SSG on 3D-Test

- **Charter**
 - Inventorize need for and timeliness of standards in 3D test and DFT
 - If appropriate, formulate Project Authorization Requests (PARs) for starting up an IEEE Standard Development Working Group (SDWG)

- **Organization & Participation**
 - 60+2 participants from companies/institutes around the globe
 - Chair: Erik Jan Marinissen (IMEC)

- **Activities to date**
 - Active per January 2010
 - Public web site: http://grouper.ieee.org/groups/3Dtest/
 - Private web site and e-mail reflector for internal communication
 - Weekly WebEx conference calls (provided by Cisco Systems)
Organization Chart + URLs

- IEEE sponsors
 - Computer Society sponsors
 - TTTC sponsors
 - TTSC sponsors
 - SSG on 3D-Test

- SSG membership is open to professionals

- IEEE-SA
 - Provides facilities
 - Web hosting
 - E-mail reflector facility
 - Will own and publish resulting standards

SSG Members

Saman Adham	Jan Olaf Gaustedst	John Potter
Neetu Agrawal	Sandeep Goel	Bill Price
Lorena Anghel	Michelangelo Grosso	Herb Reiter
Patrick Y Au	Ruifeng Guo	Mike Ricchetti
Paolo Bernardi	Said Hamdioui	Andrew Richardson
Sandeep Bhatia	Klaus Helmireich	Daniel Rishavy
Craig Bullock	Michael Higgins	Jochen Rivoir
Krishnendu Chakrabarty	Gert Jervan	Volker Schöber
Sreejit Chakravarty	Hongshin Jun	Craig Stephan
Vincent Chalendard	Rohit Kapur	Eric Strid
Ji-Jan Chen	Ajay Khoche	Thomas Thärigen
Vivek Chickermane	Santosh J Kulkarni	Brian Turmell
CJ Clark	Michael Laisne	Jouke Verbree
Eric Cormack	Philippe Lebourg	Ioannis Voyiatzis
Adam Cron	Stephane Lecomte	Michael Wahl
Al Crouch	Hans Manhaeve	Min-Jer Wang
Shinichi Domae	Erik Jan Marinissen	Lee Whetsel
Ted Eaton	Teresa McLaurin	Yervant Zorian
Heiko Ehrenberg	Brandon Noia	+ Frans de Jong
Bill Eklow	Jay Orbon	+ Frank Pöhl
Klaus Förster	Ken Parker	

IEEE Intl. Workshop on Testing Three-Dimensional Stacked ICs (3-D-TEST’10) – November 4+5, 2010
© Erik Jan Marinissen - November 2010 – IMEC, Leuven, Belgium
SSG Participating Companies

- Agilent Technologies
- AMD
- ANALOG DEVICES
- ARM
- ASSET
- Cadence
- CASCADE
- CISCO
- GOPEL electronics
- IBM
- Mentor Graphics
- NXP
- Oasys
- Panasonic
- Q-Star
- QUALCOMM
- ST
- ST ERICSSON
- SYNOPSYS
- Texas Instruments
- TSMC
- VERIGY

SSG Institutes, Universities, Consultants

- TU Delft
- DTS Solutions Ltd
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- eda2asic
- GSA
- IMMS
- ITRI
- Industrial Technology Research Institute
- LANCASTER UNIVERSITY
- UNIVERSITÄT SIEGEN
- imec
- TTU1918
Identified Standardization Needs

During the SSG discussions, the following standardization needs were identified:

- **Die and Stack Test**
 1. DfT test access architecture
 2. Wafer probe interface

- **Access for Board-Level Users**
 3. Board-level interconnect test
 4. Access to embedded instruments

- **Test Data Formats**
 5. Wafer map and device tracking
 6. Standard Test Data Format (STDF)

1. DfT Architecture for Manufacturing Test

- **Motivation**
 - Die makers need to provide DfT, also for stack- and board makers
 - Interoperability between various dies required

- **Requirements**
 - Support (1) pre-bond die test and (2) post-bond stack test
 - Support modular test approach
 - Generic and scalable
 - Low cost
 - Few extra product pins
 - Leverage of existing DfT and DfT standards

- **Status**
 - PAR formulated, ready to be filed to IEEE
 - Two proposals by IMEC,
 based on 3D extension of IEEE Std 1500 and IEEE Std 1149.1
1. DfT Architecture for Manufacturing Test

IMEC Proposals

Functional Design
- ≥2 stacked dies, possibly core-based
- Inter-connect: TSVs
- Extra-connect: pins

Existing Design-for-Test
- Core: internal scan, TDC, LBIST, MBIST; IEEE 1500 wrappers, TAMs
- Product: IEEE 1149.1
1. DfT Architecture for Manufacturing Test

IMEC Proposals

Functional Design
- ≥2 stacked dies, possibly core-based
- Inter-connect: TSVs
- Extra-connect: pins

Existing Design-for-Test
- Core: internal scan, TDC, LBIST, MBIST; IEEE 1500 wrappers, TAMs
- Product: IEEE 1149.1

3D DfT Architecture
Test wrapper per die
- Based on IEEE Std 1500/1149.1
- Two entry/exit points per die:
 1. Pre-bond: extra probe pads
 2. Post-bond: extra TSVs

2. Wafer Probe Interface

Wafer Probing on TSVs / Micro-Bumps is Challenging
- Small pitch; small probe area
- Probe damage might impair downstream bonding

Wafer Probe Industry Would be Helped by Standardization
- Standard pad pitches
- Standard pad footprints
- Standard pad materials and designs
Benefits also for design, assembly, second sourcing, ...

Status
- Idea only, no proposals yet
- Started dedicated sub-team on this topic
3. Board-Level Interconnect Test

Board-Level Interconnect Test
- Via on-chip DfT, a.k.a. "JTAG": IEEE Std 1149.1 Test Access Port (TAP)

External I/Os distributed over Multiple Dies
- For example due to
 - Stacks with TSVs + wire-bonds
 - Pass-through-only TSVs
 - JTAG distributed over multiple dies
 - Board-level test needs to know this in a standardized view

Status
- Idea only, no proposals yet
- Discussion in SSG how likely this would happen in products

4. Access to Embedded Instruments

For Today's 2D Chips and Boards
- JTAG TAP reused for alternative purposes
 - BIST, diagnosis, silicon debug, FPGA progr., SW debug, etc.
 - Access to 'embedded instruments': monitors, sensors, etc.
 (IEEE P1687, a.k.a. "Internal-JTAG")

Extension to 3D-SICs
- Purpose: enable this type of usage also for 3D-SICs
- Stack might contain multiple TAP Controllers
- Status: three proposals so far
 - Mix of Existing Standards: 1149.7 (stack), 1149.1/6 (die), 1500 (core) (Asset-Intertech)
 - TAP Linking Module (Texas Instruments)
 - iMajik (Intellitech)
4. Access to Embedded Instruments

ASSET Proposal

Dot-7 is ideal for TSV Connection to a Star Architecture; it is Scalable

TI Proposal: TAP Linking Module + OCT

4. Access to Embedded Instruments

TI Proposal: TAP Linking Module + OCT
4. Access to Embedded Instruments

Intellitech Proposal: iMajik

[Clark – VTS’10]

5+6. Test Data Formats

- **Wafer Maps**
 - Pass/fail information per die

- **Inkless Assembly and Single-Device Tracking**
 - Die to wafer location and wafer processing
 - Die to assembly, packaging, and test processes
 - All dies in multi-chip package

- **Standard Test Data Format (STDF)**
 - File format for (diagnostic) IC test data collection
 - Currently at STDF-v4 (2007), developing JTDF

Standards

- SEMI G81/G85
 - obsolete
- SEMI E142
 - Already handles 3D?
- SEMI STDF-v4
 - Requires extension to 3D
5. Wafer Maps

SEMI E142

Source: Dave Huntley, Kinesys

Conclusion

- 3D-SIC: hot topic w.r.t. processing, design, and now also test
- 3D-Test Standardization Study Group active per January 2010
- Topics under discussion
 - Die and Stack Test
 1. DFT test access architecture
 2. Wafer probe interface
 - Access for Board-Level Users
 3. Board-level interconnect test
 4. Access to embedded instruments
 - Test Data Formats
 5. Wafer map and device tracking
 6. Standard Test Data Format (STDF)