

PAR for "Media Converters"

Norman Finn

What is a "Media Converter"

What is a Media Converter?

Cisco.com

Suggestions for discussion Purposes:

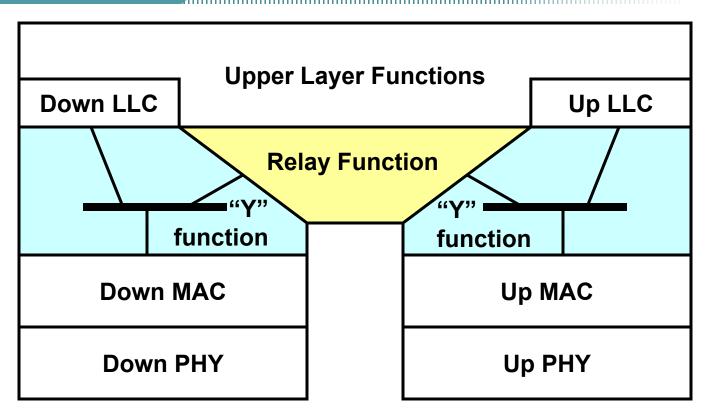
- At least, an MC is a two-port relay device that is less complex than an 802.1D or .1Q bridge, but more complex than an 802.3 repeater (hub).
- At most, an MC is an N downlink + M uplink multiplexing device that is VLANaware.
- An MC does not make forwarding decisions based on MAC address except, perhaps, to support a "brain".

What is a Media Converter?

Cisco.com

Suggestions for discussion Purposes:

- The range of possible devices to be covered in the PAR is To Be Determined.
- It would be best if the functionality is a proper subset of the functionality of a current standard 802.1 bridge.

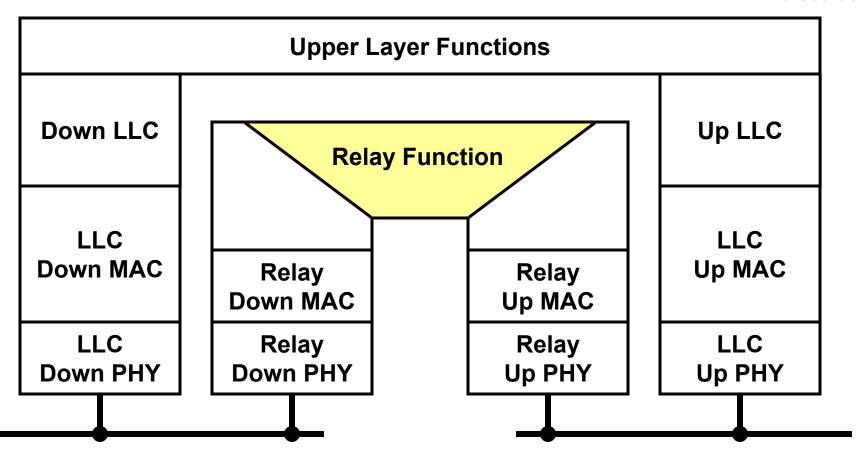


Manageable Two-Port Relay Device

Manageable One-to-One-Port Relay Device

Model 1: Two LLC

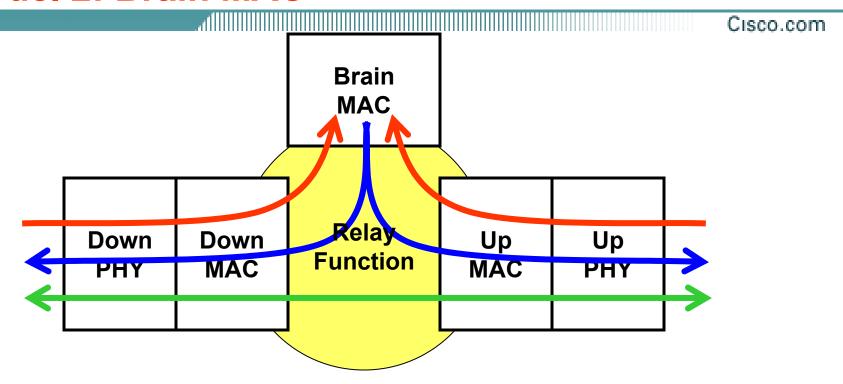
Cisco.com



 Same Baggy Pants diagram as a bridge, but a much simpler Relay Function: No learning.

Manageable 1-to-1-Port Relay Device

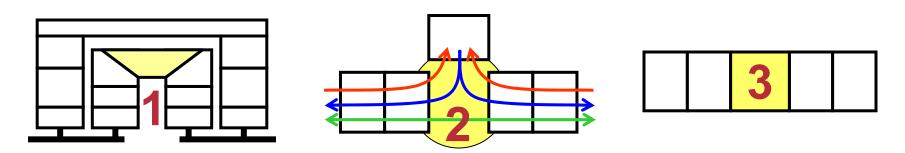
Model 1: Two LLC


Cisco.com

(This is supposed to be the same thing.)

Manageable 1-to-1-Port Relay Device

Model 2: Brain MAC


- Relay Function directs frames to Brain MAC address only to Brain.
- Frames from Brain exit in both directions: No learning!

Manageable 1-to-1-Port Relay Device Model 3: Software Relay

FIII WAC CFO WAC FIII	Down	Down	Relay	Up	Up
	PHY	MAC	CPU	MAC	PHY

- Relay CPU is a computer with two MACs.
- No "Y" function.

Which model to choose?

- It is reassuring to use the bridge baggy pants model (1).
- It is not clear that the bridge baggy pants model is the best for this device.
- Everything depends on the details of where the frames go.

Which model to choose?

Cisco.com

Questions 3

- Does the "brain" need to know from which port a unicast to its MAC address entered the device?
- Should the "brain" also relay frames addressed to its unicast MAC address, or should it sink them?

- If the two ports operate at different speeds (beyond the PHY's clock tolerances), then the queuing model from IEEE Std. 802.1D must be employed.
- Loopback capability (outside to Uplink outside) is required.
- Loopback capability (outside to Uplink to Downlink to Uplink to outside) is required.

Operational Requirements

- Plug-and-play capability in the Service Provider space is required.
- IEEE Std. 802.3ah OAM support is required.
- IEEE P802.1ag CFM support is desired.
- Both the Uplink and the Downlink must be manageable from the Uplink side.
- The device must not be manageable from the Downlink side.

Operational Requirements

- The making and breaking of either the Uplink or the Downlink must be made known to the other link.
- The device must be transparent to all standard Spanning Tree and GARP protocols.
- The transparency and/or participation in other 802.1 and 802.3 protocols, including whether the choices are set by the standard, the implementation, or by management, is To Be Determined.

Operational Requirements

- The method chosen for managing the device must not require assigning the device an IP address (though, of course, this would not be prohibited).
- Expanding 802.3ah OAM with new TLVs is one possibility.
- SNMP over Ethernet is another possibility. (There is an EtherType for carrying SNMP queries/responses at Layer 2.)

Other Devices to Consider for Definition

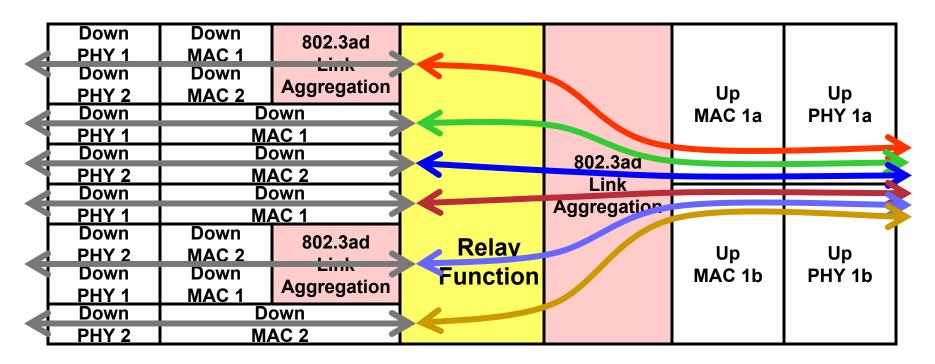
- One may note that any of these models should be applicable to an IP desktop telephone with a "line" link and a "PC" link.
- The work of other standards bodies should be examined before considering this definition.

Manageable n*(1-to-1)-Port Relay Device

Down	Down	\longleftrightarrow	Up	Up
PHY 1	MAC 1		MAC 1	PHY 1
Down	Down	Relay	Up	Up
PHY 2	MAC 2		MAC 2	PHY 2
,		CPU 1	;	
Down	Down	\longleftrightarrow	Up	Up
PHY <i>n</i>	MAC n		MAC n	PHY <i>n</i>

- A number of two-port Relay Devices ganged together.
- Perhaps manageable on only one (or two) ports.
- Model 3: Software Relay is shown, but the other two models are equally applicable.

Manageable p-to-1-Port Relay Device


Cisco.com

Down	Down				
PHY 1	MAC 1				
Down	Down	802.3ad			
PHY 2	MAC 2	Link	Relay	Up	Up
•••		Aggregation	CPU	MAC	PHY
Down	Down				
PHY p	MAC p				

 p Downlinks following the 802.3ad Link Aggregation standard.

Manageable n*p-to-q-Port Relay Device

Cisco.com

 Rather like PVIDs, the Relay Function tags and untags frames on the Downlinks, and uses VLAN tags to multiplex the Uplink.

More??

- We can imagine multiple Uplinks to different Layer 2 network devices.
- At some point, you must give up and use a bridge.
- That point is To Be Determined.

Summary

Summary

Cisco.com

In order to create a PAR

- We must agree on most of the basic requirements for capability, manageability, and plug-and-playability.
- We must agree on which device types are required, desirable, or out of scope.
- We must meet the five criteria.

After we have a PAR

- We must agree on the specific requirements for capability, manageability, and plug-and-playability.
- We must agree on which of the basic models is to be used, or agree that the gozintas and comzoutas will be compatible with multiple selected models.
- We must hammer out the details of which protocols are relayed, blocked, or peered.

Summary

Cisco.com

After we have a PAR

Oh, yes. We must write the standard.

CISCO SYSTEMS A STATEMENT OF THE STATEM