

Summary of Elliptic Curve Key Exchange in TLS

Working Group Discussion on 11/15/06 Notes by Guy Hutchison

Material constituting and contained within this presentation has been released into the public domain.

 $d_{SE}Q_{C}$

contained in msg

finish

Operations Required

- Random Number Generator (RNG)
- Sign (ec_sign)
 uc_ansi_x9_p256r1 w/ SHA-256
- Verify (ec_verify)
 - Verify certificate path validation for each certificate in chain
 - Verify signed DHE parameters
- EC_sign
 - Sign the DHE parameters
- ECDH point multiply

Primitives Required

- RNG
- Point multiplier (for EC)
- SHA hash calculator

Additional Notes

- The basic scheme is ECDHE_ECDSA: using ephemeral Diffie-Hellman key agreement with ECDSA signing certificate for mutual authentication.
 - 1. This discussion was based around RFC 4492.
 - 2. In the current concept for EC-based DevID credentials, the corresponding RFC 4492 elliptic curve identifier is secp256r1.
 - 3. We noted that an implementation would need both SHA-1 and SHA-256 at different points in the protocol.