
Exact Hop Count

Revision 0.3 December 16th, 2006 Mick Seaman 1

Exact Hop Count
Mick Seaman

In general network scenarios, hop count limits are a crude approach to mitigating the effects
of temporary loops in the topology. In bridged networks in particular, there are parts of the
topology where the bridged frame necessarily lack hop counts. Recent analysis of fast
reroute techniques for IP has focused on other approaches to loop prevention and
mitigation, and the RSTP and MSTP bridging protocols are specifically designed to prevent
loops1. However, there is ongoing interest in applying routing experience to bridging and
instituting a hop count to guard against faulty implementation. This note describes the use
of hop count in encapsulating bridge backbones, where it can be made precise and effective,
and the additional measures that are required to ensure that loops do not occur in the
network as a whole - with frames potentially crossing the backbone multiple times.

It is not my intention, in this note, to argue for the inclusion of a hop count in a backbone
encapsulation header2. Other loop prevention methods that do not require fields in the
header, are available, and I know of no existing dedicated bridge hardware capable of
performing the checks described. However I was surprised at the apparent lack of a
description of the use of exact hop count checking, either for encapsulating bridging or for
routed networks in general, and thought it worth writing down. In addition, the discussion
serves to point out the relationship between any backbone specific loop prevention
technique, and loop freeness in the bridged network as a whole.

These thoughts are largely a result of a conversation with Francois Tallet and of looking at
the IP fast reroute framework3. They have benefitted from brief discussion and email
exchanges with Mike Shand and Stewart Bryant, but all opinions, errors, and omissions are
my own.

1. Introduction

The IP hop count is often checked, as part of crude but
effective security measures, to ensure that the packet
received is from an immediate neighbour (hop count
255) and has not be routed to the receiving interface.
The injection of nuisance packets that might be an
attempt at an ‘attack at a distance’ are thus prevented,
unless the attacker is either local or can target a local
decapsulation or packet creation service.

Within encapsulating backbone, or other core or
specialized networks, all the immediate sources and
destinations of traffic and their hop count distances
may be known. Thus packets can be transmitted with a
hop count that is just sufficient to reach the
destination. In networks of small diameter this can be
effective. Standards recommend a maximum bridge
diameter of 84, the minimum loop hop count is 3, and
most topology protocols and supporting mechanisms

will not create a loop that includes either the source
(backbone encapsulating) or the destination (backbone
decapsulating) nodes. Even if the capsulating nodes
are not included in the bridge diameter, this means that
a simple loop can cause each node to be visited by a
given packet no more than three times. Unfortunately
the true maximum depends on the topology, on the
topology protocol, and on the forwarding checks
applied at each node.

This note considers the benefit not only of selecting an
optimal hop count when an encapsulating header is
first applied, but also of checking the value of the hop
count at each intermediate node. In its simplest form
this involves checking the hop count required to reach
the decapsulating node, and discarding the packet if
that is not exactly correct. The required count is stored
with each destination in the forwarding database (the

1Attempts to improve the reconfiguration performance of the original spanning tree protocol by ‘tuning’ protocol parameters can create loops, as it lacks the
‘disputed’ Designated Bridge checks provided in RSTP and MSTP. Unfortunately it is possible to choose parameter values so that the loops only appear after
the (relatively rare) loss of a BPDU or (in rare implementation dependent cases) when timers in different bridges beat across each other. These effects do not
occur in reasonable sized networks with default parameter values.
2This note started as a serious attempt to argue the merits of hop count, given the continued contention by some that experience with routers showed that hop
count really should be used, but concludes otherwise. However, to take the demand for hop count seriously, the development of the argument has been left as
it occured. Read to the end for conclusions.
3draft-ietf-rtgwg-lf-conv-frmwrk-00.txt
4This number is somewhat out of date. It was selected to ensure that the DEC LAT protocol would operate satisfactorily.



Exact Hop Count

Revision 0.3 December 16th, 2006 Mick Seaman 2

‘filtering database’ for a bridge) and the database
populated by the routing (or bridging) protocol.

2. What is ‘a loop’

First it seems necessary to define what is (and possibly
what is not) a data loop.

A network is instantaneously loop-free if a snap shot
of the totality of data paths shows that if there were no
transmission delays or other data buffering in the
network, no packet transmitted through the network
would be forwarded more than once by any node.

A network provides loop-free transmission if no
packet is forwarded more than once by any node.

These two definitions are not the same, because a path
within a network that is instantaneously loop-free can
buffer a packet while the instantaneous loop-free
topology is changing. The packet can be returned to a
node after the change so that it is forwarded again.

3. Loop-free properties of exact hop count

A node that implements exact hop count decrements
the hop count of each received packet and discards it if
it is not exactly as required by the forwarding
(filtering) database. A network of such nodes is
instantaneously loop-free. If a node receives a given
packet a second time, the hop count will be lower, and
so cannot be forwarded to the same destination twice.

Such a network does not necessarily provide loop-free
transmission, because the topology can change prior to
the second reception of a given packet. Consider the
network of Figure 1, which shows (symmetric) link
costs, the path through the network taken by frames
from X to Y, and the hop count at each node along that
path. 

In Figure 2, the links from C to E and from B to D
have failed. B is aware of both failures, C only of the
C to E failure, and A of neither. Two link failures are
shown because a link state protocol, such as IS-IS, will
not create a loop1 with a single failure if the link costs
are symmetric.

If it were not for the exact hop count check, the
network in Figure 2 would exhibit a loop A-C-B-A-C-
B- until A or C update their forwarding databases to
reflect the failure of B-D or C-E respectively. With the
exact hop count check, the looping frame is discarded
as A attempts to forward it a second time.

If A updates its filtering database to reflect the loss of
C-E and B-D while the frame is being transmitted
from C to B, then that frame can loop A-C-B-A once.,
as shown in Figure 3.

With exact hop count, a frame can only be forwarded
by a given node once plus the number of times as the
topology (for that frame) is updated at that node while
the frame is being buffered on a network path that
returns to the node.

4. Alternatives to packet hop count

One alternative to carrying the hop count in a packet
would be to carry the cost to the destination. In that
case a frame routed or bridged on a shortest path
would never loop (i.e. be forwarded by the same node
twice) simply as a result of link failures, as no failure
can result in lowering the cost to the destination from a
node. The downside of this approach is the number of
bits in the encapsulating header that would be required
to carry the cost, and their inclusion in each filtering
database entry together with the cost decrement
required at each node. Moreover the difference
between that approach, and the hop count, would only
be seen in networks where link costs are such that a
link failure can cause a node’s shortest path hop count
to the destination to decrease by at least three. The

1Other than loops across a single link, which are uninteresting for bridging application of this note, and loops involving ECMP, which this note does not
attempt to discuss.

Figure 1—Example network

A4 B2

C3

D1

E2

Y0

6

X5

1

22

1 2

1 1

1

Figure 2—Loop suppressed by exact hop count

A4 B2

C3

D1

E2

Y0

6

X5 2

1 2

1 1

1

2

1

Figure 3—Packet looping in a loop-free network

A4/1 B2

C3

D1

E2

Y0

6

X5 2

1 2

1 1

1

2

1



Exact Hop Count

Revision 0.3 December 16th, 2006 Mick Seaman 3

example network was deliberately constructed to have
this property, which is rare amongst bridged networks.

If cost to the destination, rather than hop count, was
used, then it makes sense for each node to check that
the remaining cost in the received frame is greater than
or equal to node’s own cost calculation, and to set the
cost in the transmitted frame to that calculated by the
node. Using this check, rather than requiring strict
equality means that the addition of links to the
topology traversed by the frame before it reached the
node would not cause the frame to be discarded. There
is no degradation in loop prevention. The same
technique could be applied to a hop count approach,
by allowing a greater remaining count on receipt and
setting the exact count on transmission.

Another alternative (to exact packet hop count
checking) is not to put the hop count in the packet at
all. Rather each node communicates with its
downstream neighbour to check that that neighbour
has a lower hop count to the destination, and
temporarily blocks communication if that is not the
case. Clearly the check is carried out recursively, so
each node reports to its upstream neighbour the fact
that either it and all its downstream successors have a
given (or lower) hop count to the destination or will
block traffic to that destination until that is true. If a
node reports a given maximum hop count to a
destination, and subsequently processes a topology
update that increases that count, it blocks traffic to the
destination until all its upstream neighbours indicate
that they too have increased their hop counts (and so
on recursively. This alternative thus reduces the per
packet overhead at the expense of slightly longer
failure recovery times, particularly in non-structured
networks.

If, instead of using hop counts, the above node to node
agreement approach uses the cost to the destination,
then it becomes the loop prevention mechanism used
in RSTP and MSTP today. In this case the
‘destination’ is actually the root of a spanning tree1.
The disadvantage of the use of costs is the space they
occupy in control packets when the node to node
agreements are being revised, but they do prevent one
time loops of the form shown in Figure 3. Moreover
they do permit the use of ECMP (equal cost multi-
path) with paths that do not have an equal hop count.

5. Multicast

The above discussion is couched in terms of unicast
frames. To apply the same logic to multicast to
different destinations, the source of that multicast
needs to be known. In backbone bridged networks, the
destination multicast address itself can be made source
specific, or a VLAN Identifier (VID) can assigned to
each encapsulating node.
When a source specific multicast is used, unicast and
multicast frames are treated differently. The initial hop
count of the multicast is set to a value sufficient for the
packet to reach every node in the network. The exact
hop count value at each node is counted down from
source, rather than up from the destination.
If a source specific VID is used, it can be applied to
both unicast and multicast in the same way,
constraining each frame to a spanning tree rooted at
the source node. Clearly the hop count could be
counted up, rather than down, from the source, but
counting down is compatible with nodes that cannot
perform an exact match and is therefore to be
preferred. 

6. Ingress checking

As part of enforcing spanning tree active topologies,
Bridges actually apply a forwarding check on interface
reception (port ingress) as well as interface
transmission (port egress). If the topology is calculated
by a link state protocol, this makes loops even rarer,
though not impossible. For the present we will ignore
the fact that a bridge network comprises a bi-partite
graph (one with two alternating types of nodes) of
bridges and LANs with spanning trees reaching to and
from every LAN2 as well as every bridge, and simply

1More could be said on this subject, showing that loop free to the root implies loop-free from the root, and that communication between stations where neither
is the root is still loop free because that communication is either a loop-free segment of communication to or from the root or is the loop free concatenation of
such a segment with communication to or from the root. I assume that the required proofs are trivial for most readers of this note.
2One of the reasons that this matters is that the architecture has to allow management of a bridge directly from a directly attached LAN, even if the bridge is
not forwarding frames to and from that LAN. Thus it is the case that a point-to-point LAN between two bridges can have attached end stations (management
functions in each bridge) and frames from such an end station are forwarded by one bridge even if the other does not. This management requirement extends
beyond traditional SNMP management to such capabilities as CFM (P802.1ag Connectivity Fault Management) which has fault coverage requirements, so it
is not easily hand waved away.



Exact Hop Count

Revision 0.3 December 16th, 2006 Mick Seaman 4

consider trees of forwarding nodes. Consider the
topology of Figure 4. 

Each of the links shown is of equal cost, except that
between A and Y, which has a somewhat higher cost.
Assume that the links from Y to B, C, D, and E fail,
that these failures are signalled to each of the nodes in
separate link state updates (probably initiated by B, C,
D, and E respectively) and that at some time each of
the nodes is acting on a slightly different picture of the
topology. See Figure 5. 

If A receives a frame destined to Y, it will forward it to
B; B will forward the frame to C; C to D; D to E; and
E to A once more. The frame will loop until at least
one node updates its view of the topology again.

Note particularly that the frame is being forwarded in
a loop even though each node checks that it is
reasonable (given that node’s view of the topology) for
its predecessor to forward the frame to the node. The
example uses five nodes in the loop to avoid any
appeal to equal cost tie-breakers when making that
assessment.

This example serves to illustrate looping for both
unicast frames (with Y as their destination) and
multicast frames (with Y as their source). In the latter
case the ingress check serves to prevent Y from adding
more frames to the loop once it has formed, so the only
frames that are looping must have been buffered in a
node that subsequently participates in the loop. This
fact serves to further point up the difference between
arguments that focus on the instantaneous topology of
a network—which could have been used to show that
no multicast frame can enter a loop when ingress
checks are applied, and thus falsely conclude that
looping multicast frames cannot occur—and
arguments that focus on the path taken by a frame and
include the buffering experienced by the frame.
Unfortunately discarding of buffered frames by each
node as it changes its view of the topology is not
sufficient to excise frames that will subsequently loop,
as the frames could be buffered in intermediate nodes
whose local view of the topology remains unchanged,
at least for long enough for them to host the frame.

The dynamics of packet looping in the presence of
ingress checks is discussed further below (7).

A more aggressive form of ingress check is the
complete reverse path forwarding check (RPFC). In
the context of spanning trees, RPFC amounts to
checking that a frame has been received on the tree
rooted at its source, and will depart on the tree rooted
at its destination—and is exactly the check that a
bridge applies to a frame with a source specific VID
and a known backbone destination. Examination of the
set of instantaneous network topologies again shows
(provided forwarding of packets between any pair of
stations is symmetric, i.e. follows the same path in the
reverse direction) that no frame can enter an existing
loop, and no unicast frame can leave such a loop.
However a unicast frame can loop, and each multicast
frame has potentially many destinations and thus—
unconstrained by a destination rooted tree—can both
loop and spray copies of itself into the surrounding
network.

A possible objection to the above analysis is that
topological failures of the form illustrated by Figure 5
are contrived, will never happen in practice, and can
be ignored. In this example four links fail, almost
simultaneously, and each node processes updates from
its peers in the potential loop in anti-clockwise order.
The trouble with such can’t happen arguments is that
they are often exposed in practice, while the mere fear
of a low probability network melt-down in a large and
complex network can overshadow every attempt at
fault finding. In this particular example, simply

A

B

CD

E Y

Figure 4—Example network

Figure 5—Different views of a changing topology

A

B

CD

E Y

A

B

CD

E Y

A

B

CD

E Y

A

B

CD

E Y

A

B

CD

E Y



Exact Hop Count

Revision 0.3 December 16th, 2006 Mick Seaman 5

imagine that the communication from Y to B, C, D,
and E shares some physical transmission medium (e.g.
a WDM fiber) at some point, and that each of the
nodes are predisposed to forward link state updates out
of a given interface, say port 1, more rapidly than
through other interfaces, and that these ports happen to
be arranged to point clockwise around a ring. Perhaps
the failure is not so improbable!
Figure 5 does not, on its own, illustrate a loop for a
unicast frame where full RPFC is used, as is the case
in a bridged network with source specific VIDs. To
construct a loop, for frames with destination Y and
source X, add X connected to A thru E just like Y, and
have the links from X to B thru E fail so that A
believes E–X remains after the others have failed, B
sees all failures, C believes B–X remains, D believes
C–X remains, and E believes D–X remains. This is the
same, in principle, as Figure 5 but with the failures
reaching each of the nodes in clockwise rather than
anti-clockwise order.

7. Catherine wheels and whirlpools

A multicast frame, looping as just described, can
exhibit ‘catherine wheel’1 behavior. At each node
around the loop the multicast is flooded on other links,
so the catherine wheel sprays the multicast frame into
the rest of the network. Once a multicast frame is in
such a loop, it can circulate indefinitely. If the
forwarding nodes do not implement ‘cut through’ (rare
at high speeds) a single looping frame will occupy at
most two buffers at an instant - one at the node
transmitting the frame and one at the receiving node.
Unless traffic from other sources congests a link in the
loop and chance to cause discard of the looping frame,
it is likely that the frame will loop until the nodes
synchronize their view of the topology. The bandwidth
within the loop, occupied by such a looping frame,
will (in the absence of traffic shaping or metering
within the network as opposed to admission control to
the network) be in proportion to that taken by other
frames on the most heavily loaded link within the
loop. So the net effect of the looping frame on other
traffic on a link within the loop is simply to delay that
other traffic by the transmission time of that single
frame. Much more serious is the effect of the frames
that spin off into the rest of the network, as multiple
copies of the original looping frame can be added to a
single transmission buffer, thus forcing congestion
collapse.

Unicast frames, given source based ingress checking,
only exhibit a whirlpool (for want of a better name)
effect. The looping frame remains within the loop2,
simply delaying traffic of the same priority by at most
its own transmission time. A single looping frame will
not completely starve lower priority traffic3, though
three or more looping frames might do so. The
temporary effect of the looping unicast may be
acceptable—provided that priority transmission
scheduling has some round robin element within the
network and is not simply dependent on admission
control to prevent starvation.

8. Loop preventing combinations

As already mentioned, it is not possible to add a hop
count to an unencapsulated bridged frame, as the
absence of any changes to the frame is what
distinguishes basic bridging from other techniques.
One of the alternative loop prevention methods has to
be used: probably the RSTP/MSTP mechanisms that
ensure that the costs to (or from) the root of a spanning
tree decrease (or increase) at each node as the frame
proceeds to (or from) that root. This method can be
combined with a hop count (or other loop prevention
mechanism) within the encapsulating backbone of a
bridged network. The entire backbone is treated as if it
were at the same distance from the root, and frames
only allowed to progress from one edge to another if
those two edges are indeed at the same distance (and
share the same root). To avoid having to add further
fields to frames traversing the backbone, each node
simply checks the identity of, and distance from, the
root with its neighbour, discarding frames after any
change until synchronization has been achieved. If the
root of the tree is within the backbone, which is
usually the case for simple networks, the identity of
the root can be omitted—a check that the external
distance to the root is zero is sufficient.

9. Conclusions

This note has discussed the utility of hop counts for
loop prevention, with particular reference to backbone
encapsulating networks, and has shown how loop
prevention performance can be improved by requiring
an exact hop count match at each node.

At the same time, the correspondence between a per
packet hop count and an agreement between
neighbouring nodes on the number of hops from each

1Otherwise referred to as a pinwheel firework by non-English speakers.
2And no other frames, at least between the same source-destination pair, are added.
3Unless some inappropriate traffic delay or shaping algorithm prevented link use by some priority on account of a recent higher priority transmission. I don’t
believe any such algorithm has been contemplated or proposed.



Exact Hop Count

Revision 0.3 December 16th, 2006 Mick Seaman 6

to the destination (or from the source) of the packet
has been noted, together with the additional
improvement derived from agreeing destination or
source) cost rather than hop count. The use of cost also
facilitates the use of equal cost unequal hop multipath,
though whether this is important is unclear. The use of
hops can lessen the communication requirement where
large numbers participate in the backbone. In either
case, the use of such an agreement mechanism still
appears more attractive than per packet hop count.
If the each backbone edge is identified by a VID
(VLAN Identifier), the use of source rooted trees as
the basis of loop prevention appears a natural choice
for bridged networks. Both source and destination
rooted trees can be used for unicast, so that the ingress
VID check is equivalent to a reverse path forwarding
check. While this does not prevent loops, it does
prevent unicast traffic from entering or leaving an
existing loop, so the excess resource consumed by
looping unicast packets may be acceptable—allowing
omission of the neighbour to neighbour hop count or
distance agreement following link failure updates. A
destination rooted tree is not available for multicast,
and the effects of a looping multicast packet can be far
worse, so there seems little dispute that hop count or
distance agreement needs to be applied to multicast.
Finally, the use of distance based agreement can be
combined with a per packet hop count approach to a
backbone core, simply by providing a neighbour to
neighbour tree root identification and external distance
check within the core. If the tree roots lie within (or at
the encapsulating edge of) the core, as would be
natural for a network based on a single backbone, a
simple zero external distance check (to confirm that
root positioning) is sufficient.


