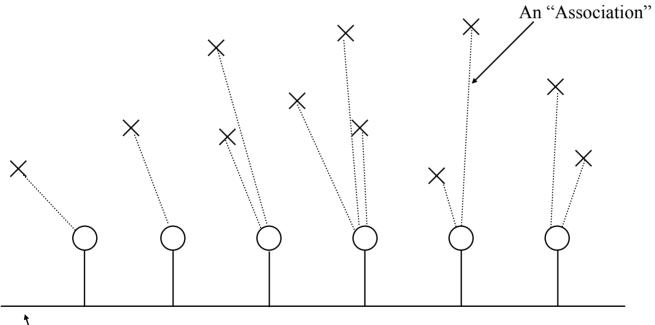
Media Independent MAC Enhancements for RF Management of Wireless 802 Networks

An Introduction

Overview

- Into to 802 Wireless Networks
- What is "RF Management"
- Why a standard is needed
- Why a common interface is needed
- What would such an interface look like in the IEEE 802 architecture


Brief Intro to IEEE 802 Wireless Networks

- Various MACs exist or are under development
 - E.g. 802.11, 802.15, 802.16, 802.20, 802.22
- I will talk about 802.11 as an example
- Infrastructure vs. Ad Hoc
 - I will talk about Infrastructure as an example

APs and STAs

 \bigcirc = Access Point

X = Station (STA)

"Distribution Service" (DS) – often a wired LAN

Overview (continued)

- APs can operate on one of several channels
 - E.g. 802.11 b/g supports 3 non-overlapping channels
 - E.g. 802.11 a supports 8 or more non-overlapping channels
 - Channel selection is not part of the standard
 - The vast majority of products come pre-configured to a channel (mostly the same one)
- STAs make associations with APs
 - How a STA chooses an AP is not part of the standard
- Transmit power of APs and STAs
 - Usually set at factory to a regulatory max (or less).
 - Sometimes manually adjustable
 - How a radio selects a transmit power level is not part of the standard.

doc.: IEEE 802.1-04/xxxr0

What is RF Management?

- Sometimes it's useful to:
 - cause the APs to select different channels
 - To avoid "co-channel interference"
 - To distribute energy across the spectrum within a given geographical area
 - adjust the transmit power
 - See above
 - Enhanced privacy
 - direct STAs to associate to certain APs
 - For load balancing purposes
 - To manage interference issues
 - For other considerations of QoS
 - To enforce other sorts of policies
 - enquire of APs and STAs their sense of the RF environment
 - E.g. what other STAs and APs can you hear and at what signal strength?
 - Detection of "Rogue APs"
 - Detection of attempted intrusions
 - To gather locality information about APs or STAs
 - stuff we may not yet have considered

Why Standardization

- Different chip sets report signal strength in different ways
 - Sometimes just a relative signal strength (RSSI) in dB
 - Sometimes an absolute power measurement in dBm
- There is no standard interface to set transmit power
 - Management applications must muck about in the chip driver
 - Management applications must be ported individually to every bit of hardware
 - Optional OIDs for NDIS exist but doesn't address non-Windows devices
- There is no interoperability between different management applications
 - MIBs are not up to date
- Even if more attention were paid to MIBs, each is crafted individually by the different "dots"
 - Would be like having spanning tree for 802.3 and Source Routing for 802.5!
 - Boxes will be built that will interconnect different wireless technologies e.g. 802.16 to connect to the ISP, and 802.11 to connect to the home LAN.
- The lack of a standard RF management interface for different implementations of a given MAC as well as different wireless MACs discourages multi vendor, interoperable Wireless Network management

Why interoperability is so important for Wireless Networks

- All the usual reasons plus:
 - Radio waves do not respect administrative boundaries
 - Neighbors cannot cooperate on channel selection even if they wanted to
 - Increasingly dense deployments, and all the APs don't belong to the same owner!
 - You can control access but you can't control the laws of physics

Why 802.1

- This issue spans all wireless MACs
 - Requires input from all Wireless MACs
- This is architecture
 - 802.1 has the most protocol expertise
 - 802.1 has the most management expertise
- 802.1 is the logical place to develop standards which may make use of the interface

Examples of what the interface might look like

MA-UNITDATA.indication

Example modifications to the semantics of the 802.11 **MA-UNITDATA.indication** service primitive are underlined.

```
MA-UNITDATA.indication (
source address,
destination address,
routing information,
data,
reception status,
priority,
service class,
received power
```

The received power parameter specifies the signal strength, expressed in dBm, at which the MSDU was received.

doc.: IEEE 802.1-04/xxxr0

MLME Example

MLME-SCAN.request (

Channel List Scan Time Quiet Channel CTS Duration

)

MLME Example

MLME-SCAN.indication (
Channel List
BSS List

Contact

Floyd Backes
Propagate Networks, Inc.
125 Nagog Park Drive
Acton, MA 01720
+1.978.264.4884
fbackes@propagatenet.com