Overview

- Background

- Requirements for decimal layouts

- Design decisions
 - Overall representation
 - Coefficient, exponent, and special values
 - 'Strawman' proposal

- Questions?
Why is decimal arithmetic important?

- Decimal arithmetic represents numbers in base ten, so uses the same number system that people have used for thousands of years.

- Pervasive for financial and commercial applications; often a legal requirement.

- 55% of numeric data in commercial databases are decimal (and a further 43% are integers).
Programming trend is towards decimal arithmetic

- Java: BigDecimals since 1996, rounding floating-point in next release (Java 1.5)

- C#: decimal is a native (scalar) type, from .Net (ECMA 334 & 335; ISO this year)

- 'Commercial' languages (COBOL, PL/I, Visual Basic, etc.) all have native or library decimals

- **But:**
 - decimal formats are all different
 - software is 100–1000 times slower than hardware
Why standardize layouts?

- Need to move to hardware to get performance
- Not realistic to go to hardware without agreed Standard layouts
- IEEE 854 without standard layouts is a partial standard; it cannot be implemented without invention
- Standard layouts will allow sharing of decimal data more easily (software or hardware)
Requirements for decimal layouts

- Must be able to represent numbers and values required for IEEE 854 arithmetic

- Must be able to represent decimal numbers and values used in languages and databases today (Java, C#, COBOL, Rexx, SQL, etc.)

- Should be efficient for hardware or software
 - Conversions to and from BCD and character strings are especially important in decimal applications
Why preserve trailing zeros?

- **Currency**
 (1 Andorran Franc = 11.29870 Algerian Dinar)

- Often indicates precision of a measurement
 - "Turn left after 14 miles" vs. "Turn left after 14.0 miles"

- 'Scaled' data in databases and languages

- Numbers as labels (section 3.2 vs. section 3.20)

- Often preserves alignment (e.g., summing prices)

- Human-centric applications (follow manual processes)
Decimal Arithmetic (digression)

- As binary floating-point, except that addition and multiplication are exact and unrounded if possible
 - 1.23 + 1.27 gives 2.50 (not 2.5)
 - 1.2 x 1.2 gives 1.44 (not 1.4); 1.2 x 1.5 gives 1.80
 - Results rounded only if they exceed precision available
 - Rounding modes as IEEE 754 plus 'round-half-up'

- Wholly compatible with IEEE 854
 - A 'redundant encoding'

- Representation in languages and databases is always two integers: coefficient and exponent
Decimal representation of 1234.50

- Traditional view: decimal integer and 'scale'
 - 123450
 - 2

- Floating-point view: coefficient and exponent
 - 123450
 - -2

- Integer coefficient allows preservation of trailing zeros
Representation of the coefficient

- **A.1** Binary (plain base 2 binary integer)
 - maximum 38 digits in 16 bytes, 33 with exponent
 - decimal arithmetic is expensive (shifting, rounding, and conversions require multiplication or division by 10^n)

- **A.2** Binary Coded Decimal (BCD), 4 bits/digit
 - maximum 31 digits in 16 bytes, 28 with exponent
 - insufficient precision (32 digits required)

- Closely packed decimal (10 bits for 3 digits)
 - maximum 38 digits in 16 bytes, 33 with exponent
 - fast, and sufficient precision
Closely packed decimal

- Base 1000 (0x000 through 0x3e7 in 10 bits)
 - expensive to convert to and from BCD

- **A.3** Chen-Ho (Huffman encoded in 10 bits)
 - 3 gate delays to convert to or from BCD

- **A.4** Densely Packed Decimal (enhanced Chen-Ho)
 - not limited to multiples of 3 digits (allows arbitrary lengths)
 - can be lengthened by padding (no re-encoding needed)
 - same as BCD for numbers 0 through 79

(Note: a patent application has been filed for DPD)
Representation of the exponent

- **B.1** Binary twos-complement
 - familiar; 0 exponent is all-zero bits

- **B.2** Binary with bias (unsigned exponent)
 - exponent comparison and manipulation simpler
 - already used in IEEE 754; can use same widths

- **B.3** BCD (4 bits/digit)
 - significantly reduced exponent range (e.g., for an Emax of 999, 4 digits (16 bits) are needed)
 - exponent widths cannot be the same as IEEE 754
Representation of NaNs and $\pm\infty$

- **C.1** Reserved values of exponent, as in IEEE 754
 - 'free', for binary-encoded exponents, especially if Emax is 10^{n-1} (e.g., +999)
 - test for zero changes to: ' if (c==0 && exp!=0x7ff) ' (etc.)

- **C.2** Other reserved values
 - all-zeros can be signaling NaN ("uninitialized")
 - values can be adjacent and independent of coefficient
 - specials have same value (0, 1, 2) regardless of size

- **C.3** Separate bits
 - can reduce coefficient precision by a whole decimal digit
Ordering of the fields

- **D.1** Exponent before coefficient
 - follows existing precedent (IEEE 754, etc.)

- **D.2** Coefficient before exponent
 - more like 'written form' (1.23E+7)
Length of the exponent

- **E.1** Follow IEEE 754 and IEEE 754R quad
 - It turns out that these lengths are excellent for decimal-related limits.
 - 11 bits gives ±999 (Emax=999)
 - 15 bits gives ±9999 (Emax=9999)

- Following IEEE 754 also argues for a biased exponent (choice B.2), as the bias can be the same (potentially sharing circuitry)
Current 'strawman' proposal

- 64-bit (1 sign, 11 exp., 2 pad, 50 coeff.), 3+15 digits

- 128-bit (1, 15, 2, 110), 4+33 digits
We've called the 64-bit and 128-bit layouts 'single' and 'double' respectively. Is this best?

A 32-bit format would be possible, but would not be quite the same layout as IEEE 754 single:

1 sign, 7 exp., 24 coeff., 2+7 digits (E_{max} = 49)
Next step?

http://www2.hursley.ibm.com/decimal