
Arithmetic operations for floating-point intervals

Author: Ulrich Kulisch, Proposer: Bo Einarsson,
Seconder: John Pryce.

The author owes thanks to Gerd Bohlender, Bo Einarsson, Arnold Neumeier, John Pryce,
Juergen Wolff von Gudenberg, and others.

Denotations

R : the set of real numbers, R
∗ := R ∪ {−∞, +∞},

F : the set of floating-point numbers of a given format and encoding,
IR : the set of nonempty, closed, and bounded real intervals,
IF : the intervals of IR whose bounds are in F,
IR : the set of closed real intervals, ∅ ∈ IR,1

IF : the intervals of IR whose bounds are in F, ∅ ∈ IF,
▽ , △ : the roundings downwards and upwards,
▽+ , ▽− , ▽∗ , ▽/ : the operations for elements of F with rounding downwards,

△+ , △− , △∗ , △/ : the operations for elements of F with rounding upwards.

Interval arithmetic over the real numbers R deals with closed and connected sets of real
numbers. An interval is denoted by an ordered pair [a, b]. The first element is the lower
bound and the second is the upper bound. The lower bound shall not be greater than the
upper bound. If a bound is −∞ or +∞ the bound is not an element of the interval. Such
intervals may also be written as (−∞, a], [b, +∞) or (−∞, +∞) with a, b ∈ R. They are also
closed2 intervals.

For intervals a , b ∈ IR arithmetic operations are defined as set operations in R by:

(R) a ◦b := {a◦b | a ∈ a ∧b ∈ b ∧a ◦b is defined}, for all a , b ∈ IR and ◦ ∈ {+,−, ∗, /}.

If 0 /∈ b in case of division then for all a , b ∈ IR also a ◦ b ∈ IR.
On the computer a real number or an interval over the real numbers is mapped onto

the smallest floating-point interval that contains the number or interval respectively. This

mapping ♦ : IR → IF is characterized by the following properties:

(R1) ♦ a = a , for all a ∈ IF,

(R2) a ⊆ b ⇒ ♦ a ⊆ ♦ b, for all a , b ∈ IR,

(R3) a ⊆ ♦ a , for all a ∈ IR,

(R4) ♦ (−a) = − ♦ a , for all a ∈ IR.

With the mapping ♦ : IR → IF binary arithmetic operations in IF are uniquely defined by:

(RG) a ♦◦ b := ♦ (a ◦ b), for all a , b ∈ IF and all ◦ ∈ {+,−, ∗, /}.

Here for division we assume again that 0 /∈ b.

For intervals a = [a1, a2], b = [b1, b2] ∈ IF these operations ♦◦ , ◦ ∈ {+,−, ∗, /}, in IF

have the property

a ♦◦ b =

[

min
i,j=1,2

(ai ▽◦ bj), max
i,j=1,2

(ai △◦ bj)

]

,

or with the monotone roundings ▽ and △

a ♦◦ b =

[

▽ min
i,j=1,2

(ai ◦ bj), △ max
i,j=1,2

(ai ◦ bj)

]

.

1
IR is the set of bounded and unbounded real intervals. {IR,⊆} is a complete lattice, i.e., every

subset has an infimum and a supremem. ∅ is the least and R = (−∞,+∞) is the greatest element.
2A subset of R is called closed if its complement is open.



The unary operator −a is defined by −a := (−1) ♦∗ a .
The definition of the arithmetic operations in IF given on page 1 and the above formulas

may be not well suited for implemention of the arithmetic on the computer. The unary
operation −a and the binary operations addition, subtraction, multiplication, and division
can be expressed by more explicit formulas as shown in the following tables. There the
operator symbols for intervals are simply denoted by +,−, ∗, and /. These formulas are
much more suited for implementation on the computer.

Minus operator −a = [−a2,−a1].

Addition [a1, a2] + [b1, b2] = [a1
▽+ b1, a2 △+ b2].

Subtraction [a1, a2] − [b1, b2] = [a1
▽− b2, a2 △− b1].

Multiplication [b1, b2] [b1, b2] [b1, b2]

[a1, a2] ∗ [b1, b2] b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0

[a1, a2], a2 ≤ 0 [a2
▽∗ b2, a1 △∗ b1] [a1

▽∗ b2, a1 △∗ b1] [a1
▽∗ b2, a2 △∗ b1]

a1 < 0 < a2 [a2
▽∗ b1, a1 △∗ b1] [min(a1

▽∗ b2, a2
▽∗ b1), [a1

▽∗ b2, a2 △∗ b2]

max(a1 △∗ b1, a2 △∗ b2)]

[a1, a2], a1 ≥ 0 [a2
▽∗ b1, a1 △∗ b2] [a2

▽∗ b1, a2 △∗ b2] [a1
▽∗ b1, a2 △∗ b2]

Division, 0 /∈ b [b1, b2] [b1, b2]

[a1, a2]/[b1, b2] b2 < 0 b1 > 0

[a1, a2], a2 ≤ 0 [a2
▽/ b1, a1 △/ b2] [a1

▽/ b1, a2 △/ b2]

[a1, a2], a1 < 0 < a2 [a2
▽/ b2, a1 △/ b2] [a1

▽/ b1, a2 △/ b1]

[a1, a2], 0 ≤ a1 [a2
▽/ b2, a1 △/ b1] [a1

▽/ b2, a2 △/ b1]

In real analysis division by zero is not defined. In interval arithmetic, however, the interval
in the denominator of a quotient may contain zero. So this case has to be considered also.

An important application is the extended interval Newton method. With it Newton’s
method reaches its ultimate elegance and strength. It computes all (single) zeros in a given
domain. If a function has several zeros in a given interval its derivative becomes zero in that
interval also. Thus division by an interval that contains zero is required.

In interval arithmetic the result of an operation is a set. Since in real analysis division by
zero is not defined, the result of division by the interval b = [0, 0] can only be the empty set
∅. This means, the element 0 in the denominator of an interval division does not contribute
to the solution set. So it can be excluded without changing the solution set.

So the general rule for computing the set a/b with 0 ∈ b is to remove its zero from the
interval b and perform the division with the remaining set.3 Whenever the zero in b coincides
with a bound of the interval b the result of the division can directly be obtained from the
above table for division with 0 /∈ b by the limit process b1 → 0 or b2 → 0 respectively. The
results are shown in the following table. Here, the parentheses stress that the bounds −∞
and +∞ are not elements of the interval.

Whenever zero is an interior point of the denominator the following consideration leads
to the correct answer.

3This is in full accordance with section 3.5.4 of the motion 6 position paper: When evaluating a
function over a set, points outside its domain are simply ignored. See also [1], [2].

2



Division, 0 ∈ b b = [b1, b2] [b1, b2]

[a1, a2]/[b1, b2] [0, 0] b1 < b2 = 0 0 = b1 < b2

[a1, a2] = [0, 0] ∅ [0, 0] [0, 0]

[a1, a2], a1 < 0, a2 ≤ 0 ∅ [a2
▽/ b1, +∞) (−∞, a2 △/ b2]

[a1, a2], a1 < 0 < a2 ∅ (−∞, +∞) (−∞, +∞)

[a1, a2], 0 ≤ a1, 0 < a2 ∅ (−∞, a1 △/ b1] [a1
▽/ b2, +∞)

A basic concept of mathematics is that of a function or mapping. A function consists of
a pair (f, Df ). It maps each element x of its domain of definition Df on a single element y
of the range Rf of f , f : Df → Rf . A rational function y = f(x) where the denominator is
zero for x = c is not defined for x = c; i.e., c is not an element of the domain of definition Df .
Since the function f(x) is not defined at x = c it does not have any value or property there.
In this strict mathematical sense, division by an interval [b1, b2] with b1 < 0 < b2 is not well
posed. The interval [b1, b2] overflows the range of definition of the function f(x). For division
the set b1 < 0 < b2 devolves into the two distinct sets [b1, 0) 4 and (0, b2] and division by the
set b1 < 0 < b2 actually means two divisions. The results of the two divisions are already
shown in the table for divison with 0 ∈ b. It is highly desirable to perform the two divisions
consecutively.

In the user’s program, however, the two divisions appear as a single operation, as division
by an interval [b1, b2] with b1 < 0 < b2. So an arithmetic operation in the user’s program
delivers two distinct results. This is an unusual phenomenon in digital computing,5 but it
can be handled.

A solution to the problem would be for the computer to provide a flag for distinct
intervals. The situation occurs if the divisor is an interval that contains zero as an inte-
rior point. In this case the flag would be raised and signaled to the user. The user may then
apply a routine of his choice to deal with the situation as is appropriate for his application.

This routine could be: return the entire set of real numbers (−∞, +∞) as result and
continue the computation, or continue the computation with one of the sets and ignore the
other one, or put one of the sets on a list and continue the computation with the other one,
or modify the operands and recompute, or stop computing, or some other action.

An alternative would be to provide a second division which in case of division by an
interval that contains zero as an interior point generally delivers the result (−∞, +∞). Then
the user can decide when to use which division in his program.

Thus only four kinds of result come from division by an interval of IF that contains zero:

∅, (−∞, a], [b, +∞), and (−∞, +∞).

We call such elements extended intervals.
The union of the set of closed and bounded intervals of IR with the set of extended real

intervals is denoted by IR. Intervals of IR and of IF are sets of real numbers. −∞ and +∞
are not elements of these intervals. Arithmetic operations for extended intervals of IF are
now to be defined.

The first rule is that any operation with the empty set ∅ has the empty set as its result.
Arithmetic operations for unbounded intervals of IF can be performed on the computer

by using the above formulas for bounded intervals of IF if in addition a few formal rules for
operations with −∞ and +∞ are applied. These rules are shown in the following tables.

4Since division by zero does not contribute to the solution set it does not matter whether a paren-
thesis or bracket is used here.

5Fixed point division has always yielded two results.
3



Addition −∞ b +∞

−∞ −∞ −∞

a −∞ +∞

+∞ +∞ +∞

Subtraction −∞ b +∞

−∞ −∞ −∞

a +∞ −∞

+∞ +∞ +∞

Multiplication −∞ b < 0 0 b > 0 +∞

−∞ +∞ +∞ 0 −∞ −∞

a < 0 +∞ −∞

0 0 0

a > 0 −∞ +∞

+∞ −∞ −∞ 0 +∞ +∞

Division −∞ +∞

a 0 0

These rules are not new in principle. They are well established in real analysis and IEEE

754 provides them anyway. The only rule that goes beyond IEEE 754 is

0 ∗ (−∞) = (−∞) ∗ 0 = 0 ∗ (+∞) = (+∞) ∗ 0 = 0.

This rule follows quite naturally from the definition of unbounded intervals. However, it
should not be taken as a new mathematical law. It is just a short cut to easily compute the
bounds of the result of an operation on unbounded intervals.

The calculus in IF as defined in this document is free of exceptions. If the operations are
hardware supported interval arithmetic is almost as fast as simple floating-point arithmetic.
See [2].

References

[1] Ulridh Kulisch: Complete Interval Arithmetic and its Implementation on the Computer, position
paper and the Dagstuhl 2008 proceedings.

[2] Ulrich Kulisch: Computer Arithmetic and Validity - Theory, Implementation, and Applications,
de Gruyter, Berlin, New York, 2008.

[3] Arnold Neumaier: Vienna Proposal for Interval Standardization.

[4] John Pryce: Text and Rationale for Motion 6: Multi-Format Support.

4


