7. Levels 3 and 4 description

This clause is about Level 3, where Level 2 datums are represented, and operations on them described, and about Level 4 requirements for interchange representation and encoding.

Level 3 entities are called objects-they represent Level 2 datums and may be referred to as concrete, while the datums are abstract. Each Level 2 (abstract) library operation is implemented by a corresponding Level 3 (concrete) operation, whose behavior shall be consistent with the abstract operation.

7.1 Representation

The property that defines a representation is:
Each interval datum shall be represented by at least one object. Each object shall represent at most one interval datum.

[Examples. Three possible representations are:

inf-sup form. Any interval \boldsymbol{x} is represented at Level 3 by the object $(\inf (x), \sup (x))$ of two b64 numbers. All intervals have only one Level 3 representation because operations inf and sup are uniquely defined at Level 2 (6.7.6): interval $[0,0]$ has representation $(-0,+0)$, interval Empty has representation $(+\infty,-\infty)$.
inf-sup-nan form. The objects are defined to be pairs (l, u) where l, u are b64 datums. A nonempty interval $\boldsymbol{x}=[\underline{x}, \bar{x}]$ is represented by an object (l, u) such that the values of l and u are \underline{x} and \bar{x}, and Empty is represented by (NaN, NaN).
neginf-sup-nan form. This is as the previous, except that for a nonempty interval the value of l is $-\underline{x}$.
If, in these descriptions l, u and NaN are viewed as Level 2 datums, then interval $[0,0]$ has four representatives in inf-supnan and neginf-sup-nan forms: $(-0,+0),(-0,-0),(+0,+0),(+0,-0)$. Each nonempty interval with nonzero bounds has only one representative: there are unique l and u. Empty has also only one representative: there is an unique NaN. However, NaN itself has representatives, and from this viewpoint Empty has more than one representative: there are many NaNs, quiet or signaling and with different payloads, to use in Empty $=(\mathrm{NaN}, \mathrm{NaN})$.

7.2 Operations and representation

Each Level 2 (abstract) library operation is implemented by a corresponding Level 3 (concrete) operation, whose behavior shall be consistent with the abstract operation.

When an input Level 3 object does not represent a Level 2 datum, the result is implementation-defined. An implementation shall provide means for the user to specify that an InvalidOperand exception be signaled when this occurs.

7.3 Interchange representations and encodings

The purpose of interchange representations is to allow loss-free exchange of Level 2 interval data. This is done by imposing a standard Level 3 representation using Level 2 datums.

The standard Level 3 representation of an interval datum \boldsymbol{x} is an ordered pair

$$
(\inf (x), \sup (x))
$$

of two b64 datums. For example, the only representative of Empty is the pair $(+\infty,-\infty)$, and the only representative of $[0,0]$ is the pair $(-0,+0)$.

The standard Level 3 representation of a decorated interval datum $\boldsymbol{x}_{d x}$ is an ordered triple

$$
\left(\inf \left(x_{d x}\right), \sup \left(x_{d x}\right), \text { decorationPart }\left(x_{d x}\right)\right)
$$

of two b64 datums and a decoration. For example, the only representative of Empty trv is the triple $(+\infty,-\infty, \operatorname{trv})$, and the only representative of NaI is the triple ($\mathrm{NaN}, \mathrm{NaN}, \mathrm{ill}$).

Export and import of interchange formats normally occurs as a sequence of octets (bit strings of length 8, equivalently 8 -bit bytes), e.g. in a file or a network packet.

At Level 4, interval objects are encoded as bit strings. We define an octet-encoding that maps the conceptual Level 3 representation into an octet sequence that comprises, in the order defined above, the interchange octet-encodings of the two b64 datums, and, for decorated intervals, the decoration represented as an octet:

ill	00000000
trv	00000100
def	00001000
dac	00001100
com	00010000

NOTE-This encoding of decorations permits future refinements without disturbing the propagation order of the decorations.

The octet-encoding of b64 datums is eight octets obtained from the 64 bits of the IEEE 754 interchange format: a sign bit, followed by 11 exponent bits that describe the exponent offset by a bias, and 52 bits that describe the significand (the least significant bit is last).
In Big-Endian octet-encoding, the first octet contains the sign bit and the 7 most-significant exponent bits. In Little-Endian octet-encoding, the first octet contains the 8 least-significant bits.
[Example. The Big-Endian interchange octet-encoding of $[-1,3]_{\text {com }}$ are the concatenated octet sequences below
-110111111111100
30100000000001000 com 00010000
The Little-Endian interchange octet-encoding of $[-1,3]_{\text {com }}$ are the concatenated octet sequences below
-1001111000010111111
300100001000000 com 00010000
]

ANNEX A

Not required features of IEEE Std 1788^{TM}-2015 (informative)

2 This Annex lists the features of IEEE Std $1788^{\mathrm{TM}}-2015$ that are not required in IEEE P1788.1. The corre3 sponding subclauses in IEEE Std $1788^{\mathrm{TM}}-2015$ are given in parenthesis.

4 The following operations required in the set-based flavor of IEEE Std $1788^{\mathrm{TM}}-2015$ are not required in IEEE 5 P1788.1:

All reverse-mode elementary functions (10.5.4)
Two-output division (10.5.5) mulRevToPair
Boolean functions of intervals (10.5.10)
less
precedes
strictLess
strictPrecedes
Reduction operations (12.2.12)
sum
dot
sumSquare
sumAbs
Exact text representation (13.4) intervalToExact
exactToInterval

