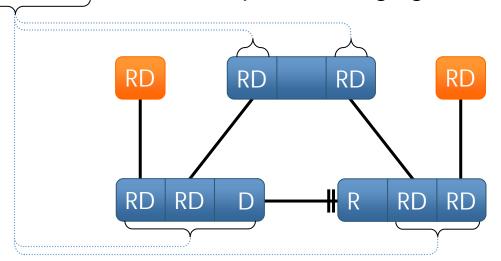

Agenda

- > GARP basics
- > GARP weaknesses
 - Slow convergence
 - Slow processing
- > Modifications for faster operation in GARP
 - Faster convergence
 - Faster processing
- > Conclusion

GARP basics (1/2)

- > The Generic Attribute Registration Protocol (GARP):
 - Automatically registers, maintains, de-registers, disseminates attributes
 - Supports GARP-based applications for specific attributes (e.g. GVRP, GMRP)
- > The GARP Information Propagation Component (GIP Component) propagates attributes between ports participating in a same application:
 - An end station Declares (D) an attribute
 - The bridge port connected to this end station Registers (R) this attribute
 - This attribute is propagated by the GIP Component and Declared (D) on other participating bridge ports
 - Those bridge ports eventually propagate this attribute over the active topology



SARP state machines periodically transmit attribute information over the active topology defined by the running R/M/STP

GARP basics (2/2)

The GIP Context is the set of ports belonging to the active topology

- > The addition or removal of a port from the GIP Context can be either:
 - Controlled (e.g. via management)
 - Uncontrolled (e.g. after a topology change)
- SARP tries to minimize control traffic to preserve bandwidth
 - Transmits periodically relying on 3 timers

3 timers	Min	Max	
Join	0 ms 200 ms		
Leave	600 ms		
LeaveAll	10 s 15 s		

GARP weaknesses

3 timers	Min	Max	
Join	0 ms	200 ms	
Leave	600 ms		
LeaveAll	10 s	15 s	

> GARP weaknesses:

Convergence:		When?	Why?	
	Slow	New Declaration	Dominated by Join	
	Very Slow	Withdrawn Declaration	Dominated by Leave	
	Extremely Slow	Topology Change Dominated by Leave		
	Incorrect	Removed Port	Deficiency in GIP	

• Processing: slow on bridges with many ports

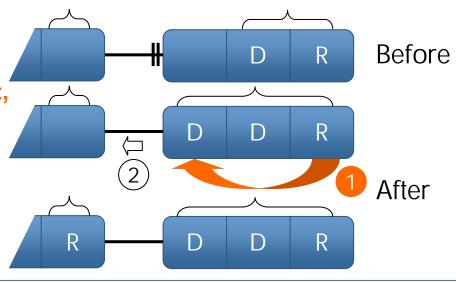
Modifications for Faster Operation in GARP

- > We propose modifications to GARP that overcome its weaknesses by:
 - Speeding up GARP convergence
 - Reducing GARP processing
 - How? By making GARP more proactive (à la RSTP)
 With NO modification to GARP timer values
 With NO modification to GARP state machines
 With NO significant increase in GARP control traffic
 Yet maintaining backward compatibility with GARP

Modifications for Faster Operation in GARP

Speeding up GARP convergence

Propagating registered attributes to a port when adding the port to the GIP Context

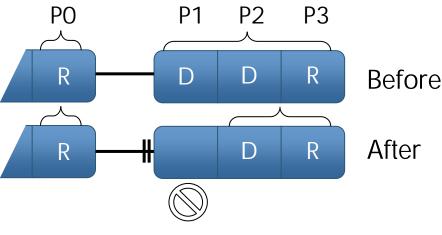

> With **GARP**:

- P1, when added to the GIP Context, is not aware of attribute(s) registered on other port(s)
- P1 has to wait for LeaveAll timer to expire on P3 (up to 15+s) before P3 propagates GID_Join.request(s) to P1

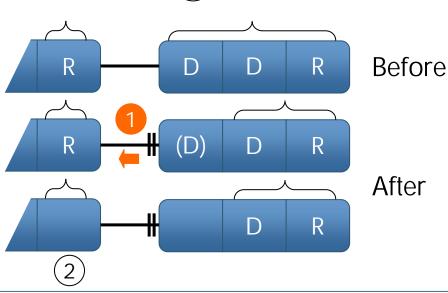
PO P1 P2 P3 Before D R After

> Proposed modification:

- P1, when added to the GIP Context, receives GID_Join.request(s) immediately propagated by other port(s) with registered attribute(s)
- (2) As a consequence, P0 can register the attribute(s) declared by P1 faster



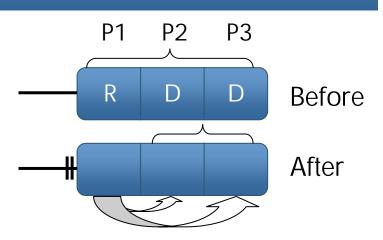
Transmitting a LeaveEmpty message when removing a port from the GIP Context


> With **GARP**:

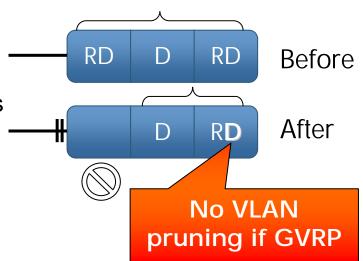
- P1, when removed from the GIP Context, does not inform P0 that it should drop registered attribute(s)
- P0 has to wait for its LeaveAll timer to expire (up to 15+s) before it can drop its registered attribute(s)

> Proposed modification:

- 1 P1, when removed from the GIP Context, transmits a LeaveEmpty message for each attribute declaration that it made
- As a consequence, P0 can drop its registered attribute(s) faster



Deficiency in GIP when removing a port from the GIP Context (1/2)


> With **GARP**:

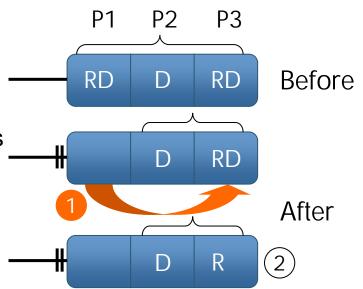
"If a port is removed from the set, and that port has registered an attribute and no other port has, then GID_Leave.requests are propagated to the GID instances for each of the other Ports in the set."
 (IEEE Std 802.1D-2004 p82)

This is correct

However:
 if a port is removed from the set, and
 that port has registered an attribute and
 one other port has, then GID_Leave.requests
 are not propagated to the GID instances
 for each of the other Ports in the set.

This is not correct

Incorrect convergence

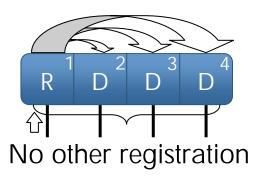


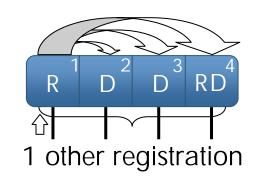
Deficiency in GIP when removing a port from the GIP Context (2/2)

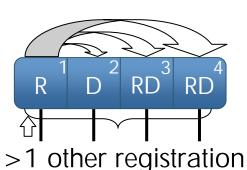
> Propagation of GID_Leave.requests to other port(s):

	Standard	Proposal
No other registration	Yes	Yes
1 other registration	No	Yes
>1 other registration	No	No

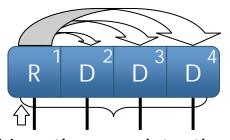
- > Proposed modification:
- Add:
 if a port is removed from the set, and
 that port has registered an attribute and
 <u>one other port</u> has, then GID_Leave.requests
 <u>are</u> propagated to the GID instances
 for that other Port.
- (2) Declaration removed and propagated
- > Correct convergence

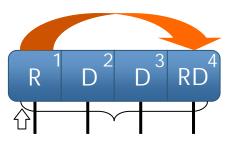

Modifications for Faster Operation in GARP

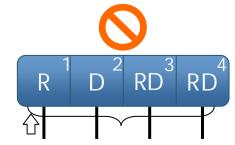

Reducing GARP processing



Selectively propagating GID_Join.requests when registering an attribute


> When registering an attribute, GARP propagates GID_Join.requests to all other ports regardless of existing registrations on those other ports




> Proposed modification: selectively propagate GID_Join.requests

No other registration

1 other registration

>1 other registration

Faster processing by avoiding unnecessary propagations

Conclusion

- > We propose modifications to speed up GARP:
 - Offering faster convergence, faster processing
 - With NO modification to GARP timer values
 - With NO modification to GARP state machines
 - With NO significant increase in GARP control traffic
 - That maintain backward compatibility with GARP
 - That are tested through simulations

www.alcatel.com

