Inner addition and subtraction vs. Multidimensional RDM Interval Arithmetic (A discussion related to IEEE Standard 1788-2015)

Mehran Mazandarani Me.mazandarani@gmail.com Inner addition and subtraction

Let F_A and F_B correspond to two different robotic arms force F_A is about 2 and F_B is about 2. $F_A, F_B \in I\mathbb{R}$ $F_A = [1 3], F_B = [1 3]$ F_A BOX $F_R - F_A = 0$ $F_{\underline{A}}$ $F_{\underline{A}}$ BOX $(F_B - F_A) + F_A = F_A$ Restoration issue $F_B + (0 - F_A + F_A) = F_R$ Second solution 2

Inner addition and subtraction

Assume we have $2n \text{ robots } (n \in \mathbb{N})$ which are of the same (or different)type. For the sake of simplicity let they are the same type A. F_A corresponds to a robotic arm force.

 F_A is about zero. $F_A \in \overline{I\mathbb{R}}$ $F_A = [-1 \ 1]$

 $F_A + F_A + F_A + \dots + F_A = 0$

The box does not move !!

Self-Reduction issue

Multidimensional RDM Interval Arithmetic

Let F_A and F_B correspond to two different robotic arms force F_A is about 2 and F_B is about 2. $F_A, F_B \in I\mathbb{R}$ $F_A = [1 3], F_B = [1 3]$ вох $F_{B} = 2\alpha_{h} + 1, F_{A} = 2\alpha_{a} + 1$ $\alpha_a, \alpha_b \in [0,1]$ $F_{R} - F_{A} = 2(\alpha_{h} - \alpha_{a})$ $F_A - F_A$ BOX

 $(F_B - F_A) + F_A = F_B + (-F_A + F_A) = 2\alpha_b + 1$

Unique solution, and there is no Restoration issue

Multidimensional RDM Interval Arithmetic

Assume we have $2n \text{ robots } (n \in \mathbb{N})$ which are of the same (or different)type. For the sake of simplicity let they are the same type A. F_A corresponds to a robotic arm force.

Now, the box may move.

$$F_A + F_A + \dots + F_A = 2n(2\alpha_a - 1)$$

There is no self-reduction issue.