LAN-based Key Server (LKS) for IEEE 802.1af

Brian Weis

Agenda

- Why LKS?
 - Or to put it another way, Why "Yet Another MACsec Key Agreement" Protocol?
- General MACsec Key Agreement (MKA) design goals
- Overview of LKS
 - Design Principles
 - State Machine
- Comparison to KSP
- Example LKS Message Flows

Why LKS?

- A reasonable question is "Why consider a new model when KSP has already been proposed?"
- In fact, I reviewed KSP quite thoroughly
 - Given the environmental constraints, the overall design is reasonable
 - IEEE 802.1AE needs a group security model without pair-wise security associations (unlike IEEE 802.11i)
 - But it is important to recognize that the only available security model is one of complete and equal trust of all group members!
 - Discussing KSP with Mick provided a lot of background and appreciation for its features
- Still, there are some uncomfortable bits that led to me consider an alternative

Uncomfortable bits

- KSP key management methodology is unconventional
 - Since KSP was first introduced, NIST has released key management guidelines (NIST SP 800-57 Parts 1 & 2).
 - The KSP key contribution method cannot be fully described to match those guidelines.
 - This is an issue for manufacturers requiring a FIPS 140-2 certificate for their products
 - FIPS 140-2 expects the SP 800-57 guidelines to be followed for key management
- Re-use of SAKs after a membership change is risky
 - E.g., Stations A & B combine their KCs to create the same key before Station C joins and again after Station C leaves.

General MKA Design Goals

- There should be one IEEE 802.1af protocol, not separate pairwise and group protocols.
 - Therefore a group key establishment protocol is needed
 - But it should be efficient for 2 stations and 2-*n* stations, where *n* is O(20)
- Must provide *n*-way anti-replay protection, and allow any station to know whether or not another station is alive
- Must be able to install a SAK ASAP and report to upper layers that the link is up
- Must use conventional cryptography and key management
 - But as few cryptographic algorithms as possible so as to simplify the overall solution
- Ensure that there is always at least one valid SAK for the group.

Group Key Establishment models

- Key Contribution (e.g., KSP)
 - All stations provide keying material which is combined into a single SAK
 - This method is typically used for small groups, where the key must change when the group membership changes
 - This is to "key out" a group member when they stop contributing to the group key.
 - However, this is not possible with the IEEE 802.1af architecture, so use of a key contribution method is not compelling.
- Key Server (e.g., LKS)
 - One station independently chooses a key and distributes it to the other group members
 - Allowing for multiple key servers avoids a single point of failure

5/30/06

LKS Key Server Strategy

- One station on the LAN acts as a key server for the group
 - Each station in the group is a candidate key server.
 - The stations on the LAN at any particular time determine which of themselves is the key server.
 - If the current key server becomes non-responsive, the remaining group members elect one of themselves to be a new key server
- The election is not a separate protocol, but performed asynchronously by all stations
 - Each station should have the same group state available to it, and thus can use the same election heuristics

5/30/06

LKS Message Flow

• A broadcast message is used to convey information between group members

-Role of the sender (key server or not)

-Current SAK (if the message is from the key server)

–Peer liveness state

NOTE: Other information, such as the most recently used IEEE 802.1AE Packet Number, should also be conveyed in the message. (I.e., the KSP LLPN/OLPN)

 Each station periodically sends a broadcast message, which provides a liveness proof and ensures that all stations have the up-to-date group state

– Additional messages are broadcast as necessary

5/30/06

802.1 Security Interim meeting

Key Replacement Events

- Policy (I.e. key lifetime)
- New member joins
 - Necessary to avoid the GCM security condition
- Member request
 - GCM IV is about to wrap
 - Should request it when it recognizes a new KS (to avoid the GCM security condition when swapping key servers):

KS1 ---> KS2 --> KS1

LAN/MAN Partitions

- If a LAN/MAN is partitioned, the group of stations in each partition will converge on a sub-group key server for the duration of the partitioning event
- When the partitions are re-joined, the entire group will re-converge on a single key server.
- This event is handled in the basic state machine.

LKS Cryptography (1)

- One 128-bit key (the CAK) is available for use by any MKA protocol.
- To avoid using a single key for multiple purposes, multiple sub-keys are derived from the CAK
 - All keys are defined to be 128-bit AES keys, and must be the same size
 - The AES cipher is used in Electronic Code Book (ECB) mode defined in NIST SP 800-38A.

It is safe to use when only one block is encrypted. E.g., encrypting one 128-bit data block to create a 128-bit sub-key

 A Key Encrypting Key (KEK) is derived to obscure the SAK when transmitted over the wire

 $\mathbf{KEK} = \mathbf{AES} \cdot \mathbf{ECB}(\mathbf{CAK}, \mathbf{0x0})$

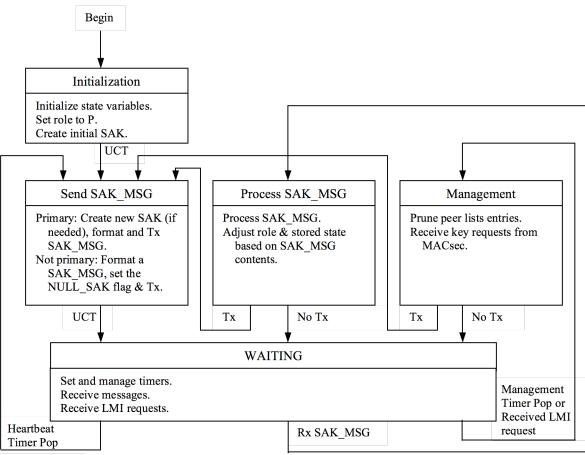
 An Integrity Checksum Value (ICV) key is derived to provide to verify the integrity of a message

 $ICV_KEY = AES-ECB(CAK, 0x1)$

LKS Cryptography (2)

 The KEK is used to protect the SAK on the wire using the AES Key Wrap procedure defined in RFC 3394

ENCRYPTED_SAK = AES-KEYWRAP(KEK, SAK)


• The Integrity Checksum Value is computed using the AES cipher in Cipher-based MAC (CMAC) mode defined in NIST SP 800-38B:

ICV = AES-CMAC(ICV_KEY,M,128)

• The SAK is generated using a strong Random Number Generator (RNG)

– Note that a strong RNG is a necessary condition for FIPS 140-2, so this is not an onerous requirement.

LKS State Machine

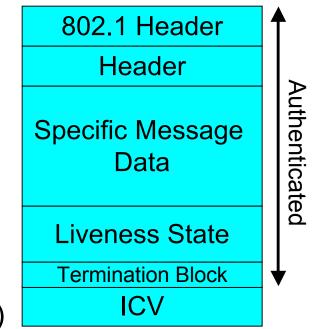
802.1 Security Interim meeting

Comparison of KSP/LKS

- LKS was designed to be similar to KSP in many ways
 - Liveness/Anti-replay method
 - Frame Format
 - Message Flow

KSP/LKS Anti-replay Method

- Anti-replay
 - Each station maintains
 - A dynamic Member Identifier (MI)
 - A Message Number (MN) acting as a sequence number for messages including a specific MI
 - A list of peer MI/MN values
 - If a message is considered to not be replayed if
 - It has a known MI value, and
 - The MN value is larger than previously observed MN values.
 - When an MN approaches its largest value, the station chooses a new MI and resets the MN to 1.


KSP/LKS Liveness Method

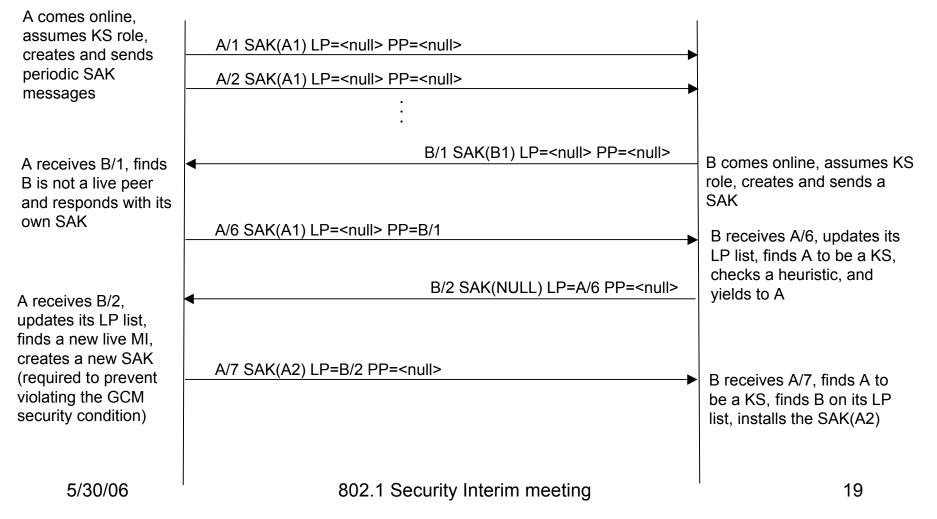
- However, anti-replay is not sufficient
 - -The sender may choose a new MI value
 - -An attacker may delay messages
- Liveness builds upon the Anti-replay state
- Each station logically splits the peers into two lists
 - -A list of peer MI/MN values that are "live"
 - -A list of peer MI/MN values are are "potentially live"
- Each message includes the sending station's "live" and "potentially live" peer lists
- A receiving station considers a peer to be "live" when it includes the receiving station's recent MI/MN values in a peer list

– This proves that the station recently received a message from the station, and thus is "live".

KSP/LKS Frame Format

- LKS message fields
 - IEEE 802.1 Header (with a new Ethertype defining MKA).
 - LKS Header (station identity, etc.)
 - Specific Message Data (e.g., SAK)
 - Liveness State (Live Peer and Potential Peer lists)
 - ICV field
- Specific Messge Data differs
 - KSP includes a Key Contribution (KC)
 - LKS includes either
 - An encrypted SAK (KS)
 - Flags denoting that no SAK is present (non-KS)

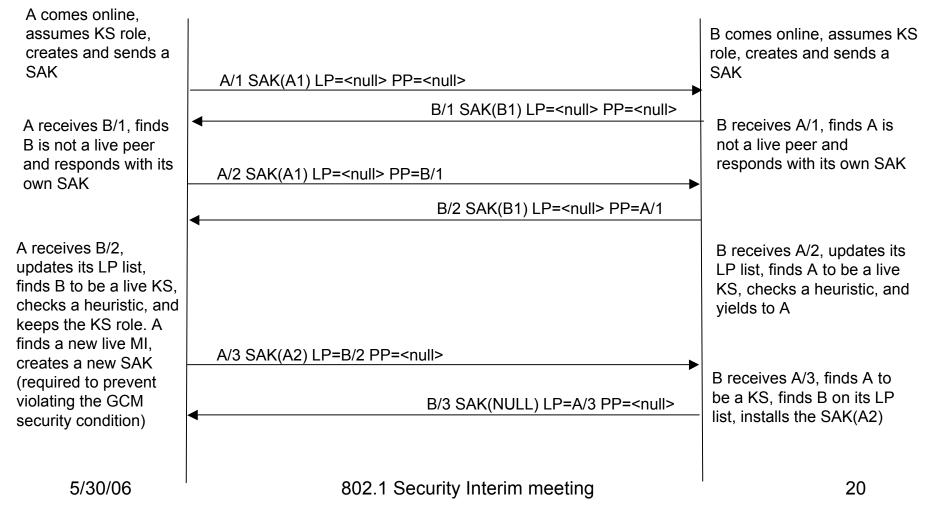
Message Flow


- The liveness requirement necessitates
 periodic broadcasts
 - This also helps quickly adjust to partition/join events
- When a new SAK is created it may be useful to send an immediate message rather than wait until the end of the period.

- This requires no change to the state machine.

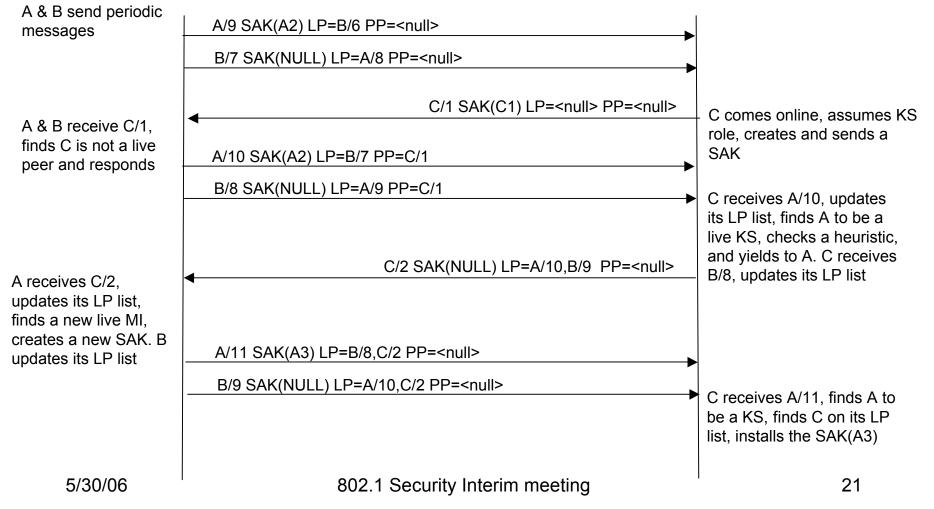
LKS Example 1: Peers come online sequentially

Station A


Station B

LKS Example 2: Peers come online simultaneously

Station A


Station B

LKS Example 3: Adding a third peer

Stations A/B

Station C

Enabling per-user keys

- Key distribution allows an optional model where each device develops and distributes its own key
- Benefits:
 - Avoids issues surrounding the GCM security condition
 - Each sender controls the duration and usage of its own key independently.
- Issues:
 - Every station needs a key slot for every machine on the LAN, and must be prepared to switch to group mode if needed.