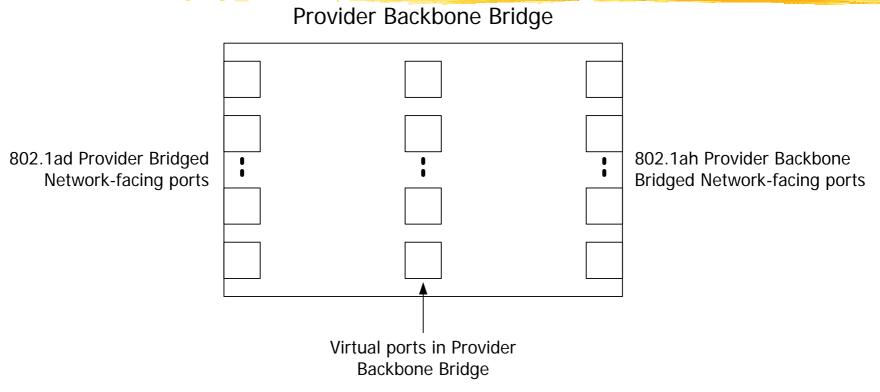
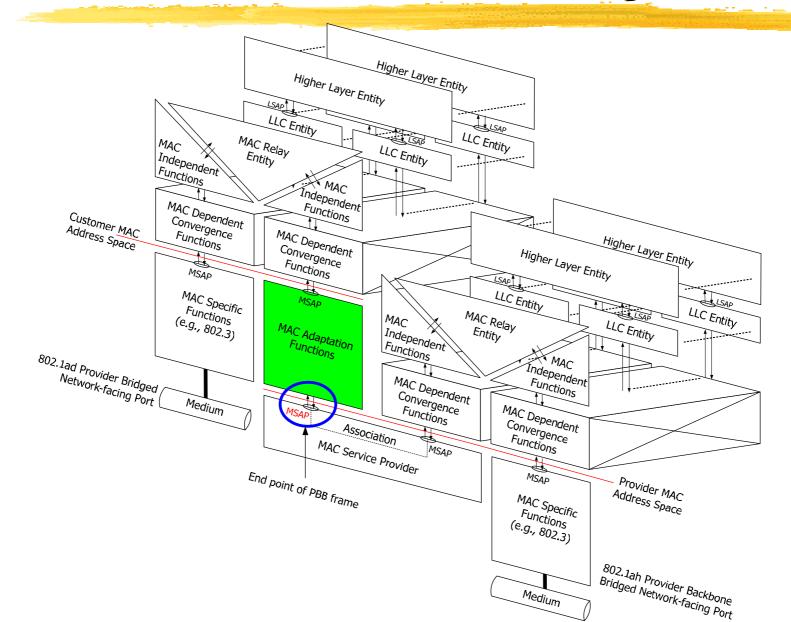

Addressing Issues of Provider Backbone Bridges

November 2004


Muneyoshi Suzuki, Paul Bottorff, Michael Chen

B-DA/B-SA Issues of Provider Backbone Bridge Frame


- Provider Backbone Bridge (PBB) Frame encapsulates 802.1ad frame
 - S-TAG in 802.1ad frame may be an optional field
 - FCS in 802.1ad frame may be an optional field
 - B-TAG in PBB frame may be an optional field ???
- Issues
 - ES-VID length and format
 - TPID values for B-TAG and ES-TAG
 - MSAPs (B-POP addresses) identified by B-DA
 - MSAP (B-POP address) identified by B-SA

Instinctive Approach

- MSAPs identified by B-DA/B-SA may be:
 - 802.1ad Provider Bridged Network-facing ports,
 - 802.1ah Provider Backbone Bridged Network-facing ports, or
 - Virtual ports in Provider Backbone Bridge
- But we need analytical solution

Reference Model of Provider Backbone Bridge

MAC Adaptation Functions

- MAC Adaptation Functions ("S-VLAN MAP Shim" in Paul's slides)
 - Encapsulation/decapusulation of 802.1ad frame
 - S-VID <--> {ES-VID, B-VID} translation
 - B-DA/B-SA, SA/DA learning
 - Control frame filtering
- In terms of protocol architecture, MAC Adaptation Functions are a protocol entity that is a:
 - MAC service provider whose MSAP is identified by a MAC address in customer MAC address space, and
 - MAC service user via MSAP identified by a MAC address in provider MAC address space
- B-DA/B-SA in Provider Backbone Bridge Frame identify the latter MSAPs where PBB frame is terminated
- Note: Customer and provider MAC address spaces belong different protocol layers and are therefore independent

B-SA in PBB Frame

- B-SA in Provider Backbone Bridge Frame is:
 - Virtual port address in Provider Backbone Bridge,
 - 802.1ah Provider Backbone Bridged Network-facing port address, or
 - 802.1ad Provider Bridged Network-facing port address

Notes:

- B-SA identifies end point of PBB frame, thus:
 - It is essentially a virtual port address in Provider Backbone Bridge
 - It belongs to provider MAC address space
- 802.1ah Network-facing port address could also be used for B-SA
 - Because it corresponds to a single end point of PBB frame
- 802.1ad Network-facing port address could also be used for B-SA
 - Because it identifies a virtual port which corresponds to a single end point of PBB frame
 - It belongs to provider MAC address space, thus it does not identify an 802.1ad Network-facing port

B-DA in PBB Frame

- B-DA depends on flooding of Provider Backbone Bridge Frame
- If DA in 802.1ad frame is a learned unicast address, flooding of PBB frame is not required
- In this case, B-DA in Provider Backbone Bridge Frame is:
 - Virtual port address in Provider Backbone Bridge,
 - 802.1ah Provider Backbone Bridged Network-facing port address, or
 - 802.1ad Provider Bridged Network-facing port address
- If DA in 802.1ad frame is the broadcast, multicast, or unlearned unicast address, flooding of PBB frame is required
- In this case, B-DA in Provider Backbone Bridge frame is:
 - The broadcast address,
 - A reserved multicast address for flooding, or
 - The same address as DA in 802.1ad frame (multicast DA case only)

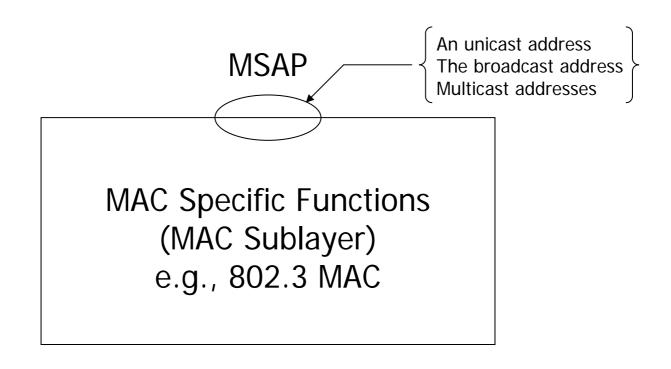
Interoperability among schemes

- In terms of Provider Backbone Bridged Network, MSAPs addressed by B-DA/B-SA behave as end stations
- Virtual port address scheme:
 - B-DA/B-SA directly identify end points of PBB frame
- 802.1ah/ad Network-facing port address schemes:
 - B-DA/B-SA indirectly identify end points of PBB frame
 - Relationships between B-DA/B-SA and end points are known
- Thus, addressing schemes don't impact on .1ad fame interoperability
- Addressing schemes don't impact on xSTP interoperability in Provider Backbone Bridged Network
 - End stations don't participate spanning tree, thus there is no BPDU whose B-SA is Virtual or 802.1ah/ad Network-facing port
- Addressing schemes don't impact on GARP interoperability
 - GARP in Provider Backbone Bridged Network is used for multicast addresses/VLAN IDs registration from end stations
- Addressing schemes don't impact on 802.3 specific protocols

Questions

- Which B-DA/B-SA addressing scheme is desired?
 - Number of addresses to be learned
 - Flooding suppression in Provider Backbone Bridged Network
 - Efficiency of frame replication for flooding
 - Independency from IF card MAC address
- Do we need to standardize "one" scheme?
 - Provider Backbone Bridge Frames, including 802.1ad frame or Bridge Protocols frame, based different addressing schemes may be interoperable
 - However, in terms of network management, addressing should be unified and there may be critical cases.....

backup slides


(reference model issues)

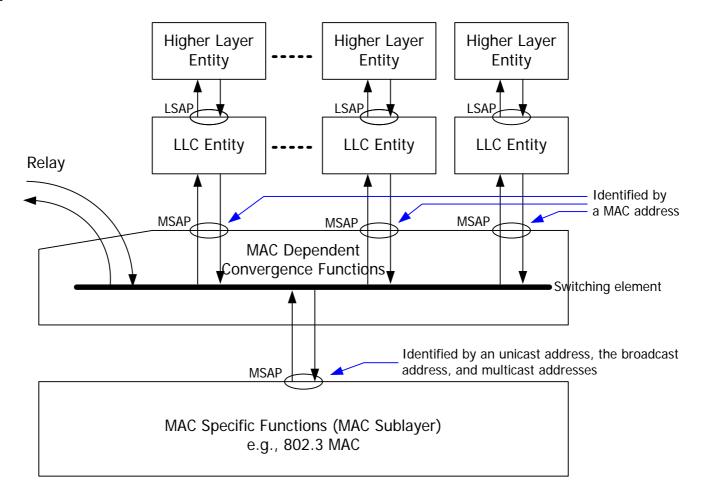
What is address

- OSI definitions in ISO/IEC 7498-1 | X.200 (1994)
 - (N)-SAP: The point at which (N)-services are provided by an (N)-entity to an (N+1)-entity. (Clause 5.2.1.8)
 - (N)-SAP-address: An (N)-address that is used to identify a single (N)-SAP. (Clause 5.4.1.2)
- MSAP definition in IEEE 802-2001
 - The MAC sublayer provides a single MSAP as an interface port to the LLC sublayer in an end station. In general, the MSAP is identified (for transmission and reception) by a single individual MAC address and (for reception) by the LAN-wide broadcast MAC address; it can also be identified (for reception) by one or more group MAC addresses. (Clause 6.2.1)
- Group MAC address definition in ISO/IEC 15802-1 (1995)
 - Group-MSAP-address: A value, otherwise valid as a MSAP address, identifying a set of MSAPs, the set of end systems on which the identified SAPs are located being any subset of all stations on a particular local area network. (Clause 3.3.1)

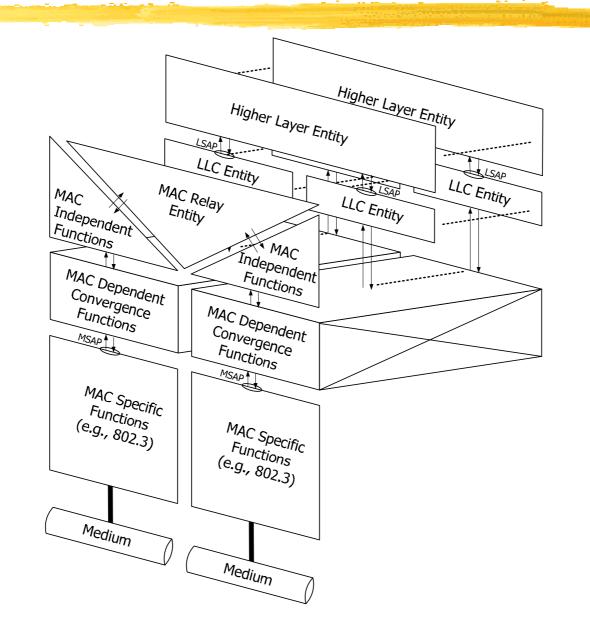
802 extended OSI address definition

MSAP provided by MAC Specific Functions (e.g., 802.3 MAC) is identified by an unicast MAC address, the broadcast MAC address, and multicast MAC addresses

Bridge/GARP protocols are identified by DA


Bridge Protocols (802.1D 7.12.6)		Destination Address	TYPE/LENGTH	LLC	Protocol ID
	STP RSTP MSTP	01-80-C2-00-00-00	Length	42-42-03 (802.1)	0
		Destination Address	TYPE/LENGTH	Opcode	
	802.3 MAC Control	01-80-C2-00-00-01	88-08 (MAC Ctrl	1 (PAUSE)	
		Destination Address	TYPE/LENGTH	Subtype	
	Slow Protocols	01-80-C2-00-00-02	88-09 (Slow)	1 (LACP) 2 (Marker) 3 (EFM OAM)	
		In	T) (DE (1 EN OT)	1	
	802.1X PAE	Destination Address			
	OUZ. IX PAE	01-80-C2-00-00-03	88-8E (PAE)	J	
		Destination Address	TYPE/LENGTH]	
	802.1AB LLDP	01-80-C2-00-00-0E	88-CC (LLDP)]	

GARP Protocols		Destination Address	TYPE/LENGTH	LLC	Protocol ID
(802.1D 7.12.3)	GMRP	01-80-C2-00-00-20	Length	42-42-03 (802.1)	1
	GVRP	01-80-C2-00-00-21	Length	42-42-03 (802.1)	1


- LLC protocol entity does not fully identify Bridge/GARP protocol entities
- (Type field is regarded as a part of LLC protocol)

Switching capability in MCF

Therefore, in MAC Dependent Convergence Functions, "switching capability" is required to exchange MAC service primitives among MAC Specific Functions and LLC entities

Derived Bridge Reference Model

