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 Secure multicast transport 
 

Mick Seaman 
 

This note discusses the mechanisms that secure the distribution of keys 
in KSP [1]. These mechanisms can also support other multicast 
protocols. Performance related aspects of parts of the KSP design are 
also discussed in [2]. 

Two-party protocol 
Consider the well-known protocol 
 SA → {A, RA}M   (2-1)  
 SB → {B, RB, A, RA}M (2-2)  

 SA: K = RA ⊕ RB (2-3)1 
 SA → {A, RA, B, RB}M (2-4)  
 SB: K = RB ⊕ RA (2-5)  
or one of its close relatives. 
In this protocol, stations SA and SB exchange 
random numbers  RA and RB to establish a 
common pair-wise key, K. Each of the 
messages is protected by a master key M. If that 
key has only been entrusted to parties that can 
be trusted to operate the protocol correctly, then 
the protocol: 
a) proves mutual possession of the master key 
b) proves liveness, i.e. the stations possessing 

the key are operational 
c) results in a shared key, that can be used to 

protect subsequent communication between 
SA and SB. 

The subsequent communication could itself be 
used to protect the exchange of further keying 
material. However for this communication to be 
generally robust, it needs to be protected 
against attacks that misorder or replay 
messages. This can be simply done by the 
addition of a sequence number, initialized to 
zero or one when the nonce R is chosen, to 
each message. So the communication might 
proceed as follows: 
 SB → {A, B, NB, DB}K (2-6a)  
 SA → {B, A, NA, DA}K (2-7a)  
Here the symbol N is used to denote each 
sequence number. The data exchanged is D. 
If proof of ongoing timeliness of this 
conversation  is required, to protect against an 
attacker delaying data to disrupt the operation of 
a configuration protocol, this can be easily 
achieved by each of the stations reflecting back 
the last N value received from the other: 
 SB → {A, NA-, B, NB, DB}K (2-6)  
 SA → {B, NB, A, NA, DA}K (2-7)  
Some of the data D may be reflected as well, but 
that is outside the scope of this discussion. 

                                                      
1 The symbol ⊕  denotes ‘exclusive-or’ 

N-party protocol 
It is clear from the basic two-party protocol that 
knowledge of the variables RA and RB is 
sufficient to derive K, while possession of K 
implies possession of M.  So, assuming that any 
attacker has full control of the communication 
channel and a transcript of all past messages, 
the message 
 { ...  }K  (i) 
with message body “...” is equivalent, from the 
point of view of protection and authentication of 
communication between SA and SB, to the 
message 
 { RA, RB, ... }M (ii)  

up to the point that there is a risk of key M 
having been used too many times. 
Likewise, the message 
 { NA, NB,  ...  }K (iii) 
is equivalent to 
 { RA, NA, RB, NB,  ... }M (iv)  
The objective of the KSP’s multicast key 
distribution mechanisms is to replace multiple 
two-party exchanges, between a number of 
stations, with a multicast exchange, thus using a 
protocol that is O(n) in the number of messages 
sent rather than O(n2) – n being the number of 
participating stations. If, for example, there are 
three participating stations, SA, SB, and SC then 
instead of using the two party protocol to derive 
 KAB =  RAB ⊕ RBA  
 KBC =  RBC ⊕ RBC  
 KCA =  RCA ⊕ RAC  
 
and then sending messages 
 {A, NA, B, NB,...  }KAB     
 {A, NA, C, NC,...  }KAC     
 {B, NB, A, NA,...  }KAB     
 {B, NB, C, NB,...  }KBC     
 {C, NC, A, NA,...  }KAC     
 {C, NC, B, NB,...  }KBC     
 
the n-party protocol establishes RA, RB, and RC, 
and sends messages of the form 
 {A, RA, NA, RB, NB, RC, NC,...  }M 

 {B, RA, NA, RB, NB, RC, NC,...  }M  
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 {C, RA, NA, RB, NB, RC, NC,...  }M    
The gain in simplicity over a protocol that 
attempts to reconstruct multicast capability from 
n-way point to point dialogue is actually greater 
than appears from simply counting the 
messages required to convey fixed data, as 
anyone who has attempted this general 
conversion knows. In practice a restriction to the 
use of point-to-point secure capabilities is 
probably better handled by accepting the 
complexity and performance impact of electing a 
designated station, which then allows an O(n) 
protocol solution. 
To allow a straight forward comparison between 
the n-party and two-party protocols, it is 
convenient to examine the former as supporting 
a contributory key agreement protocol, as the 
two party protocol does, rather than as a 
transport for key distribution. For three parties: 
 SA → {A, RA, NA }M   (n-1A) 
 SB → {B, RB, NB }M   (n-1B) 
 SC → {C, RC, NC }M   (n-1C) 
 SA → {A, RA, NA+, RB, NB, RC, NC }M (n-2A) 
 SB → {B, RA, NA, RB, NB+, RC, NC }M (n-2B)  
 SC → {C, RA, NA, RB, NB, RC, NC+ }M (n-2C)  

 SA: KB = RA ⊕ RB ⊕ RC (n-3A.B) 
 SA: KC = RA ⊕ RB ⊕ RC (n-3A.C) 
 SB: KA = RA ⊕ RB ⊕ RC (n-3B.A) 
 SB: KC = RA ⊕ RB ⊕ RC (n-3B.C) 

 SC: KA = RA ⊕ RB ⊕ RC (n-3C.A) 
 SC: KB = RA ⊕ RB ⊕ RC (n-3C.B) 
and as a result of execution of the protocol not 
only do SA, SB, and SC have the same values for 
the keys KA, KB, and KC to be used for data 
transmission, but KA = KB, = KC. 
It is of course unlikely that the protocol, in the 
absence of a master clock and station 
synchronization – neither of which is naturally 
available on a LAN, would result in a sequence 
of messages so neatly organized into two 
rounds of transmission followed by the key 
calculations. This doesn’t matter: the 
calculations of KA at (n-3B.A) and (n-3C.A) only 
depend on receipt of the message sent at (n-
2A), and similar observations apply to the 
calculations of KB and KC. 
The conditions for assigning values to keys in 
this protocol are the same as, and serve to 
illustrate, the conditions for accepting data 
conveyed by the more general application of the 
protocol. A station SX only accepts data from a 
station SY if that is transported in a message 
that: 
a) contains RX and an acceptably recent NX 2 

                                                      
2 I don’t believe checking NX is required if proof of timeliness of 
data delivery is not an objective. I don’t believe that there is any 
requirement to verify that the NX received is at least as recent as 
any other NX parroted back from SY, though caution may be 
required to ensure that this is not implied by a proof. 

and 
b) if a message containing RY has previously 

been received, then NY is greater than the 
NY received in that previous message3. 

Of course the same conditions cannot be 
applied to recording a received RY, NY  tuple for 
inclusion in subsequent messages, or the 
protocol would never get started. In this case the 
appropriate checks are simply that either 
a) there is no existing record of RY  
or 
b)  NY is greater than that currently recorded 

for RY. 
It is worth noting in passing that although KSP is 
deliberately based on key selection and 
distribution, rather than on contributory key 
agreement, and thus uses the N-party protocol 
describe here purely as a secure multicast 
transport, the use of a contributory key 
agreement protocol based on the foregoing 
description may just meet our goals for 
MACsec4, and may be somewhat easier to 
prove secure. In any case it is always nice to 
have realistic alternatives to spur examination of 
assumptions.  I believe some improvements are 
required for the result  to be satisfactorily robust, 
but that can be achieved without diminishing the 
security properties of the basic N-party protocol 
just described5 6. 

KSP Terminology and Design 
It should be readily apparent that the foregoing 
is a explanation of how the distribution of keys is 
secured in KSP, rather than a description of the 
KSP design process. Hopefully the explanation 
will make the design more intelligible to those 
familiar with the two-party key exchange 
protocol7. There follows a description of the 
correspondence between the above terminology 
and that used in KSP [1]. This description 
naturally leads into a summary of the design 
approach actually used to develop the key 
transport component of KSP. 
In KSP, each of the random values R is referred 
to as an “Member Identifier”, MI, and the 
corresponding N value as the “Member Age”, 
MA. The latter reflects the fact that the MA 
values are incremented with reference to a local 
clock so it is easy for a station SX to determine 
whether a reflect value of MAX by SY guarantees 
                                                      
3 Implementation of the timeliness check on NX  helps here as it 
limits the time for which a record of receipt of RY needs to be 
retained. 
4 I think KSP can scale to more participants, but KAP (Key 
Agreement Protocol) may prove adequate for providing bridging 
requirements. 
5 And that this contention is itself easy to prove. 
6 [3] provides some food for thought. 
7 I should acknowledge the very useful discussion with John Viega 
at the Portland meeting , which encouraged me to write this note. 
However the claims and presentation here, together with any 
deficiencies, are my own fault. 
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that the message from SY has been delivered 
without undue delay. 
The design philosophy of KSP is that each 
participating station participates within the 
protocol as an “instance” of itself, the duration of 
the instance representing a continuous period 
during which the station can remember both its 
“Instance identifier” (“member identifier”) and all 
values derived from or subordinate to that 
instance. Instance identifiers are chosen at 
random, and a new identifier is always chosen 
after a station has been reset and usually after 
each time that station powers up. A new 
instance identifier is also chosen if any of the 
number spaces derived from or related to the 
instance identifier is exhausted or close to 
exhaustion8. Instance identifiers, i.e. member 
identifiers, are chosen from a space so large 
that they are vanishingly unlikely to be reused by 
accident. 
A newly chosen member identifier, MI, together 
with the space of all possible “member ages” 
(“instance ages”), MA, and a given master key 
M represents a set of problems, i.e. encryption 
or integrity protection of a message containing 
the tuple MI, MA with the key M, that are 
deemed to be practically impossible (from the 
protocol’s point of view) unless the station 
solving the problem possesses key M. 
No station SY, possessing M and executing the 
protocol correctly9,  includes an MIX, MAX where 
MIX ≠ MIY in a message before it has received 
that MIX, MAX in a message from another 
station. Given the size of the MIX number space 
we are justified, within the probabilistic 
guarantees provided by the protocol, in 
assuming that MIX ≠ MIY if SX ≠ SY. Hence if SX 
transmits MIX, MAX tuples in MAX order, and 
receives an MIX, MAXn tuple in a message, with 
a value of MAXn not transmitted by SX earlier 
than a known time before the current value of 
MAX, then SX can be sure the message was 
transmitted by a station possessing M within the 
interval between that time and the time of 
receipt. Because KSP is idempotent in respect 
of the further data carried in protocol messages, 
that is a sufficient security guarantee. 
However the guarantee can be tightened, 
without additional message fields, by 
considering the receipt of pairs of tuples MIX, 
MAX ; MIY, MAY by SX from (or apparently from) 
SY and not only applying the timeliness check to 
but also requiring the values of  MAX and MAY to 
be not less than the values of those variables in 
                                                      
8 Although those number spaces may be exceedingly large and 
thus almost “impossible” to exhaust, sound protocol design 
requires that the protocol recover from any state (whether thought 
impossible or not)  to a known state following a known bounded 
time during which all messages conform to the protocol and are 
received by their intended recipients. Reusing an instance 
identifier ensures that this rule is not broken by the possibility of 
an exhausted space. 
9 Correctness of any instance of KSP depends on all members 
possessing M and participating in that instance executing the 
protocol correctly. 

any prior message containing MIX and MIY. This 
tighter guarantee protects the rest of KSP from 
replay attacks. 
In KSP the station identifiers, referred to as A, B, 
C, .. in the protocol descriptions above, are 
actually the Secure Channel Identifiers (SCIs) 
used in the MACsec protocol. Since  MIY  
(corresponding to RY above) does not appear in 
the MACsec data frames transmitted by SY, and 
the key used by SY could for a period differ from 
the key used by some SZ, it is necessary to bind 
MIY to SCIY. Obviously, in line with the 
guarantees above, a station SX wishing to 
receive from SY does not perform that binding 
unless the binding has been received in a 
protected message purportedly from the station 
with MIY and SCIY and meeting the MIX and MIY 
guarantees described above. 
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