August 8, 2001

754 Support

Jim Thomas

Hewlett-Packard
Company

Cupertino, CA
PH:408 447 5781
FAX:408 447 4924

jwthomas@cup.hp.com

C99 Floating-Point
History

IEEE 754 support a charter focus area for Numerical C
Extensions Group (NCEG) - 1989

Participation and consultation from IEEE 754/854
members

NCEG Technical Report -- 1995

NCEG merged into C9x committee

C99 became standard in 1999

August 8, 2001

C99 Floating-Point Specification
Organization

Basic FP specification for all implementations, not just

|IEEE

— common API for FP and math library

— complex arithmetic and library

Annex F

— additional specification for IEC 60559 (IEEE 754) implementations
— IEEE 754 binding and compatible elementary functions

— conditionally normative

Annex G

— specification for complex arithmetic for IEC 60559 implementations

— Informative

August 8, 2001

C99 Annex F
IEEE 754 Binding

Types

float 2 IEEE single
double = IEEE double
long double = IEEE double extended
else non-1EEE wide type, else IEEE double

Operators and functions

+, -, *, and / =2 |EEE add, subtract, multiply, and divide

sqrt() = square root

remainder() = remainder. remquo() same, with low order quotient bits.

rint() = rounds FP number to integer value (in the same precision)

nearbyint() > nearbyinteger in 854 appendix

conversions among floating types - IEEE conversions among FP precisions

conversions from integer to floating types = conversions from integer to FP

conversions from floating to integer types = IEEE-style conversions but
always round toward zero (inexact exception optional)

Irint() and llrint() 2 rounding mode conversions from floating point to

long int and long long int

August 8, 2001

IEEE 754 Binding

Operators and functions (cont.)

translation time conversion of floating constants and strtof(), strtod(),
strtold(), fprintf(), fscanf(), and related library functions =
IEEE binary-decimal conversions. strtold() = conv function in 854 annex.
Correctly rounded binary decimal conversion is required, between widest
supported IEEE type and decimal numbers with DECIMAL_DIG digits, where
DECIMAL _DIG digits suffice to distinguish all binary FP values

relational and equality operators = IEEE comparisons. Macro
functions isgreater(), isgreaterequal(), isless(), islessequal(),
islessgreater(), isunordered() = “quiet” comparisons

feclearexcept(), feraiseexcept(), fetestexcept() = test and
alter IEEE exception status flags. fegetexceptflag() and fesetexceptflag()
- save and restore all status flags (including any auxiliary state).
Use with type fexcept_t and macros FE_INEXACT, FE_DIVBYZERO,
FE_UNDERFLOW, FE_OVERFLOW, FE_INVALID

fegetround() and fesetround() = select among IEEE rounding modes
Macros FE_TONEAREST, FE_UPWARD, FE_DOWNWARD,
FE_ TOWARDZERO = IEEE rounding modes. Values 0, 1, 2, 3
of FLT_ROUNDS = IEEE rounding modes

August 8, 2001

IEEE 754 Binding

Operators and functions (cont.)

fegetenv(), feholdexcept(), fesetenv(), and feupdateenv() = manage
status flags and control modes, facilitate hiding exceptions
FENV_ACCESS ON pragma, with file or block effect, required for well defined
behavior of code that reads flags or runs under non default modes
copysign() > copysign in 754 appendix
unary minus (=) = minus (-) operation in 754 appendix
scalbn() and scalbln() = scalb in 754 appendix (scalbln() has long int
second parameter)
logb() = logb in 854 appendix. ilogb() like logb() except returns type int
nextafter() and nexttoward() = nextafter in appendix, except returns y
if x = y. nexttoward() doesn’t clamp a wide direction argument
isnan() macro = isnan function in appendix . Inquiry macros are type
generic
isfinite() macro = finite function in Appendix. Also there’s isinf() and isnormal()
signbit() and fpclassify() macros with number classification
macros FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO =2 class function in Appendix (except for signaling NaNs)

August 8, 2001

IEEE 754 Binding

Special values

INFINITY and NAN macros =2 +infinity and a quiet NaN. Usable for
static and aggregate initialization

sign respected for zero and infinity

I/0 supports inf, infinity, nan, nan(n-char-sequence). Interpretation
of n-char-sequence is implementation defined. Input case insensitive. User
choice of upper or lower case (e.g. INF or inf) for output

nan() function takes “n-char-sequence” argument and constructs NaN at runtime

Not supported (though not disallowed)

trap handling (except with SIGFPE)
signaling NaNs
NaN significands (except for n-char-sequences)

compile-time mode and flag access

tried to specify trap handling and signaling NaNs, but found insufficient

prior art and use, IEEE 754 guidance, inspiration

August 8, 2001

IEEE 754 Related Specification

Expression evaluation
Elementary functions

Complex arithmetic

August 8, 2001

IEEE 754 Related Features
Expression Evaluation

File or block pragma FP_CONTRACT allows or disallows contraction

optimizations (e.g. fused multiply add synthesis). FP_CONTRACT ON
can be default

Other value changing optimizations disallowed
fma() guarantees fused multiply add
3 well-defined expression evaluation methods

1) evaluate each operation and floating constant to semantic type
2) widen float operations and floating constants to double
3) widen float and double operations and floating constants to long double
Evaluation type may be wider than semantic type — wide evaluation does not
widen semantic type

Assignments, casts, and argument passing convert to semantic type
FP_EVAL METHOD macro identifies method in effect
Implementation may provide any, all, or none of these methods

“Widest-need” evaluation allowed but not specified. Specified in NCEG
Technical Report but not in C99 because of lack of prior art

August 8, 2001

August 8, 2001

IEEE 754 Related Features
Wide Evaluation

Types float_t and double_t match evaluation types for float and double

Inclusion of <tgmath.h> makes type of math function be determined by its
argument

Wide evaluation example:
#i ncl ude <tgmath. h>
float x, vy, z;
float t ss;
SS = X*X + y*y;
z = sqrt(ss);
computes sqrt(x*+y?) entirely in the evaluation type and converts to float

only in the last assignment

C99-portable code — uses wide evaluation if available

IEEE 754 Related Features
Elementary Functions

Three fully supported real types: float [double [J long double

C89 math library
acos asin atan atan2 cos sin tan cosh sinh tanh exp frexp | dexp I og
| 0g10 nodf pow sqrt ceil fabs floor fnod

C99 math additions
erf erfc | gamma tgamma hypot acosh asinh atanh cbrt expnil il ogb | oglp
| ogb nextafter remainder rint isnan isinf signbit isfinite isnornal
fpclassify isunordered isgreater isgreaterequal isless islessequal
| sl essgreater copysign |og2 exp2 fdimfrmax fmn nan scal bn scal bl n
nearbyint round trunc renguo lIrint lround Ilrint |lround fma nexttoward

C99 floating-point environment library
fecl earexcept fegetexceptflag ferai seexcept fesetexceptflag fetestexcept
fegetround fesetround fegetenv fehol dexcept fesetenv feupdateenv

August 8, 2001

IEEE 754 Related Features
Elementary Functions - Special Cases

(math_errhandling & MATH_ERREXCEPT) tests for 754-style exception flags
- required by Annex F
(math_errhandling & MATH_ERRNO) tests for errno support
Annex F has detailed specification of special cases for real functions
IEEE 754 meaning of exceptions
exceptions required only under FENV_ACCESS ON
functions that are essentially always inexact are not required to raise inexact
functions may raise inexact if result is exact (implementation defined)
functions may raise underflow if result is tiny and exact (implementation defined)
functions may or may not honor rounding directions (implementation defined)
specifies numeric result instead of NaN if numeric result is useful in some significant

applications - CONTENTIOUS

August 8, 2001

IEEE 754 Related Features
Elementary Functions — Special Cases

Contentious special cases:
atan2(x0, -0) = %pi, atan2(x0, +0) = 0
atan2(xinf, —inf) = x3pi/4, atan2(xinf, +inf) returns £pi/4
hypot(xinf, y) = +inf, even if y is a NaN
pow(-1, xinf) = 1
pow(+1, x) = 1 for any x, even a NaN
pow(x, £0) = 1 for any x, even a NaN
pow(-inf, y) = +0 for y<O and not an odd integer
pow(-inf, y) = —inf for y an odd integer > 0O
pow(-inf, y) = +inf for y>0 and not an odd integer
iIf just one argument is a NaN, the fmax and fmin functions return the other

argument

August 8, 2001

IEEE 754 Related Features
Complex Arithmetic

Three complex types: float complex, double complex, long double complex
Annex G specifies three imaginary types: float, double, and long double imaginary
Operands not promoted to a common type domain (real, imaginary, complex)

e.g. r(u + vi) =ru + rvi, not (r + Oi)(u + vi)

provides natural efficiency and better treatment of special values

e.g. Ui Ui = -, not (1 + 0i)(0 + i)(U + 0i)(0 + i) = NaN + NaNi

Infinity properties
for z nonzero and finite

Oxz=0 0O+0=0 O/sz=0 Oro=0
z/[]=0 osl=0 z/70=] 1Lh1=0
even for complex and imaginary z, 0s, and infinities

a complex value with at least one infinite part is regarded as infinite (even if
the other part is NaN)

CX _LIMITED_RANGE ON (file or block) pragma allows implementation to
deploy simpler code and forgo infinity properties

August 8, 2001

IEEE 754 Related Features
Complex Arithmetic, Functions

Sample implementations of multiply and divide use just one isnan test to condition
special case code
Multiply and divide must raise deserved exceptions and may raise spurious ones
Imaginary unit |
float imaginary constant

X + y*I, where x, y are of same real type, requires no actual FP ops

Complex library

cacos casin catan ccos csin ctan cacosh casi nh catanh ccosh csinh ctanh
cexp clog csqgrt cabs cpow carg conj cimg cproj creal

Inclusion of <tgmath.h> makes math functions generic for real, complex, and imaginary.
exp(z) = cexpf(z), if z is float complex
sin(y*1) = sinh(y)*I, if y is double

cos(y*1l) = coshl(y), if y is long double

August 8, 2001

IEEE 754 Related Features
Complex Functions — Special Cases

Annex G specifies non NaN results for special cases where useful for
preserving magnitude or direction information - CONTENTIOUS
cexp(-inf+iNaN) = £0+i0 (where the signs of the real and imaginary parts of
the result are unspecified)
csqgrt(x+iinf) returns +inf+iinf, for all x (including NaN)
cacos(+inf+iinf) returns pi/4-iinf

creal(x, iNaN) = x

August 8, 2001

C99 Support for IEEE 754
Reception

C99 represents a 10 year, good faith effort by a language standard group, with lots of
help from the numerical community, to support IEEE 754
Being picked up by next Unix standard
Impact on next C++ standard TBD
Several vendors have implemented, or are implementing, all or part
HP-UX C for Itanium has essentially all of C99 FP
Careful, useful (reasonable performance) implementation requires great attention to
detail, beyond what can be expected of compiler teams
ROI seen as greater for performance work
Customer demand (for features beyond basics) seen as low, customer appreciation TBD
Needs support from numerical community
affirmation of value

demonstration of utility

August 8, 2001

