposite operator, asA+ (¬A) = 0 is violated for
certainA ∈ IRn. ThusIRn is not a group; however it
can be embedded in a group. The algebraic construction
that converts an abelian monoid with cancellation law into
a group will be further refered asembedding construction.
Recall that this approach is used to pass from the monoid of
nonnegative reals(R+, +) to the set of reals(R, +). Thus,
it is natural instead of the original system(IRn, +, R, ∗,⊆)
to consider the extended system(IRn, +, R, ∗,⊆) obtained
by the embedding construction.



2.1. The embedding construction

Every abelian monoid(M, +) with cancellation law in-
duces an abelian group(M, +), whereM = M 2/ ∼ is
the difference (quotient) setof M consisting of all pairs
(A, B) factorized by the congruence relation∼: (A, B) ∼
(C, D) iff A + D = B + C, for A, B, C, D ∈ M .

Addition in M is defined by

(A, B) + (C, D) = (A + C, B + D). (4)

The neutral (null) element ofM is the class(Z, Z), Z ∈
M . Due to the existence of null element inM , we have
(Z, Z) ∼ (0, 0). The opposite element to(A, B) ∈ M is
opp(A, B) = (B, A). The mappingϕ : M −→ M defined
for A ∈ M by ϕ(A) = (A, 0) ∈ M is anembeddingof
monoids. WeembedM in M by identifyingA ∈ M with
the equivalence class(A, 0) ∼ (A + X, X), X ∈ M ; all
elements ofM admitting the form(A, 0) are calledproper
and the remaining (new) elements are calledimproper. The
set of all proper elements ofM is ϕ(M) = {(A, 0) | A ∈
M} ∼= M .

Using the above construction the system(IRn, +) is em-
bedded into the group(IRn, +) in a unique way.

Multiplication by scalars “∗” is extended fromR×IRn

to R × IRn by means of

γ ∗ (A, B) = (γ ∗ A, γ ∗ B), A, B ∈ IRn, γ ∈ R. (5)

In particular, negation is extended by¬(A, B) = (−1) ∗
(A, B) = (¬A,¬B), A, B ∈ IRn.

In the sequel we shall use lower case roman letters
to denote the elements ofIRn, writing e. g. a =
(A1, A2), A1, A2 ∈ IRn. For example, negation is writ-
ten:¬a = (−1) ∗ a; belowa ¬ b meansa + (¬b).

Inclusion “⊆” is extended inIR by means of

(A, B) ⊆ (C, D) ⇐⇒ A + D ⊆ B + C, (6)

whereinA, B, C, D ∈ IRn and inclusion of intervaln-
tuples is meant component-wise. As is immediately seen,
under this extension the practically important properties
a ⊆ b ⇐⇒ a+c ⊆ b+c for c ∈ IR and a ⊆ b ⇐⇒ γ∗a ⊆
γ ∗b for γ ∈ R are preserved. The system(IRn, +, R, ∗,⊆)
involving improper intervals is now completely defined.

2.2. Quasivector space: definition

The interval system(IRn, +, R, ∗) is a quasi-vector
spacein the sense of the following definition [8]:

Definition. A quasi-vector space (overR), denoted
(Q, +, R, ∗), is an abelian group(Q, +) with a mapping
(multiplication by scalars) “∗”: R × Q −→ Q, such that
for a, b, c ∈ Q, α, β, γ ∈ R:

γ ∗ (a + b) = γ ∗ a + γ ∗ b, (7)

α ∗ (β ∗ c) = (αβ) ∗ c, (8)

1 ∗ a = a, (9)

(α + β) ∗ c = α ∗ c + β ∗ c, if αβ ≥ 0. (10)

The only difference between a vector (linear) space and
a quasivector space is contained in assumption (10), where
the relation(α + β) ∗ c = α ∗ c + β ∗ c is required to
hold just forαβ ≥ 0, whereas in a vector space the same
relation is assumed to hold for all scalarsα, β ∈ R (known
as second distributive law). Thus a vector space is a special
quasivector space.

Conjugate elements. From opp(a) + a = 0 we obtain
¬opp(a) ¬ a = 0, that is¬opp(a) = opp(¬a). The el-
ement¬opp(a) = opp(¬a) is further denoted bya− and
the corresponding operator is calleddualizationor conju-
gation. We say thata− is the conjugate (or dual) ofa. In
the sequel we shall express the opposite element symboli-
cally as: opp(a) = ¬a−, minding thata+(¬a−) = 0 (to be
briefly written asa ¬ a− = 0). Using conjugate elements
the quasistributive law (10) can be written in the form

(α + β) ∗ cσ(α+β) = α ∗ cσ(α) + β ∗ cσ(β), (11)

whereinσ is the sign functional

σ(α) =
{ −, α < 0;

+, α ≥ 0, α ∈ R,

and the conventiona+ = a has been made (for a proof
see [8]). Expression (11) is valid for all values ofα, β (not
only for equally signedα, β) which allows efficient sym-
bolic calculations.

2.3. A decomposition theorem

An elementy with the propertyy ¬ y = 0 (equivalently
y = y−) is calledlinear or distributive; an elementz such
that¬z = z (equivalentlyz + z− = 0) is calledcentredor
0-symmetric.

Theorem (Decomposition theorem).(Q, +, R, ∗) is a
quasivector space. For everyx ∈ Q there exist unique
y, z ∈ Q such that: i)x = y + z; ii) y ¬ y = 0; iii)
¬z = z; iv) y = z =⇒ y = z = 0.

The proof, see [8], is based on the fact that anyx ∈ Q

can be written in the form:

x = y + z = (1/2) ∗ (x + x−) + (1/2) ∗ (x ¬ x). (12)

Note that the first summand in (12) is linear, whereas the
second one is centred. The subset of all linear elements ofQ

is denotedQ′ = {x ∈ Q | x ¬ x = 0} and the subset of all
centred elements ofQ is denotedQ′′ = {x ∈ Q | x = ¬x}.



Note that negation coincides with opposite inQ ′, and
negation coincides with identity inQ ′′.

Corollary 1. Every quasivector spaceQ is a direct sum
of Q′ = {x ∈ Q | x ¬ x = 0} andQ′′ = {x ∈ Q | x =
¬x}, symbolicallyQ = Q′ ⊕ Q′′.

Clearly,(Q′, +, R, ∗) with Q′ = {x ∈ Q | x ¬ x = 0}
is a linear space. Indeed, conjugation inQ ′ coincides with
identity. Substitutingx = x− in (11), we obtain that the
familiar second distributive law(α +β) ∗ c = α ∗ c+ β ∗ c,
holds for all realα, β as required in the definition of a linear
space.

To characterizeQ′′ = {x ∈ Q | x = ¬x}, note that
Q′′ is a quasivector space of centred elements, to be briefly
calledcentred quasivector space. As x = ¬x is equivalent
to x + x− = 0, conjugation coincides with the opposite
operator inQ′′. The centred quasivector spaceQ ′′ can be
converted into a linear space by re-defining multiplication
by scalars as follows:

α · c = α ∗ cσ(α), c ∈ Q′′. (13)

Now (Q′′, +, R, ·) is a linear space. Indeed, substituting
(13) in (11), we obtain that the second distributive law(α+
β) · c = α · c + β · c is valid for all realα, β; furthermore,
properties (7)–(9) remain valid:γ · (a+b) = γ ·a+γ ·b, α ·
(β · c) = (αβ) · c, 1 · a = a.

For a better distinction between the two multiplica-
tions by scalars, we call “∗” quasi-vectormultiplication by
scalars and “·” — linearmultiplication by scalars. Note that
the linear multiplication by scalars “·” defined by (13) coin-
cides inQ′ with the quasi-vector one, as inQ′ relation (13)
becomesα · c = α ∗ c (due toc− = c). Therefore

Corollary 2. The space(Q, +, R, ·) = (Q′, +, R, ·)⊕
(Q′′, +, R, ·), with “·” defined by (13), is a linear space.

Formula (13) gives an expression inQ ′′ for the linear
multiplication by scalars in terms of the quasi-vector one.
Conversely, inQ′′ the quasi-vector multiplication by scalars
is expressed by the linear one via

α ∗ c = |α| · c, c ∈ Q′′. (14)

Naturally, the quasi-vector multiplication by scalars is in-
clusion isotone, that isa ≤ b =⇒ γ ∗ a ≤ γ ∗ b, γ ∈ R,
asa ≤ b =⇒ |γ|a ≤ |γ|b (which is not true for the linear
multiplication by scalar).

2.4. Presentation of elements

The spaces involved in Corollary 2 are vector spaces.
If we want to efficiently compute within these spaces we
should assume them to be finite dimensional so that their
elements have finite presentation. Thus we shall assume

that the two vector spaces(Q′, +, R, ·), (Q′′, +, R, ·) are
m-, resp.n-dimensional and therefore they are isomorphic
to Rm, resp.Rn. Hence anya ∈ Q is a direct sum of the
form a = (a′; a′′), a′ ∈ Rm, a′′ ∈ Rn. As elements ofQ
the elements ofQ′ are of the form(a′; 0) and the elements
of Q′′ — of the form(0; a′′), so that:

a = (a′; a′′) = (a′; 0) + (0; a′′). (15)

Because of the presence of the special operation “∗” and
its different meaning in the two spaces, we shall con-
tinue to make a distinction between the spaces(Q ′, +, R, ·),
(Q′′, +, R, ·), calling the first one linear, and the second one
centred (quasivector); also the elements ofQ ′ will be called
linear, and the elements ofQ′′ — centred. Let us recall that
“∗” and “·” coincide inQ′, but are distinct inQ′′, soQ′′ will
be always considered together with the two multiplications:
(Q′′, +, R, ·, ∗).

Applying the Decomposition theorem we have that any
finite dimensional quasivector spaceQ is a direct sum
of two spaces — the linear space(Rm, +, R, ·) and the
centred quasivector space(Rn, +, R, ·, ∗), symbolically:
(Q, +, R, ·, ∗) = (Rm, +, R, ·)⊕

(Rn, +, R, ·, ∗). Thus we
can write down the operations addition and multiplication
by scalars for intervalsa = (a′; a′′), b = (b′; b′′) ∈ Q in
the form:

a+b = (a′; a′′)+(b′; b′′) = (a′ + b′; a′′ + b′′), (16)

γ ∗ b = γ ∗ (b′; b′′) = (γ ∗ b′; γ ∗ b′′) = (γb′; |γ|b′′), (17)

whereina′, b′ ∈ Rm, a′′, b′′ ∈ Rn, γ ∈ R and in the last
expression relation (14) is applied.

For example, in the space(Rn, +, R, ·, ∗) for n = 3, the
quasi-multiplication of centred elements by scalars looks as
follows: −2 ∗ (1, 2, 1) = (2, 4, 2); −1 ∗ (−1, 2,−2) =
(−1, 2,−2). Multiplication by −1 (negation) coincides
with identity. To change the signs of the components of
a centred element one should take the opposite (or dual)
and not negation, e. g. opp(−1, 2,−2) = (−1, 2,−2)− =
(1,−2, 2). For negation, subtraction, opposite and dual in
Q we have:

¬a = −1 ∗ (a′; a′′) = (−a′; a′′), (18)

a ¬ b = a + (−1) ∗ b = (a′ − b′; a′′ + b′′), (19)

opp(a) = ¬a− = ¬(a′; a′′)− = (−a′;−a′′), (20)

dual(a) = a− = (a′; a′′)− = (a′;−a′′). (21)

3. Presentation of intervals

We see that any element of a finite quasivector space is
represented in the form (15) as a sum of a linear and a cen-
tred component. This refers to arbitrary finite quasivector
spaces, such as quasivector spaces of zonotopes [9]. We



next wish to interpret formulae (18)–(15) for the case of in-
terval vectors. To this end we shall consider the presentation
of proper intervals.

Intervals (interval vectors) are usually represented by
sets of real numbers. Two familiar presentations of inter-
vals (interval vectors) are those by pairs of real numbers
(vectors) either in end-point or midpoint-radius form. Up to
now we intentionally avoided to represent intervals in any
form. We now discuss the presentation of intervals by draw-
ing consequences directly from their algebraic properties.

3.1. The case of proper intervals

Proper intervals as elements ofIRn are pairs of the form
(A, 0), whereA ∈ IRn. Assume first that(A, 0) is a linear
element, that is(A, 0) ¬ (A, 0) = 0; using (4) this means
A ¬ A = 0. As we know such properties possess exactly
the point intervalsA ∈ IRn, that is vectors fromRn. As-
sume now that(A, 0) is centred, that is(A, 0) = ¬ (A, 0);
according to (4) this meansA = ¬ A, that isA ∈ IRn is a
centred interval (symmetric with respect to the origin).

Recall that point intervals are represented as[α, α] and
proper centred ones — as[−β, β], whereβ ≥ 0 is the radius
of the centred interval. Any proper interval is written inend-
point formas[α − β, α + β], β ≥ 0.

In midpoint-radius form(briefly: MR-form) a proper in-
tervalA ∈ IRn is written asA = (a′; a′′), a′′ ≥ 0 and is
interpreted as the set:

A = (a′; a′′) = {ξ ∈ Rn | |ξ − a′| ≤ a′′}, (22)

wherein the module of a vector is meant component-wise,
i. e. |(α1, ..., αn)| = (|α1|, ..., |αn|). Using MR-form a
point interval is written as(a′; 0) and a proper centred one
as(0; a′′), a′′ ≥ 0. The componenta′ is called themidpoint
and the componenta′′ — theradiusor error (bound).

Within the interpretation (22) the componenta ′ is an
element of the vector spaceRn, whereas the component
a′′ ≥ 0 is an element of the monoid(Rn)+. The relation
between the MR-presentation (22) and the end-point pre-
sentation is given by(a′; a′′) = [a′ − a′′, a′ + a′′], resp.
[e−, e+] = ((e+ + e−)/2; (e+ − e−)/2].

Let us see how proper elements of the forma = (A, 0),
A ∈ IR, are decomposed according to the Decomposition
theorem. For the linear and the centred parts (summands)
of a = (A, 0) we obtain respectively, cf. (12):

(1/2) ∗ (a + a−) = (1/2) ∗ (A,¬A), (23)

(1/2) ∗ (a ¬ a) = (1/2) ∗ (A ¬ A, 0). (24)

It is immediately seen that the centred part (24) of a proper
interval is a proper interval. DenotingA = (a ′; a′′), a′′ ≥
0, using (19), we haveA ¬ A = (a′; a′′) + (−a′; a′′) =
(0; 2a′′), which gives a value of (24) equal to(0; a ′′).

Let us check if the linear part (23) of a proper element
(A, 0) is a proper element. Clearly,(A,¬A) is a proper
element if there existsX ∈ M such that(A,¬A) = (X, 0),
that isA = X ¬ A. As we know this property is satisfied
by intervals, indeed, we haveX = (2a ′; 0), wherea′ is
the midpoint ofA. Hence, for the value of (23) we obtain
1/2 ∗ X = (a′; 0). Summarizing we obtain for the proper
interval(a′; a′′), a′′ ≥ 0: (a′; a′′) = (a′, 0)+(0; a′′), which
is exactly of the form (15).

Remarks. 1. Presentation(a′; a′′) = (a′, 0) + (0; a′′)
corresponds (fora′′ > 0) to the symbolic forma = a′ ±
a′′ often used in engineering sciences. 2. Convex bodies
with so-called Minkowski operations [7], [14] also form a
quasivector space. However, for convex bodies the equation
A = X ¬ A is not solvable in general and consequently,
the linear part of a proper convex body may not be proper.
For example, in the case of two-dimensional convex bodies,
if A is a (proper) triangle, then suchX does not exist and
consequently the linear part ofA is an improper element.

In the case of proper intervals (a ′′ ≥ 0) we have

A ¬ B = {α − β | α ∈ A, β ∈ B}, (25)

and, in particular,¬B = {−β | β ∈ B}.

MR-presentation of improper intervals. Formula (15)
demonstrates the practical meaning of the decomposition
theorem: there the linear (point) interval of the form(a ′; 0)
corresponds to the midpoint ofa and the centred interval
(0; a′′) corresponds to the radius (error bound) ofa. A
negative radiusa′′ < 0 corresponds to improper interval
(a′; a′′). In the end-point form[a ′ − a′′, a′ + a′′] of an im-
proper interval we have that the left end-point is greater than
the right one,a′ − a′′ ≥ a′ + a′′.

Let us check how improper one-dimensional elements of
the forma = (0, A), A ∈ IR, are decomposed according
to the Decomposition theorem.

For the linear and the centred part (summand) ofa =
(0, A) we obtain respectively:

(1/2) ∗ (a + a−) = (1/2) ∗ (¬A, A), (26)

(1/2) ∗ (a ¬ a) = (1/2) ∗ (0, A ¬ A). (27)

Clearly, the centred part (27) of the improper interval(0, A)
is an improper interval. DenotingA = (a ′; a′′), a′′ ≥ 0, we
haveA ¬ A = (a′; a′′) + (−a′; a′′) = (0; 2a′′), hence the
value of (27) is opp(0; a′′) = (0;−a′′).

Let us check if the linear part (26) of an improper el-
ement(0, A) is an improper element. Clearly,(¬A, A)
is an improper element if there existsX ∈ M such that
(¬A, A) = (0, X), that is A = X ¬ A. We have
X = (2a′; 0), wherea′ is the midpoint ofa. Hence, for the
value of (26) we obtain opp(1/2 ∗ X) = (−a ′; 0). We con-
clude that the linear part of any interval is always a (proper)
point interval.



Summarizing we obtain for the improper interval
(0, A) = opp(a′; a′′), a′′ ≥ 0: (−a′;−a′′) = (−a′; 0) +
(0;−a′′), which is in agreement with (15). Therefore
we can consider (15) as a generalization of the MR-
presentation of intervals. The difference is that the value
of a′′ in (15) can be negative. We can thus speak ofneg-
ative radii (or negative errors) corresponding to improper
intervals.

In then-dimensional casea′′ in (15) belongs toRn and
thus the components ofa′′ can have negative values corre-
sponding to improper one-dimensional intervals. We can
again speak ofn-dimensionalradii (or errors) whose com-
ponents are not necessarily nonnegative.

Proposition 1. Let A, B ∈ IR and (A, B) ∈ IR as
defined in Section 2.1. IfA = (a′; a′′), B = (b′; b′′), then
(A, B) = (a′ − b′; a′′ − b′′).

Proof. We have

(A, B) =
{

(X, 0), if A = B + X,
(0, Y ), if A + Y = B,

whereX, Y ∈ IR. Minding that (X, 0) = X = (a′ −
b′; a′′ − b′′), Y = (b′ − a′; b′′ − a′′), (0, Y ) = opp(Y, 0) =
(a′ − b′; a′′ − b′′) we obtain(A, B) = (a′ − b′; a′′ − b′′).

Improper interval vectors as elements ofIRn are pairs
of the form (A, B), whereA, B ∈ IRn and at least one
pair (Ai, Bi) is an improper interval. In principle, we can
assume thata′ anda′′ are vectors of different dimensions,
as this is often needed in applications. For an example of
m > n, one sometimes considers two-dimensional points
that contain errors only in one of the components, say the
ordinate. Alternatively, as an example ofm < n, one may
consider a point in the 3D space, which moves on one of the
space axes (or on a curve in one of the coordinate planes)
with an error bounded within a 3D box.

Due to the above we can state that formulae (18)–(21)
are valid for all intervals (proper and improper).

3.2. Examples

Linear algebraic equations with interval right-hand
side. Consider a linear interval(n × n)-system of the form

A ∗ x = b, (28)

whereA = (aij) ∈ Rn×n is a nonsingular matrix of reals
and b ∈ IRn is an interval vector. We are interested in
vectorsx ∈ IRn satisfying (28); suchx are calledinterval
solutions(other authors call themalgebraic solutions[1], p.
65, orformal solutions[13], [15]).

Denoting x = (x′; x′′) ∈ IRn we haveA ∗ x =
A ∗ (x′; x′′) = (A ∗ x′; A ∗ x′′) = (Ax′; |A|x′′). Thus

the interval problem (28) reduces to two linear algebraic
problems, one for the midpoints and one for the radii:

Ax′ = b′, (29)

|A| x′′ = b′′. (30)

Assuming that the real matricesA and|A| are nonsingular
we obtain for the solution of (29)–(30):x ′ = A−1b′, x′′ =
|A|−1b′′. We must assume|A|−1b′′ ≥ 0, so thatx′′ ≥ 0.
We thus obtain the following corollary:

Corollary. Given system (28), such thatA ∈ Rn×n,
b = (b′, b′′) ∈ IRn, assume that the real matricesA and
|A| are nonsingular and|A|−1b′′ ≥ 0. Then there exists a
unique interval solutionx to (28).

Sets of solutions. For the determination of solution sets
of algebraic problems with uncertain parameters it is of
practical significance [2], [3], [15] to be able to find the set

{x ∈ Rn | A ∗ x ⊆ b}, (31)

whereA = (A′; A′′) ∈ IRn×n is an interval matrix (with
A′ = (aij

′) ∈ Rn×n, A′′ = (a′′
ij) ∈ Rn×n) andb ∈ IRn is

an interval vector.
The multiplication in (31) is multiplication by scalars,

hence we have the equivalences

A ∗ x ⊆ b ⇐⇒ (A′; A′′) ∗ x ⊆ (b′; b′′)
⇐⇒ (A′x; A′′|x|) ⊆ (b′; b′′)
⇐⇒ |b′ − A′x| ≤ b′′ − A′′|x|. (32)

We know that the last equivalence is true for proper inter-
vals. However, in the sequel we show that it is also true for
arbitrary intervals, which is the practically important case
in the above problem. At any case the solution sets problem
(31) is reduced to a familiar system of algebraic inequali-
ties.

As an example consider the case when the matrixA con-
sists only of improper intervals, that isA′′ ≤ 0. Then dual
A = (A′;−A′′) is a proper interval matrix (as−A′′ ≥ 0)
and the inclusionA∗x ⊆ b is equivalent to dualA∗x∩b �= ∅
(suchx are called week solutions, cf. [1]). In this case (32)
obtains the form:|b′ − A′x| ≤ b′′ + (−A′′)|x|, which is
known as Oettli-Prager characterization, see, e.g. [1]), [10].

3.3. Inclusion

The system (IR,⊆). Interval inclusion (3) as defined
for proper intervalsA = (a′; a′′), B = (b′; b′′) ∈ IR is
expressed in MR-form by:A ⊆ B ⇐⇒ |b′−a′| ≤ b′′−a′′.
We shall prove that a relation of exactly the same form is
true for any intervals (proper or improper).



Proposition 2. Interval inclusion (6) as defined for arbi-
trary intervalsa = (a′; a′′), b = (b′; b′′) ∈ IR is expressed
in MR-form by:

a ⊆ b ⇐⇒ |b′ − a′| ≤ b′′ − a′′. (33)

Proof. As in Section 2.1. definea, b by a = (X, Y ), b =
(U, V ), whereX = (x′; x′′), Y = (y′; y′′), U = (u′; u′′),
V = (v′; v′′) are intervals fromIR. According to (6):

(X, Y ) ⊆ (U, V ) ⇐⇒ X + V ⊆ Y + U. (34)

In MR-presentation (34): reads:

(x′ − y′; x′′ − y′′) ⊆ (u′ − v′; u′′ − v′′)
⇐⇒ (x′ + v′; x′′ + v′′) ⊆ (y′ + u′; y′′ + u′′)
⇐⇒ |y′ + u′ − x′ − v′| ≤ y′′ + u′′ − x′′ − v′′

⇐⇒ |u′ − v′ − (x′ − y′)| ≤ u′′ − v′′ − (x′′ − y′′),

which according to Proposition 1 is equivalent to (33).

Remark. From (33) we see that the casea proper andb
improper is impossible (in this case we haveb ′′ − a′′ < 0
and (33) cannot be satisfied).

Lattice operations. Consider now the lattice operations
x ∨⊆ y = sup⊆(x, y), x ∧⊆ y = inf⊆(x, y) in the case
x, y ∈ IR. For x ⊆ y we havesup⊆(x, y) = y etc., but
the general case is more involved. The proof of the next
proposition is rather technical and will be omitted.

Proposition 3. If neitherx ⊆ y nor y ⊆ x then
denotingε = sign(x′ − y′)(x′′ − y′′) we have forx ∨ y =
sup⊆(x, y) andx∧y = inf⊆(x, y), respectively, the values:

(x′+y′+ε|x′′−y′′|
2 ; |x′−y′|+x′′+y′′

2 ),

(x′+y′−ε|x′′−y′′|
2 ; −|x′−y′|+x′′+y′′

2 ).

Clearly, the values of−|x′− y′|+x′′ + y′′ may be nega-
tive, that is the intervalx∧y = inf⊆(x, y) may be improper.
Hence, the lattice(IR,⊆) is complete, whereas(IR,⊆) is
not.

Inclusion isotonicity is preserved inIR with respect to
(16)–(17), i. e.

a ⊆ b ⇐⇒ a + c ⊆ b + c (35)

a ⊆ b ⇐⇒ γ ∗ a ⊆ γ ∗ b. (36)

Remark. A generalization of (33) for then-dimensional
casea, b ∈ IRn is straightforward. The same holds true for
Proposition 3 regarding the lattice operations.

4. Interval multiplication

This section is devoted to the system(IR, +,×,⊆) in-
volving multiplication of intervals. Multiplication of one-
dimensional proper intervalsA, B ∈ IR is defined by the
set-theoretic expression:

A × B = {αβ | α ∈ A, β ∈ B}. (37)

As before we are looking for a computationally efficient
expression of (37). It has been proved [4] that multiplication
(37) is extended uniquely inIR in such a way that :

a ⊆ b =⇒ c × a ⊆ c × b, a, b, c ∈ IR. (38)

Hence, we can assume that the system(IR, +,×,⊆) is
well-defined. To obtain a formula of MR type we first define
a functional “relative error”κ as follows.

For a ∈ IR any non-centred interval (a ′ �= 0) can be
written as:a = (a′; a′′) = |a′| ∗ (σ(a′); a′′/|a′|), wherein
σ(α) = sign(α).

Examples: (10; 1) = 10 ∗ (1; 0.1); (−2; 4) = 2 ∗
(−1; 2).

Thus we can write:a = (a′; a′′) = |a′| ∗ (σ(a′); κ(a)),
whereκ(a) = a′′/|a′| is the relative error ina. When mul-
tiplication is considered the functionalκ(a) plays important
roles. Note that the conditionκ(a) < 1 means thata does
not contain zero (in the sense of (3). The case of proper in-
tervals has been fully discussed in [5]. We next extend the
definition of the functionalκ in IR.

Intervals from IR. Fora = (a′; a′′) ∈ IR we defineκ
by:

κ(a) =
{ |a′′|/|a′|, a′ �= 0;

∞, a′ = 0,

Conditionκ(a) < 1 means thata does not contain zero
in the sense of (6), whereasκ(a) ≤ 1 means thata may
contain zero only as an end-point.

To write an MR-formula for interval multiplication de-
note byE(a) conditionκ(a) ≤ 1 and byC(a, b) condition

κ(a) > 1 ≥ κ(b) or (κ(a) ≥ κ(b) > 1, a′′b′′ ≥ 0).

Note thatE(b) meansκ(b) ≤ 1 andC(b, a) means

κ(b) > 1 ≥ κ(a) or (κ(b) ≥ κ(a) > 1, a′′b′′ ≥ 0).

The following MR-expression is equivalent to the re-
spective end-point formula given by E. Kaucher [4]:

a × b = (a′; a′′) × (b′; b′′) = (39)


(a′b′+σ(a′)σ(b′)a′′b′′; |a′|b′′+|b′|a′′), if E(a)&E(b);
(b′ + σ(b′)σ(a′′)b′′) ∗ (a′; a′′), if C(a, b);
(a′ + σ(a′)σ(b′′)a′′) ∗ (b′; b′′), if C(b, a);
0, if κ(a) ≥ 1, κ(b) ≥ 1, a′′b′′ ≤ 0.



Remark. The two intermediate cases involve multipli-
cation by scalars; these cases can be viewed as a single case
bya, b interchanging places, as in the FORTRAN-like algo-
rithm below.

An algorithm for interval multiplication.

IF E(a) andE(b)
THEN a × b = (a′b′ + σ(a′)σ(b′)a′′b′′; |a′|b′′ + |b′|a′′)

ELSE IFκ(a) ≥ 1, κ(b) ≥ 1, a′′b′′ ≤ 0 THEN a × b = 0
ELSE IFC(a, b)

THEN a × b = (b′ + σ(b′)σ(a′′)b′′) ∗ (a′; a′′)
ELSEa × b = (a′ + σ(a′)σ(b′′)a′′) ∗ (b′; b′′)

A compact end-point formula is published in [11]. A
tool for visualizing the operation multiplication (39) using
the above algorithm can be downloaded from [16]. To run
the program the .NET Framework Redistributable Package
(dotnetfx.exe) should be installed. The visualization tool
offers the possibility to move continuously one of the argu-
mentsa, b in the producta× b by dragging the correspond-
ing point by the mouse. This allows to demonstrate various
properties of the product, like its continuity (which is not
obvious from the conditional expression (39)), morphism
w. r. t. conjugation, etc.

In the simple case of centred intervals we should have
(0; a) ⊆ (0; b) =⇒ (0; c)×(0; a) ⊆ (0; c)×(0; b) for any
(0; c), or, equivalentlya ≤ b =⇒ c×a ≤ c×b for all real
a, b, c. This property should hold for the case whena and
b take possibly negative values (as we know such a prop-
erty does not hold for the familiar multiplication). This is
why it is interesting to find a relation between the “quasi-
multiplication” of radii and the familiar multiplication of
reals. Substitutinga′ = b′ = 0 in (39) we obtain:

a×b =




ab, if a ≥ 0, b ≥ 0,
−ab, if a ≤ 0, b < 0,
0, if a > 0, b < 0 or a < 0, b > 0.

(40)

Some examples:(−2)×(−3) = −6, 2×(−3) = 0.
Apart of being inclusion isotone, we have for the quasi-

multiplication: −(a×b) = (−a)×(−b), which is also not
true for the familiar multiplication.

Clearly the system of the radii(R, +,×) is not a
ring, but if we define a multiplication bya · b =
sign(a)sign(b)(|a|×|b|), then system(R, +, ·) is a ring, cf.
[6]. Therefore the system of readiuses can be consid-
ered as a ring of reals endowed additionally with a quasi-
multiplication (40), i. e.(R, +, ·,×).

5. Conclusions

This work is a theoretical introduction to interval arith-
metic. We show that the rigorous theory naturally in-
volves improper intervals and points out the basic role

of the midpoint-radius presentation of intervals. Let us
summarize our arguments in favor of using the extended
interval systems(IRn, +, R, ∗,⊆), (IR, +,×,⊆) involv-
ing improper intervals (IR-systems). The advantages of
using IR-systems instead of the respectiveIR-systems
(IRn, +, R, ∗,⊆), (IR, +,×,⊆) can be compared with the
advantages of using the familiar real vector spaceRn and
real fieldR instead of the respective systems(R+)n, R+,
involving only nonnegative reals. Recall that the system
(IRn, +) is a group, so an equation of the forma + x = b
is always solvable, whereas it is not always solvable in
(IR, +). Moreover,(IRn,⊆) is not a complete lattice,
whereas(IR,⊆) is, so that lattice operations induced by
the relation “⊆” always exist. In particular, the lattice op-
eration “meet” inf⊆(a, b) is well-defined, whereas it is not
always available in(IR,⊆) (two proper intervals may not
intersect).

The IR-systems incorporate the respectiveIR-systems,
so everything that can be done in anIR-system, can be also
performed in the respectiveIR-system using improper inter-
vals. An user not familiar with improper intervals may not
notice that theIR-system handles them — unless certain fi-
nal results cannot be expressed by proper intervals — then
theIR-system may produce improper intervals, whereas the
IR-system will issue a message for non-existing solutions.

Computations in the extendedIR-systems are in no way
more complicated or time consuming than computations
with proper intervals. On the contrary, the correspond-
ing formulae may be simpler as nonnegativity tests may be
avoided. Formulae (16), (17) hold for intervals fromIR n

and thus, in particular, for proper intervals. This means that
(16), (17) provide MR-expressions for the set-theoretic op-
erations addition (1) and multiplication by scalars (2) in-
volving proper intervals. Note that there are no simpler for-
mulae than (16), (17) for the operations addition (1) and
multiplication by scalars (2) for proper intervals; we men-
tion this in order to dispel the myth that the arithmetic using
improper intervals is more involved than the arithmetic for
proper intervals. A close examination of formula (39) leads
us to a similar conclusion: this expression is computation-
ally as efficient as the respective expressions for proper in-
tervals.

An axiomatic introduction to interval arithmetic neces-
sarily uses improper intervals and has certain methodolog-
ical advantages. Such an introduction shows which are the
basic concepts. We have shown that the operations/relations
(1)–(3) and (37) are in the bases of the whole theory.

The axiomatic approach passing through improper in-
tervals demonstrates the different algebraic nature of the
spaces of midpoints and radii. Many authors have pointed
out practical arguments regarding the need of a differenti-
ated approach in the presentation of midpoints and radii in
the computational practice, cf. [10] (p. 29–30), [12]. [17].



The general idea is that for the computer presentation of
the radii we normally need a much smaller number of dig-
its than for the midpoints — maximum 2–3 decimal digits.
From computational point of view this makes the MR-form
faster than the end-point form and should be preferred as a
basic form in a computer implementation; end-point form
of I/O data can be easily available as a secondary optional
presentation.

As another argument in favor of improper intervals we
mention the increasing number of practical problems, such
as solution sets of linear and nonlinear problems, functional
ranges, etc., and numerical methods that require such inter-
vals, cf. [2], [3], [13], [15], [18].

There is an ongoing discussion on the implementation of
symbolic interval arithmetic in computer algebra systems.
Hopefully this work offers convincing motivation in favor
to an implementation involving improper intervals and MR-
presentation of intervals. Expression (11) is an instructive
example that shows a possible way of overcoming problems
related to symbolic computations with conditional formulas
like (10), typical for interval arithmetic. Note that there is
no similar formula in the monoidIR, so we have to use a
space involving improper intervals to this end.

Note that whenend-point presentation[α − β, α +
β], β ≥ 0 is used, then the point and centred intervals can-
not belong to spaces of different dimensions (as then we
shall not know what is, say,α + β. Clearly, the notation
IRn is closely related to the end-point presentation. How-
ever, as we have seen, the midpoint and radius vectors need
not be of same dimension. For example, one often consid-
ers intervals that have two-dimensional midpoint compo-
nent, and one-dimensional radius component (errors in one
of the two coordinates only). Different dimensions of the
spaces of linear and centred elements, as prescribed by the
Decomposition theorem, are possible within the midpoint-
radius presentation.
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