

Description of Use of IEEE 1588
Followup Peer-to-Peer Transparent
Clocks in A/V Bridging Networks

Revision 10.012.0
2006.043.24182705.12

Geoffrey M. Garner

Samsung (Consultant)
gmgarner@comcast.net

 2

Revision history:
1.0 – Addressed numerous initial comments; completed Sections 2.2.2.3 and 4.2 (Pdelay
mechanism); completed details on frequency compensation algorithm in Sections 2.2.2.5
and 4.4; added details on architectural implications of P2P TC and OC functions being
combined in a single box and resulting simplifications (Sections 2.1 and 4.1.1)
1.1 – Added description of on-the-fly operation (allowed as an option) and, to reflect this,
removed “followup” from the title of the document; added revision history; addressed
comments on correction field resolution (Section 2.2.2.8) made in 4/19/2006 AVB call and
removed author’s note at end of that section; added an author’s note reflecting discussion
in the 4/19/2006 AVB call that multicast Pdelay messages cannot be transmitted on
blocked links.
2.0 – Revised frame formats in Section 3 to reflect the latest agreements in the IEEE 1588
Short Frames Subcommittee, given in References [12] – [15].

 3

1. Introduction

The Audio/Video Bridging (AVB) Task Group (TG) within IEEE 802.1 is considering the use of
a subset of IEEE 1588 Version 2 Precise Time Protocol (PTP) (currently under development) to
provide timing and synchronization to the various AVB network nodes. Specifically, the Draft
PAR for AVB Timing/Synchronization (IEEE 802.1as) indicates that IEEE 802.1as “specifies the
use of IEEE 1588 specifications where applicable in the context of IEEE Stds 802.1D and
802.1Q” and that it will “leverage the work of the IEEE 1588 WG to develop the additional
specifications needed to address these requirements” [1]. A joint IEEE 802.1 AVB/IEEE 1588
Design Meeting was held February 21, 2006 [2], in which it was suggested that the Follow-up
Peer-to-Peer (P2P) Transparent Clock (TC) being developed as part if IEEE 1588 Version 2 could
be used advantageously to provide synchronization to AVB networks [2]. A possible way of
using the Follow-up P2P TC, consistent with the current Draft Working Technical Description [3]
was discussed verbally in the meeting and then documented in [4]. Reference [4], augmented by
[3] plus other IEEE 1588 Version 2 Working Documents (e.g., relevant documents include, but
are not necessarily limited to [5] and portions of [6] referenced in [5]) and the published IEEE
1588 Version 1 [7] provide a description of how IEEE 1588 can be used to provide timing and
synchronization to AVB networks.1 However, an initial presentation of [4] to the AVB TG
indicated it would be desirable to provide a more self-contained description of the use of IEEE
1588 in AVB networks.

The main purpose of this document is to provide a detailed description of the use of IEEE 1588
for timing/synchronization in AVB networks, in a manner that is easily accessible and
understandable to the user. The intent is to provide a detailed description of the protocols;
nonetheless, this document is not a substitute for the eventual standards documents that are
published (i.e., IEEE 1588 Version 2, IEEE 802.1as).

The document is organized as follows. Section 2 is an overview of the subset of the PTP clock
synchronization model that will be used by AVB networks and additional assumptions and
requirements for AVB that are not part of the PTP specification but are part of a PTP profile for
AVB. Section 3 describes the message and frame formats. This description is taken from
Reference [6]. Section 4 describes how each message is processed as it originates at the ingress
node, arrives at the egress node, arrives at a node that is not the egress node, and is transmitted by
a node that is not the ingress node.

2. Subset of PTP clock synchronization model used in
Audio/Video Bridging networks

Some of the material and text in this section is either taken from or uses text in [9] as a starting point.

2.1 Overview of PTP systems used in A/V Bridging networks

1 Additional information, referred to as a 1588 profile, is also needed. This information will be specified in an
IEEE 802.1 document. Profile information is typically specific to a respective application, and is not specified
directly in IEEE 1588 because IEEE 1588 is used in a wide variety of applications that have different
requirements.

 4

General PTP systems (i.e., not necessarily limited to AVB network applications) are distributed,
networked systems consisting of some combination of PTP and non-PTP devices. PTP devices
include ordinary clocks, boundary clocks, transparent clocks, and administrative nodes. Transparent
clocks may be further subdivided into two types: (a) peer-to-peer (P2P), and (b) end-to-end (E2E).
Non-PTP devices include ordinary network switches (i.e., bridges), routers, and/or other
infrastructure devices, and possibly end application devices such as computers, printers, displays,
video or audio players, etc.

The PTP protocol is a distributed protocol that specifies how the real-time PTP clocks in the system
synchronize with each other. The ordinary and boundary clocks are organized into a master-slave
synchronization hierarchy with the clock at the top of the hierarchy, i.e., the Grandmaster (GM)
clock, determining the reference time for the entire system. The synchronization is achieved by
exchanging PTP timing messages with the slaves using the timing information to adjust their clocks
to the time of their master in the hierarchy. The transparent clocks are not part of the master slave
hierarchy; however, each transparent clock may syntonize (i.e., synchronize in frequency but not
time) to a master boundary or ordinary clock. In addition, an ordinary or boundary clock may be
collocated with a transparent clock, in which case a timing signal synchronized to a master is
available at the transparent clock. Every AVB network node will contain a collocated ordinary and
peer-to-peer transparent clock. One of the nodes will be the master, and all the other nodes will be
slaves to this master (and therefore the master will also be the grandmaster). An AVB network will
not contain any non-AVB devices (i.e., any nodes that do not have PTP clocks).2

Devices in a PTP system communicate with each other via a communication network. In general,
the network may include bridges between segments implementing different network communication
protocols; in the case of AVB, the network is Ethernet. An ordinary clock (OC) has a single
physical or logical connection to the network, i.e., a single port. A boundary clock (BC) may have
multiple physical or logical connections to the network, i.e., multiple ports. An E2E or P2P
transparent clock (TC) may have multiple physical connections to the network, i.e., multiple ports.
In an AVB network, there is an implied single connection between an OC and the collocated P2P
TC. This is illustrated in Figure 1.

Figure 1 indicates that an AVB network node will contain both OC and P2P TC functions. In
describing how AVB nodes synchronize to the GM (i.e., by processing PTP messages, which results
in the computation of frequency adjustment factors, slave offsets, and new states for the OC and its
port and in the synchronization of each slave OC to the GM OC), two approaches are possible. We
may consider the OC and P2P TC as individual functions and describe them in a general way. We
would indicate that an AVB network node must have both functions present; however, the
description would not take advantage of any simplification that resulted from this requirement. In
such a description, we would consider the functional link between the OC function and the P2P TC
function explicitly, i.e., it would have a state with regard to the processing of Sync and Follow_Up,
timestamp measurements would be made for messages on this link, and the Pdelay mechanism
would be used to measure propagation delay on this link. This general description is used in IEEE
1588, Version 2, because general PTP systems allow for standalone P2P TCs. However, this
description would be more complicated than necessary for AVB networks. For example, since the

2 In a general PTP system, it is possible for multiple TCs to be connected to a non-PTP device in a star
configuration, with the non-PTP device as the hub and the TCs as spokes. If more than 2 of the TCs are P2P
TCs, the situation is referred to as a 1:N configuration. Version 2 of IEEE 1588 will not allow 1:N
configurations of P2P TCs. In an AVB network, all the nodes must be AVB-enabled and therefore will
contain P2P TCs; therefore, 1:N configurations will not arise in AVB networks (at least, for the present AVB,
using wired Ethernet links).

 5

OC and P2P TC functions in an AVB NE are collocated, the propagation delay on the functional
link connecting them is zero and the timestamp measurements can be made directly on the Sync and
Pdelay messages that leave the combined node (right-hand part of Figure 1). In addition, we can
consider the state of the combined node and of each link with regard to the Sync and Follow_Up
messages (i.e., master or slave state) but not with regard to the Pdelay messages (since P2P TCs are
stateless). In the description of the processing of Sync and Follow_Up messages in Section 4.1, we
first use the former, general approach; this resembles the description for general PTP systems that
include TCs given in [3] (but following the description in [4] to specialize the operation to AVB
systems). We then give a simplified description that takes advantage of the fact that both functions
are present in an AVB network node.

Ordinary
Clock

P2P TC

Ordinary
Clock

P2P TC
≡

Figure 1. Illustration of implied single connection between an OC and the collocated P2P TC

The PTP protocol executes within a logical scope called a subdomain. All PTP messages, data sets,
state machines and any other PTP artifacts are always associated with a particular subdomain. In
general, a given physical network and individual devices connected to the network can be associated
with multiple subdomains. The time established within a subdomain by the PTP protocol is
independent of the time in other subdomains. In the case of an AVB network, the entire network
will consist of a single subdomain.

2.2 AVB synchronization overview

There are two phases in the normal execution of the PTP protocol in an AVB network:

a) Establishing the master-slave hierarchy, and
b) Synchronizing the clocks.

2.2.1 Establishing the master-slave hierarchy
In an AVB network, each ordinary clock examines the contents of all Announce messages received.
Using the best master clock (BMC) and state decision algorithms these the contents of the Announce
messages and the contents of the data sets associated with the OC are analyzed to determine the state
of the single implied OC port and of the OC. This process establishes one OC as the GM and the
other OCs as slaves, in the single subdomain of the AVB network, as illustrated in Figure 2. Note
that the P2P TCs are not part of the master-slave hierarchy.

 6

S
Ordinary
Clock-2

P2P TC

GM
Ordinary
Clock-1

P2P TC

S
Ordinary
Clock-4

P2P TC

S
Ordinary
Clock-3
P2P TC

S
Ordinary
Clock-5

P2P TC

S
Ordinary
Clock-6

P2P TC

S
Ordinary
Clock-7

P2P TC

Ethernet
Links

Ethernet
Links

Figure 2. Illustration of AVB clock hierarchy

In Figure 2, the GM and slaves communicate via the Ethernet links. Each node is assumed to have a
forwarding database, as would be present in conventional Ethernet, that enables unicast and
multicast messages to reach their intended destinations without cycling endlessly. While Figure 2
shows a mesh topology, with clocks 1 through 4 forming a loop, the forwarding databases will
reduce this to a spanning tree by not using one of the four links connecting these clocks. The
manner in which the forwarding databases are constructed is not specified in IEEE 1588, Version 2.
One way in which the forwarding databases can be constructed is through the use of dynamic MAC
address learning for unicast addresses and GMRP3 registration for multicast addresses, with
spanning tree algorithm used to avoid loops, but IEEE 1588, Version 2 does not require this.4

3 GMRP stands for GARP Multicast Registration Protocol. GARP stands for Generic Attribute Registration
Protocol.
4 In IEEE 1588, Version 1, TCs are not specified; a node is either a BC or an OC. In addition, BCs do not
forward PTP messages. Therefore, the issue of constructing a forwarding database to ensure that PTP
messages reach their intended destinations does not arise in a 1588 Version 1 network that has only BCs and
OCs (i.e., no TCs and no non-PTP devices). This is because all communication is point-to-point in such a
case. Also in such a case, the application of the BMC algorithm is more complicated than in Figure 2 above
because now the master-slave hierarchy has multiple levels; nonetheless, the BMC algorithm establishes the

 7

The network in Figure 2 is equivalent to a single PTP communication path. A PTP communication
path supports the direct communication among the ports of ordinary and boundary clocks.
Boundary clocks do not forward Sync, Follow_Up Delay_Req, Delay_Resp, or Announce messages,
and different ports of a boundary clock are on different PTP communication paths. However, for
simplicity AVB networks will not contain boundary clocks5 (and no BCs are present in Figure 2).

2.2.1.2 Description of best master clock algorithm
To be supplied.

2.2.2 Synchronizing the clocks
In a PTP system, a master and slave clock synchronize by exchanging timing messages. For
example, in Figure 2 the GM (Ordinary Clock-1) synchronizes a slave, e.g., Ordinary Clock-2, by
exchanging messages with the slave. We first describe how a master and slave are synchronized in
Version 1 of IEEE 1588, i.e., where the master and slave are directly connected and there are no
TCs in between. We then consider the case of an AVB network, where P2P TCs might be present
(we do not consider E2E TCs as these are not used in AVB networks). As part of the latter, we
consider (1) synchronization in general PTP systems that use P2P TCs, (2) measurement of link
propagation times using the Peer_DPdelay mechanism, (3) processing Sync and Follow_Up
messages at P2P TCs in AVB, (4) syntonizing P2P TCs to the GM, (5) architectural considerations
for AVB node synchronization, and (6) application filter requirements. Note that some of the items
described here, e.g., aspects of (3), (4), (5), and (6) are not specified for general PTP systems and are
properly part of a 1588 profile for AVB networks.

2.2.2.1 Synchronizing a master and slave that are directly connected

Consider a master and slave that are directly connected, i.e., have no TCs and no non-PTP devices
between them. The basic pattern of synchronization message exchange is illustrated in 3.

hierarchy. In Figure 2, the master-slave hierarchy and application of the BMC algorithm is much simpler than
in general IEEE 1588, Version 1 networks that have multiple BCs, but the network of Figure 2 does need to
ensure that the PTP messages are forwarded properly. Finally, note that Version 1 networks that have non-
PTP devices also must make sure that the PTP messages are forwarded properly (and the specification of this
is beyond the scope of IEEE 1588).
5 In principle, there is no reason why AVB networks could not contain Boundary Clocks (just as there is no
reason why any 1588 network could not contain boundary clocks). The decision that AVB networks will use
only P2P TCs with collocated OCs was made to limit the number of 1588 architectural options and keep the
AVB network simple. This will help to ensure both low cost and ease of administration by users (consistent
with the 802.1as PAR [1].

 8

Master
time

Slave
time

M1

M2

M3

M4

t1

t4

t3

t2

Timestamps
known by slave

t1

t1, t2

t1, t2, t3

t1, t2, t3, t4

t-ms

t-sm

Figure 3. Basic synchronization message exchange (taken from[9])

The message exchange pattern is (items (a) – (f) below are taken from [9]):

a) The master sends a message M1, referred to as Sync, to the slave and notes the time, t1, at
which it was sent.

b) The slave receives the message M1 and notes the time of reception, t2.

c) The master conveys to the slave the timestamp t1 by:
1) Embedding the timestamp t1 in message M1. This requires some sort of hardware

processing for highest accuracy, or
2) Embedding the timestamp t1 in a second message M2, referred to as Follow_Up. This

can be done in software since the timing is not critical.

d) The slave sends a message M3, referred to as Delay_Req, to the master and notes the
time, t3, at which it was sent.

e) The master receives the message M3 and notes the time of reception, t4.

f) The master conveys to the slave the timestamp t4 by embedding it in a message M4,
referred to as Delay_Resp.

At the conclusion of this exchange of messages, the slave possesses all four timestamps. These
timestamps may be used to compute the offset of the slave’s clock with respect to the master and the
mean propagation time of messages between the two clocks, that is the mean of t-ms and t-sm in 3.
The computations are

 9

egation_timmean_propattetslave_offs

tt
egation_timmean_propa

ttt
ttt

smms

sm

ms

−−=

+
=

−=
−=

12

34

12

2
. (2-1)

The expression for slave offset assumes that the master-to-slave and slave-to-master propagation
times are equal. Any asymmetry in propagation time will introduce an error in the computed value
of slave offset.

The accuracy of the slave offset computation also depends on how accurately the times t1, t2, t3, and
t4 are measured, i.e., the computations in Eqs. (2-1) depend on these times reflecting when the Sync
and Delay_Req messages actually are sent and received. This means that the measurement must be
made below the Ethernet mac, i.e., at the MII or GMII. In addition, if Follow_Up is not used, i.e., if
an accurate measurement of t1 is placed in the Sync message, the hardware will be more expensive.
For this reason, AVB will may use the Follow_Up message (i.e., use of the Follow_Up message will
be allowed, though on-the-fly operation will not be precluded).

This basic exchange of messages is used in two ways in the PTP protocol:

g) To synchronize between an ordinary clock and a boundary clock, and

h) To measure link propagation time.

The propagation times usually vary very slowly, if at all. Therefore, it is often possible to perform
the Delay_Req/Delay_Resp message exchange much less frequently than the sending of Sync and, if
implemented, Follow_Up. In this case, multiple Sync and Follow_Up messages are sent between
successive Delay_Req/Delay_Resp exchanges. The mean propagation time measured by a
Delay_Req/Delay_Resp exchange is used by the slave in all subsequent clock offset calculations
until the next Delay_Req/Delay_Resp exchange.5 This is illustrated in Figure 4 where, in each
computation of slave offset after a Sync and Follow_Up message are received, the values of t1 and t2
for that Sync and the most recently measured mean propagation time are used in the final equation
of Eq. (2-1).

The time between successive Sync messages is referred to as the synch interval.

 10

Master
time

Slave
time

Sync

Follow_Up

Delay_Req

Delay_Resp

t1

t4

t3

t2

Timestamps
known by slave

t2

t1, t2

t1, t2, t3

t1, t2, t3, t4

t-ms

t-sm

Sync

Follow_Up

Sync

Follow_Up

Delay_Req

Delay_Resp

t1

t1

t2

t2

t3

t4

Figure 4. Basic synchronization message exchange, showing multiple Sync and Follow_Up messages
between two successive Delay_Req/Delay_Resp exchanges.

 11

2.2.2.2 Synchronizing a master and slave that communicate through one or
more P2P TCs

If there are one or more P2P TCs between the master and slave, the master-to-slave and slave-to-
master propagation times will, in general, not be equal and will vary appreciably with time. The
reason for this is that the Ethernet links in Figure 2 will also carry application traffic; in fact, this
will be the majority of the traffic in the network. Even if the PTP messages have highest priority,6
the priority will be non-preemptive; a large Ethernet frame in service when it is desired to send a
Sync message from a TC node can result in addition delay whose value will be between zero and the
transmission delay for this frame. For a maximum sized Ethernet frame (1500 bytes of payload), the
maximum value for this delay is nearly 125 µs for 100 Mbit/s Ethernet. This is much larger than the
delays due to propagation through the PHY and wire.

The TC solves the above problem by measuring the time the Sync message arrives, ta, and the time
the Sync message departs, td, and computing the difference, tr = ta – td. This difference is referred to
as the residence time. The residence time is accumulated in a field of the Sync or Follow_Up
message referred to as the correction field. Specifically, the correction fields of the Sync message
and Follow_Up message, respectively, are initialized to zero when the GM creates those messages.
When a TC measures residence time, it has two choices. If it is able to make a sufficiently accurate
measurement of tr and add the value of this measurement to the correction field of the Sync message,
i.e., if it is an on-the-fly TC, it does this. In this case, it does not alter the correction field of the
Follow_Up message when that message is received and sent by the TC. However, if it is a follow-
up TC, i.e., if it cannot make an accurate residence time measurement sufficiently quickly to add it
to the value of the Sync message correction field as the Sync message is transmitted, it instead adds
the residence time to the correction field of the Follow_Up message. As it is more expensive to
make on-ththe-fly measurements of residence time, AVB P2P TCs will are allowed to be follow-up
TCs.7

The P2P TCs also measure propagation times on the Ethernet links that connect them using the three
Peer_DPdelay messages, referred to as Peer_DPdelay_Req, Peer_DPdelay_Resp, and
Peer_DPdelay_Resp_Follow_Up. The details of this measurement will be described shortly;
however, the result is that each P2P TC at the end of a link knows the propagation time on that link.
A P2P TC will also accumulate in the correction field of the Sync or Follow_Up message the
propagation time for the link on which the Sync message arrived. Specifically, an on-the-fly P2P
TC will accumulate the propagation time in the Sync correction field, and a follow-up P2P TC will
accumulate the propagation time in the Follow_Up correction field. When the Sync and Follow_Up
messages reach their final destination slave clocks, the sum of the correction fields in these
messages is a measure of the total residence time in all the intervening TCs plus the propagation
times on all the links except the final ingress link at the destination. This is illustrated in the
example in Figure 54.

6 AVB will use the priority mechanism of IEEE 802.1D and 802.1Q.
7 Actually, Oon-the-fly measurements will be allowed, but will not be required.

 12

GM
Ordinary
Clock-0

P2P TC

S
Ordinary
Clock-1

P2P TC

S
Ordinary
Clock-2

P2P TC

S
Ordinary
Clock-3

P2P TC

Residence
time = tr1

Residence
time = tr2

Propagation
time = tp0

Propagation
time = tp1

Propagation
time = tp2

Link 1 Link 2 Link 3

Figure 54. Illustration of accumulation of residence times and propagation times by P2P TCs

Figure 4 5 consists of a GM (ordinary clock 0) and three slave clocks (ordinary clocks 1 –3). The
link connecting clocks i and i+1 is labeled link i+1. The residence time in clock i is denoted tri, and
the propagation time on link j is denoted tpj. If clock N is the destination clock (i.e., there are a total
of N+1 ordinary clocks, with N = 3 in the example here), then residence times are measured in
clocks 1 through N-1, and link propagation times are measured by the Peer_DPdelay mechanism on
links 1 through N. When the Sync and Follow_Up messages arrive at clock N, the sum of their
correction fields is given by

()∑
−

=
+=+

1

1

N

i
piri ttfieldcorrectionUpFollowfieldcorrectionSync . (2-2)

The reason the propagation time on the final link is not included in Eq. (2-2) is that the propagation
time is added to the correction field when the Sync or Follow_Up message is transmitted from the
node, but at the final destination the Sync and Follow_Up messages are not transmitted to any
additional nodes. However, the propagation time on this final link, tpN, is known at the destination
node, because the P2P TC in that node (node N) participates in a Peer_DPdelay measurement with
the TC at the other end of the link (node N-1). Therefore, the propagation time may be easily added
to the sum in Eq. (2-2) to give

∑∑
=

−

=
+=

N

i
pi

N

i
ri tttimeresidenceplusnpropagatiototal

1

1

1
____ . (2-3)

The slave offset is now computed as

timeresidenceplusnpropagatiototalttetslave_offs ____12 −−= , (2-4)

where we have reverted to the notation of Figure 3 for the times the Sync message is transmitted by
the GM and received at the final destination, i.e., t1 is the time the Sync message is transmitted from
the GM (ordinary clock 0), t2 is the time the Sync message is received by the destination slave clock
(ordinary clock N, with N = 3 in Figure 54), and total_propagation_plus_residence_time is given by
Eq. (2-3).

Note that even though a P2P TC is present at the GM, it does not measure residence time. This is
because the time t1 that the Sync message departs the GM network element occurs after the message
traverses the P2P TC (because the GM and P2P TC functions are located in the same NE).

 13

With this mechanism, there is no need for the Delay_Req and Delay_Resp messages shown in
Figures 3 and 4. Instead, the propagation times are computed using the Peer_DPdelay messages,
which are described shortly.

In an actual AVB network, all the slave clock nodes must be synchronized; in addition, the topology
will, in general, be a mesh tree topology, which may be reduced from a mesh topology (Figure 2),
rather than a linear topology (Figure 54). PTP messages are, by default, multicast. This means that
the GM sends a single Sync and a single Follow_Up message to all the nodes; it does not have to
generate a separate Sync and separate Follow_Up message for each node. The forwarding database
ensures that each slave clock receives each Sync and each Follow_Up message that the GM
transmits, and also that Sync and Follow_Up messages do not cycle endlessly. The multicast
mechanism means that a Sync message received by a P2P TC on one port may be transmitted on
multiple ports. If this is done, the transmission time is measured separately for each port that the
message is transmitted on, and a separate residence time is computed for each transmitted port. If
the P2P TC is on-the-fly, the correction field of the transmitted Sync message is updated separately
on each port using the respective residence time for that port and propagation time for the link
attached to the port the message arrived on. When the corresponding Follow_Up message arrives, it
is transmitted on the same ports that the Sync message was transmitted on. If the P2P TC is a
follow-up TC, the correction field of the transmitted Follow_Up message is updated separately on
each port using the respective residence time for that port and propagation time for the link attached
to the port the message arrived on.

[Author’s Note: The fact that the PTP messages are multicast likely means that some form of
multicast address registration at the AVB nodes is needed. One way to do this is with GMRP
There has been initial discussions of the multicast address mechanism in the 4/19/2006 AVB call
and via email. Further work is needed, and the mechanism must be described in more detail.]

2.2.2.3 Measurement of link propagation times using Peer_DPdelay
mechanism
This section will be filled in. The Short Frames group is considering a 2 timestamp format for the
Peer_Delay messages. Note: will the mechanism now be symmetric?
The description of this subsection, and Figure 6, are taken from Section 6.5.3 of [9] (with minor
modifications made to the text). The mechanism for measuring the propagation time between two
P2P TCs using the Pdelay mechanism is illustrated in Figure 6. The measurement is made by each
port at the end of every link. Thus, both ports sharing a link will independently make the
measurement and both ports will know the propagation time as a result. This allows the corrections
described above in Section 2.2.2.2 to be made irrespective of the direction taken by a Sync message.
It is important that the propagation time measurement occur even on ports otherwise blocked by
non-PTP algorithms used to eliminate cyclic topologies. [Author’s Note: It was indicated in the
4/19/2006 AVB call that the multicast address mechanism in 802.1 bridges (and in most
networking technologies) does not permit multicast messages to be sent on blocked ports. Since
the Pdelay messages are multicast by default, this implies that these could not be sent on blocked
ports. This should not be an issue for AVB, as in the event of a reconfiguration, the propagation
delay on a link that becomes unblocked would be learned within one Pdelay message exchange
time. Nonetheless, this issue should be investigated more fully in looking at how multicast
addressing will work for the PTP messages used in AVB, to determine if it really is a limitation.]

The propagation time measurement starts with port-1 (Figure 6) issuing and generating a timestamp,
t1, for a Pdelay_Req message. Port-2 receives and timestamps, t2, this message. Port-2 returns and
timestamps, t3, a Pdelay_Resp message. Port-2 returns the timestamps t2 and t3 either in the

 14

Pdelay_Resp (which requires hardware assist) or in a Pdelay_Resp_Follow_Up message (as is the
case for the use of Follow_Up, the use of Pdelay_Resp_Follow_Up will be allowed, though on-the-
fly measurement will not be precluded). Port-1 generates a timestamp, t4, upon receiving the
Pdelay_Resp message. Port-1 then uses these four timestamps and the first three equations of Eq.
(2-1) to compute the mean propagation time.

There will be an error in the propagation time measurement equal to the frequency offset between
the two P2P TC nodes multiplied by one-half the time interval between the receipt of Pdelay_Req
and the sending of Pdelay_Resp. In general 1588 systems where the P2P TC nodes may not be
syntonized, this means that the turnaround time between the receipt of Pdelay_Req and the sending
of Pdelay_Resp should be as short as possible, to minimize this source of error. However, this is not
expected to be an issue for AVB networks because the AVB nodes will be syntonized.

The Pdelay messages may be sent less frequently than the Sync and Follow_Up messages, as
propagation times are not expected to vary rapidly. They will be sent every P sync intervals, where
P is to be determined. There are several possibilities for the synchronization of the sending of these
messages: (1) Port-1 sends the messages at times determined by the local free-running oscillator, in
which case the measurements of propagation time by the various ports on the various nodes are
occurring at times that are not synchronized and rates that are not syntonized, (2) Port-1 sends the
messages at times determined by the syntonized frequency that is synthesized from the free-running
oscillator times and the Sync and Follow_Up messages received from the GM, in which case the
measurements of propagation time by the various ports on the various nodes are occurring at times
that are not synchronized but rates that are syntonized, and (3) Port-1 sends the messages at times
determined by the synchronized clock (i.e., after adding the slave offset), in which case the
measurements of propagation time by the various ports on the various nodes are occurring at times
that are synchronized.

Port-1
time

Port-2
time

Pdelay_Req

Pdelay_Resp

Pdelay_Resp_Follow_Up

t1

t4

t3

t2

t-ms

t-sm

Figure 6. Propagation time measurement using Pdelay mechanism

 15

2.2.2.4 Processing of Sync and Follow_Up messages at P2P TCs in AVB
AVB network nodes will be assumed to have standard Ethernet oscillators, with nominal rates of 25
MHz for 100 Mbit/s Ethernet and 125 MHz for 1 Gbit/s Ethernet. This means that the phase
measurement granularity in the TC and OC can be as much as 40 ns. Additional phase error will
result from the variable component of latency in the Ethernet PHY (the fixed component can be
specified by the manufacturer in the design). Some AVB applications have stringent jitter and
wander requirements. For example, uncompressed digital video has jitter requirements of less than
1 ns peak-to-peak measured through a 10 Hz low-pass jitter measurement filter, and maximum
frequency offset and drift of 0.23 ppm and 0.023 ppm/s, respectively [10]. Consumer grade digital
audio has a jitter requirement of 10 ns peak-to-peak measured through a 10 Hz low-pass jitter
measurement filter, and maximum frequency offset of 50 ppm [10]. Additional details on these
requirements are given in [10]. It is expected that a Sync interval as short as 10 ms or less will be
needed in AVB networks to meet the jitter and wander requirements.

AVB network nodes will also use an inexpensive processor, e.g., the 8051. While Sync messages in
theory require minimal processing by a Follow-up P2P TC (i.e., the TC needs only to measure the
arrival and departure times of the Sync message), Follow_Up messages require more processing. It
is expected that the 8051 processor may take up to 10 ms to process a Follow_Up message,
depending on the total load of the processor. This means that for a path through N PTP TCs
(excluding the GM and final slave node), it will require at leastmay take on the order of 10N ms for
the Followup message to travel from the master to the slave. Since the Sync messages require little
or no processing, they will travel from the master to slave in much less than 10N ms (the time for the
Sync to travel from the master to the slave will likely be on the order of the AVB latency
requirement; values in the range of 2 – 6 ms have been discussed). Figure 75 illustrates this scenario
for the case of 2 follow-up TCs between the GM and final slave node, i.e., N = 2.

 16

P2P TC P2P TC P2P TCGM

Sync 1

Sync 1

Sync 1
Sync 2 Sync 2

Sync 2
Sync 3

Sync 3 Sync 3

Sync 4

Sync 4

Sync 4

Followup 1

Followup 1

Followup 1

Note: The Followup messages corresponding to Sync2 and Sync3 are not
shown to keep the diagram from being too cluttered.

Figure 75. Illustration of the accumulation of multiple Sync messages at a node before the Follow_Up

corresponding to the first Sync arrives. Follow_Up processing time and sync interval are of
the same order. Sync processing time is much less than Follow_Up processing time. All TCs
are assumed to be follow-up TCs.

In Figure 75, when Follow_Up 1 (corresponding to Sync 1) arrives at the final node, three Sync
messages have arrived (including Sync 1. It is seen that with each successive hop, the Followup
message processing delay causes one additional Sync message to get ahead of the Followup
message. If the master sends Sync every 10 ms, this means that each P2P TC would have to
maintain state information on the residence times for multiple Sync messages at any given time (the
final TC in the chain would have to save information for as many as N+1 Sync messages). Note that
the Follow_Up message processing time occurs at each successive P2P TC but not at the GM at the
beginning of the chain; it is assumed that the GM can send Follow_Up almost immediately after
sending Sync (i.e., in a time short compared to the sync interval). If the Follow_Up processing time
were also incurred at the GM, then one additional Sync message would have arrived when the
Follow_Up message arrives at each TC, i.e., the final TC in the chain would have to save state
information for as many as N+2 Sync messages.

 17

The need to save state information on multiple Sync messages at each P2P TC may be avoided by
having each Sync message held at a TC until the corresponding Follow_Up message arrives. When
the Follow_Up message arrives, its correction field is added to the correction field of the Sync, and
the Sync is sent. The time the Sync is sent is noted; using this and the time the Sync arrived, a
residence time for the Sync in the current TC node is computed. A new Follow_Up message is
generated, and the sum of the residence time just measured and the delay on the upstream link on
which the Sync message arrived is placed in the correction field of the Follow_Up message. This
approach is illustrated in Figure 86.

P2P TC P2P TC P2P TCGM

Sync 1

Sync 1

Sync 1

Sync 2

Sync 2

Sync 2

Sync 3

Sync 3

Sync 3

Followup 1

Followup 1

Followup 3

Followup 2

Followup 3
Followup 2

Followup 3

Followup 1

Followup 2

Figure 86. Sync and Follow_Up sent with Sync held at P2P TC until corresponding Follow_Up arrives.

Follow_Up processing time and sync interval are of the same order. Sync processing time is
much less than Follow_Up processing time.

In Figure 86, successive Sync messages do not get ahead of Follow_Up messages associated with
previous Sync messages. Note that in both cases the Follow_Up message processing time occurs at
each successive P2P TC but not at the BC GM at the beginning of the chain; it is assumed that the
BC GM can send Follow_Up almost immediately after sending Sync (i.e., in a time short compared
to the sync interval). If the Follow_Up processing time were also incurred at the BCGM, the Synch
messages would be held longer at the first P2P TC in Figure 86.

 18

With the approach of Figure 86, a Sync message will not get ahead of a Followup message for a
previous Sync as long as the time between Sync messages is not shorter than the time required for
processing a Followup message at a node (i.e., 10 ms). When a Sync message is sent, at least 10 ms
will have elapsed since the previous Sync message, which means that the Followup message will
have had enough time to be processed at the next downstream node. It is a general requirement for
all PTP systems that use P2P TCs that process Follow_Up messages that the time to process a
Follow_Up message not exceed the Sync interval. If this requirement is not met, then an increasing
backlog of Follow_Up messages will accumulate over time at each node that is traversed by Sync
and corresponding Follow_Up messages.

The approach of Figure 86 is fully consistent with the semantics of how a P2P TC handles Sync and
Follow_Up, i.e., Eqs. (2-2) – (2-4). Both the approach of Figure 86 and the conventional approach
(Figure 75) result in the sum of the Sync and Follow_Up correction fields being the same on arrival
at any P2P TC. Therefore, these equations may be used to compute the slave offset in either
approach.

2.2.2.5 Syntonizing the P2P TC to the grandmaster
A P2P TC contains a free-running oscillator with frequency accuracy no worse than ± 100 ppm. If
residence time is measured using this oscillator, there will be an error on the order of the residence
time multiplied by the actual frequency offset. With the approach of Figure 86 described in the
previous subsection, the residence time may be on the order of a synch interval, e.g., as much as 10
ms, due to the holding of a Sync message at each P2P TC until the corresponding Follow_Up
message arrives. This can result in an error in the residence time measurement on the order of
(100000 ns/s)(0.01 s) = 1000 ns. To reduce this error, IEEE 1588 Version 2 allows the P2P TC to
be syntonized, i.e., synchronized in frequency, to the Grandmaster. While syntonization of the P2P
TC to the GM is not mandatory in IEEE 1588, it will be mandatory for AVB networks.

A P2P TC will syntonize to the GM by comparing a time interval measured by the GM with the
same time interval measured by the local, free-running oscillator of the P2P TC. The time interval is
equal to M Sync intervals. At present, M = 10, though this may change based on the results of jitter
and wander performance simulations. The measurement is done as follows. The P2P TC already
must measure when each Sync message arrives in order to compute the residence time. An estimate
of the GM time when the Sync message arrives is given by

timeresidenceplusnpropagatiototalttGM ____1 += , (2-5)

where t1 is the time the GM sends the Sync message as defined in Figure 3 and
total_propagation_plus_residence_time is given by Eq. (2-3) and is computed as the sum of the
correction fields in the Sync and corresponding Follow_Up message plus the propagation time on
the link that the Sync message arrived on (this computation may be seen to be equivalent to Eq. (2-3)
by comparing Eq. (2-3) with Eq. (2-2)). Note that in order to compute tGM, the P2P TC must wait
until the Follow_Up message corresponding to the Sync message arrives. If t2 is the time the time
the Sync message arrives, and if i indexes the synch interval at which the measurement is made, than
a measurement of the frequency offset of the P2P TC free-running oscillator relative to the GM is
given by

iGMMiGM

iMi
MiTC tt

tt
y

,,

,2,2
, −

−
=

+

+
+ . (2-6)

Define the following notation:

 19

tGM,i = estimated GM time at sync interval i based on the received Sync and Follow_Up messages
(and using Eq. (2-5))

tb,i = time indicated by free-running oscillator in P2P TC (analogous to the quantity basetimer in
[11])

yTC,i = measured frequency offset of GM relative to free-running oscillator in P2P TC (note that we
define this as the frequency offset of the GM relative to the P2P TC rather than vice-versa only
for convenience (we could have used the opposite convention, in which case the resulting
equations below would be slightly more complicated)

tf,i = syntonized time, synthesized from the measured frequency offset and the time indicated by the
free-running P2P TC oscillator (analogous to the quantity flextimer in [11])

The frequency offset is equal to the fractional part of the ratio of the elapsed time indicated by the
GM and the elapsed time indicated by the free-running P2P TC oscillator. It is given by

Miyy

tt
tt

y

kMTCikMTC

MkbkMb

MkGMkMGM
kMTC

,...,2,1for

1

,,

)1(,,

)1(,,
,

==

−
−
−

=

+

−

−

. (2-6)

In Eq. (2-6), the frequency offset is measured every M sync intervals, and the current measured
value is used at all sync intervals until the next measurement.

The syntonized time, i.e., syntonized to the GM, is synthesized under the assumption that the
frequency offset of the GM relative to the free-running P2P oscillator has been equal to the current
measured value since that measurement was made. Then

Mi
tt
tt

y
kMbikMb

kMfikMf
kMTC ,...,2,1for 1

,,

,,
, =

−
−

=+
+

+ . (2-7)

Eq. (2-7) may then be used to solve for the syntonized time at an arbitrary sync interval between two
successive frequency offset measurements

Mittytt kMbikMbkMTCkMfikMf ,...,2,1for))(1(,,,,, =−++= ++ . (2-8)

In applying Eq. (2-8), the value of free-running oscillator time and the syntonized time when the
frequency offset measurement is made, tb,kM and tf,kM respectively, are saved until the next frequency
offset measurement is made. If it is desired to compute the syntonized time at a sync interval in
terms of only the syntonized time at the previous sync interval and the free-running times at the
current and previous sync intervals, an alternative result may be obtained by replacing i by i-1 in Eq.
(2-8) and subtracting this from Eq. (2-8)

Mittytt ikMbikMbkMTCikMfikMf ,...,2,1for))(1(1,,,1,, =−++= −++−++ . (2-9)

Note that Eqs. (2-6) – (2-9) hold for i = 1, 2, …,M. When i = M, a new frequency offset
measurement is made, k is increased by 1, i is set to zero, and the process begins again.

 20

Note that each P2P TC needs only its own local free-running oscillator phase information and the
information conveyed by the GM in the Sync and Follow_Up messages. It is not necessary for any
P2P TC to convey its local free-running phase information to any other P2P TC or to the GM.

Each In applying Eqs. (2-6) – (2-9), a P2P TC will useis, in effect, using the measured frequency
offset relative toof the GM relative to its free-running oscillator to synthesize a frequency signal that
is syntonized with the GM. This synthesis, i.e., the implementation of Eqs. (2-6) – (2-9), may be
done via hardware, firmware, or software.

The syntonized time tf,i is used as the t2 value in Eq. (2-4) to obtain slave offset. In addition, the
syntonized time at the P2P TCs at the two ends of a link are used in the first two of Eqs. (2-1) in
obtaining propagation times using the Pdelay mechanism (see Section 2.2.2.3).

2.2.2.6 AVB Node synchronization architecture
The above subsection describes how the P2P TC contains a free-running oscillator and syntonizes
this to the GM frequency by measuring its frequency offset relative to the GM. Similarly,
subsections 2.2.2.1, 2.2.2.2, and 2.2.2.4 describe how a slave clock synchronizes to the GM by
measuring its phase offset relative to the GM; the specific computation is given by Eqs. (2-2) – (2-4).
Eq.n. (2-4) indicates that the slave clock measures the time the Sync message arrives, but is not
specific on whether the slave clock uses the local free-running oscillator embedded in the P2P TC,
the signal synthesized by the P2P TC that is syntonized to the GM, a separate free-running local
oscillator in the slave, or the synchronized timing signal produced in the slave using the computed
phase offsets. This subsection discusses the relative merits of each choice and concludes that the
best approach for AVB is to use the syntonized timing signal synthesized by the P2P TC, i.e., as
opposed to using a free-running oscillator embedded in the P2P TC or slave clock. The
synchronized timing signal produced in the slave clock using the computed slave_offset may also be
used for the timestamp measurements, though the performance difference between using the
syntonized and synchronized signals will not be significant (see the paragraph following the next
paragraph for details on this).

Since one of the requirements for AVB is low cost, it is desirable to have a single oscillator in an
AVB NE for both the P2P TC and slave clock functions. If the P2P TC were not syntonizing to the
GM, the slave could still synchronize using Eqs. (2-2) – (2-4). Even if there were no P2P TCs
between the slave and GM, the fact that the slave and GM frequencies were different would result in
a computed slave_offset (Eqs. (2-1) – (2-4)) on the order of the frequency offset between the free-
running slave/TC oscillator and the GM multiplied by the synch interval. This could be as large as
(100000 ns/s)(0.01 s) = 1000 ns. However, since the frequency offset between the GM and slave/PC
oscillator is already being measured and a syntonized frequency is being created, the use of this
frequency for the slave offset computation will greatly reduce the magnitude of the computed slave
offset phase step. The phase step magnitude will now be on the order of the syntonized frequency
measurement accuracy multiplied by the synch interval. For example, if the phase measurement
granularity is 40 ns and the P2P TC oscillator offset is measured over 10 synch intervals, i.e., 100
ms, the error in measured frequency offset is 40 × 10-9 s/0.1 s = 400 × 10-9 = 0.4 ppm. The slave
offset now is (400 ns/s)(0.01 s) = 4 ns, i.e., is reduced from the 1000 ns computed when the free-
running frequency is used for the measurement by a factor of 250. In practice, the reduction will not
be this large because other effects are present, e.g., oscillator phase noise and drifts due to
temperature effects, phase measurement error due to the variable portion of the PHY latency, and
frequency measurement granularity. A better estimate of the synchronization performance will be
determined via simulation.

 21

The syntonized signal has the same average frequency as the GM (except for measurement errors
described above), but not necessarily the same phase. There may be a large phase difference
between the time signal at the P2P TC syntonized to the GM and the GM signal itself (e.g., due to an
initial phase offset). However, the only impact of this large initial phase offset is that it is added to
the slave time measurement t2, which is in error by the opposite amount. To see this, consider two
cases for Figure 3 and Eq. (2-1). We assume the master and slave frequencies are syntonized in
both cases. In the first case, the syntonized, but not synchronized, signal at the slave is used to make
timestamp measurements. After the slave receives a Sync message and a Follow_Up message, and
assuming propagation times have been measured with the Pdelay mechanism, the slave_offset is
computed using the final equation in Eq. (2-1). If the phase measurement granularity were zero and
there were no timestamp measurement errors and no clock phase error due to noise or temperature
effects, the computed slave_offset would be the exact offset between the master and slave. The
actual computed offset will be in error to the extent that these effects are non-zero. In any case.
Adding this computed offset to the syntonized slave timing signal will produce a synchronized slave
timing signal. If the synchronized timing signal is used for future timestamp measurements, the
computed slave_offset will be very small (its actual magnitude will depend on how large the above
effects are that produce errors in the offset measurement). If the syntonized timing signal is used for
future timestamp measurements, the computed slave offset will simply be the static time difference
between the syntonized slave signal and the master signal. The conclusion is that the
synchronization performance will be very similar if one uses the syntonized signal to make the slave
offset measurement versus a synchronized signal, i.e., a signal that has past computed slave offsets
added back in.

Note that in the above paragraph we are referring to an unfiltered synchronized signal. After adding
the slave offset to the signal used to make the slave offset measurement, the signal may be filtered to
reduce any jitter and wander due to the offset addition. If the filtered signal were used to measure
the message arrival times, performance could be improved. However, in AVB networks filtering
will be application dependent, i.e., applications with more/less stringent jitter and wander
requirements can require filters with tighter/looser bandwidth and gain peaking requirements. The
reason for this is so that the cost of any expensive filtering will be borne by applications that need
the filtering. AVB networks will either not require any level of filtering to be present by default (i.e.,
regardless of what applications are being demapped at the node) or any required filtering will be
minimal. If filtering is not assumed to be present, there is likely no major performance difference
between the cases where the syntonized and synchronized signals are used for the slave phase offset
measurement.

2.2.2.7 Filtering the synchronized timing signal
The synchronized timing signal obtained by adding the measured slave phase offset to the
syntonized (to the GM) signal used to measure the times of arrival and departure at/from the P2P TC
will have jitter and wander due to the phase steps caused by the offsets. These signals may be
filtered to reduce the jitter and wander. An y filter requirements will be application dependent, so
that the cost of any expensive filtering will be associated with the application that requires it.
Regardless of the level of filtering, any filter requirements may be expressed generically using a
transfer characteristic. An example is shown in Figure 97.

 22

Gain (dB)

Frequency (Hz) fcfl fh

0
A

slope = R db/decade

Figure 97. Example transfer requirement for filter, specific to application

A filter used for the application in question would be required to have a transfer characteristic that is
below the mask in Figure 97. The filter would be tested by applying input signals of specified
amplitude and frequencies ranging from fl to fh, measuring the amplitude of the output, and plotting
the gain (in dB) as a function of frequency. The result would have to be below the mask. The
quantity A is the gain peaking, and the quantity fc is the maximum bandwidth. Note that any
implementation is allowed for the filter (digital versus analog, second order versus higher order, etc);
the only requirement is that the filter transfer function meet the specified mask.

2.2.2.8 Time stamp and correction field resolution

[Author’s note: The statements below also will apply to the timestamps and correction
fields in the Pdelay messages. This must be indicated after the sections for those
messages are filled in.]

As indicated in Section 3.9, PTP timestamps (both originTimestamp in Sync and
preciseOrigingTimestamp in Follow_Up messages) use 4 bytes to represent the number of
seconds and 4 bytes to represent the number of ns, along with a 2 byte epochNumber that
counts the number of times the 32 bit seconds counter has rolled over. The resolution for a
PTP timestamp is therefore 1 ns, and the entire timestamp will roll over after 248 s, or
approximately 8.9 × 106 years.

 23

Section 3.9 also indicates that the correction field is 8 bytes and represents the number of
units of size 2-16 ns (approximately 15.26 fs). Specifically, the most significant 6 bytes
represent the number of ns, and the least significant 2 bytes represent a fraction of a ns. The
correction field is a signed quantity; the most significant bit is a sign bit. Therefore, the
largest absolute value of the whole number of nanoseconds that can be represented is 247.

If the timestamp measurement precision in a PTP system is 1 ns or greater, the measurement
is carried by the originTimestamp and/or the preciseOriginTimestamp fields. If the
timestamp measurement precision is less than 1 ns, then the floor of the timestamp value is
carried in the originTimestamp or preciseOriginTimestamp fields. The fractional ns portion
is carried in the correction field, i.e., is added to the current contents of the correction field
when the timestamp is written (the current contents of the correction field may be zero if the
message was just created with the correction field initialized to zero). The smallest
timestamp measurement resolution supported is 2-4816 ns (i.e., if the node hardware supports
time measurements with precision better than 2-4816 ns, the value must either be truncated or
rounded (IEEE 1588 does not specify whether truncation or rounding is to be done; that is
presumably application dependent and part of the respective 1588 profile).

AVB nodes will be required to support phase measurement granularity of 40 ns (i.e., the
clock hardware will be no worse than the 25 MHz clock used in 100 Mbit/s Ethernet).
However, AVB nodes will be allowed to support smaller granularity (i.e., < 40 ns). In
addition, AVB will be required to support timestamp resolution of X (X is TBD, but will
require at most 16 bits, i.e., X will not be smaller than 2-16 ns). By timestamp resolution, we
mean the number of bits of precision in the most significant 16 bits of the correction field
actually used. If an AVB node chooses to implement fewer than 16 bits of precision (but at
least X bits), then any measurements will truncated/rounded [Author’s note: It must be
specified whether AVB nodes will truncate or round.] to X bits and the remaining most
significant bits will be filled with zeros.

[Author’s note: Is a statement needed on the case of resolutions better than 2-48 ns, e.g.,
(1) that AVB nodes are not expected to ever need to support such small resolution, or (2)
that if such resolution is supported, whether the measurement values should be truncated
or rounded, or (3) such cases will be addressed in a future version of this standard, or (4)
something else?]

3. Message and frame formats
AVB networks will use the following six IEEE 1588 messages:

a) Sync
b) Follow_Up
c) Peer_DPdelay_Req (formerly called ADelay_Req)
d) Peer_DPdelay_Resp (formerly called ADelay_Resp)
e) Peer_DPdelay_Resp_Follow_Up (formerly called ADelay_Resp_FollowUpFollow_Up)
f) Announce

Each message will have a standard Ethernet header (with or without 802.1Q tags) that precedes the
PTP (i.e., IEEE 1588) payload. The PTP payload consists of a common header, i.e., a portion
common to all PTP messages, followed by a portion specific to each PTP message. The common

 24

header is not a header in the sense of a protocol layer, i.e., it is not true that the PTP layer alters the
common header while leaving the portion specific to each message unaltered. Rather, the PTP layer
can alter any portion of the PTP payload (in this sense, the use of the term “payload” is different
from the normal use, as normally a layer alters only the header information and transports the
payload unaltered). The main reason for distinguishing the common header is convenience; since
this portion is the same in all PTP messages, we can describe it once rather than repeat the fields for
each message type.

 Note that AVB will not use Delay_Req and Delay_Resp messages; all AVB nodes will be required
to process the Peer_DPdelay messages.
[Author’s Note: There are two additional PTP message types: Transport Message and
Management Message (there are multiple Management Messages). The AVB TG must examine
these messages and determine which, if any, are needed for AVB.]

The message formats are shown in the following subsections. The material reflects the latest
agreements (as of the date of this document) of the IEEE 1588 Short Frames Subcommittee,
documented in References is taken mostly from [5], and [6], [12], [13], [14],.and [15]. One change
from [5] and [6] is the fact that the Ethertype is indicated as m0m1 m2m3; this is intended to denote
whatever Ethertype is assigned to frames that must be timestamped [8]. The Ethernet header, PTP
common header, and PTP message specific portions payloads are shown separately for conciseness
(i.e., to avoid repeating the header and common fields for each message). The PTP common header
and PTP message specific portion together form the PTP payload. The PTP common header
immediately follows the Ethernet header; the PTP message specific portion immediately follows the
PTP common header; and Note that the 4-octet frame check sequence (FCS) follows the PTP
payload (i.e., the PTP message specific portion) of each message (the FCS is not shown).

Note that it is possible that names of fields will change as the material is further discussed in the
IEEE 1588 committee and subcommittees.

3.1 Ethernet header (without 802.1Q tags)
N Octet N Octet

N+1
Octet
N+2

Octet
N+3

Type (informative) Field name

0 h0h1 h2h3 h4h5 h6h7 Octet[6] destination MAC address
4 h8h9 h10h11 k0k1 k2k3 Octet[6] (cont) |

Octet[6]
destination MAC address (cont) |
source MAC address

8 k4k5 k6k7 k8k9 k10k11 Octet[6] (cont) source MAC address (cont)
12 m0m1 m2m3 N/A N/A UInteger16 type (this will be whatever Ethertype

is assigned to frames that must be
time stamped)

3.2 Ethernet header (with 802.1Q tags)
N Octet N Octet

N+1
Octet
N+2

Octet
N+3

Type (informative) Field name

0 H0h1 h2h3 h4h5 h6h7 Octet[6] destination MAC address
4 H8h9 h10h11 k0k1 k2k3 Octet[6] (cont) |

Octet[6]
destination MAC address (cont) |
source MAC address

8 K4k5 k6k7 k8k9 k10k11 Octet[6] (cont) source MAC address (cont)
12 0x81 00 j0j1 j2j3 UInteger16 | UInteger16

type (0x8100 = tagged MAC frame) |
tag control information

16 m0m1 m2m3 N/A N/A UInteger16 type (this will be whatever Ethertype
is assigned to frames that must be

 25

time stamped)

3.3 PTP Common header
X = 14 for Ethernet without 802.1Q tags
X = 18 for Ethernet with 802.1Q tags

SOF N Octet

N
Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

X+0 0 h0h1 h0h1 k0k1 k2k3 UInteger4 |
UInteger4 |
UInteger8 |
UInteger16

transportSpecific | messageID
|versionPTP | messageLength

X+4 4 h0h1 h2h3 h4h5 k1k2 Octet[3] |
UInteger8

reserved | subdomain

X+8 8 h0h1 h2h3 h4h5 k1k2 Octet[3] | Integer8 flags | logSyncPeriod
X+12 12 k0k1 k2k3 k4k5 k6k7 Integer48 correctionNs
X+16 16 k8k9 k10k11 h0h1 h2h3 Integer48(cont) |

UInteger16
correctionNs (cont) | correctionSubNs

X+20 20 k0k1 k2k3 k4k5 k6k7 |Octet[6] sourceUuid
X+24 24 k8k9 k10k11 h0h1 h2h3 Octet[6](cont) |

UInteger16
sourceUuid(cont) | sourcePortId

X+28 28 h0h1 h0h1 k0k1 k2k3 Octet |
Octet |
UInteger16

sourceCommunicationTechnology |
reserved | sequenceId

X+32 32 h0h1 h0h1 N/A N/A UInteger8 | Octet control | reserved

a) transportSpecific – not used by AVB networks (likely will be set to all zeros in AVB)
b) messageID – four-bit subtype that indicates the PTP message as indicated in Table 1 below.

Note that not all the message types are used in AVB networks. Note also that all the
messages that must be timestamped (i.e., the event messages) have the first bit of
messageID set to zero (and therefore this bit can be used as an indicator to timestamping
hardware of which messages must be timestamped [8].

Table 1. messageID for each PTP message

Category of message Message messageID value (hex)
Event Sync 0
Event Delay_Req 1
Event Pdelay_Req 2
Event Pdelay_Resp 3
Event reserved 4-7

General Follow_Up 8
General Delay_Resp 9
General Pdelay_Resp_Follow_Up A
General Announce B
General Transport C
General PTP Management Message D
General reserved E-F

 26

c) VersionPTP – version of the PTP standard implemented (Version 2 for this version of IEEE
1588)

d) messageLength – length of the PTP message payload in octets, from the first octet of the the
common header to the last octet of the message specific portion for each respective message
given below (note: for more general (non-AVB) applications, messageLength also includes
optional extensions).

e) subdomain – AVB will use the default sub domain, i.e., sub domain 0. In more general PTP
applications, there can be 3 alternate subdomains (numbered 1 – 3) and additional
subdomains (numbered 4 – 255) set by the node manager of each node.

f) flags – The table below is taken from [15]. All unused flags shall be transmitted as zero and
ignored by the receiver. Note that not all the defined flags will be used by AVB networks.
[Author’s note: It must be determined which flags AVB networks will use.]

Bit
Contained in

Message Type Name Description
7 All SECURE True if the message is suffixed by a security hash

code.
6 Sync, Follow-up PTP_SYNC_BURST TRUE if this message is part of a burst of

messages (and can thus be ignored by clocks not
requesting it).

6 Delay_Req PTP_SYNC_BURST_REQ In a Delay_Req message, TRUE if the sender is
requesting a burst of multicast Sync messages. The
number of messages transmitted in response and
the mean period between those messages is
determined by the transmitting node. While the
requesting node is requesting the master to
transmit a burst of sync messages, it shall set the
flag on every Delay_Req message it transmits to
that master. The requesting node may set the flag
to FALSE at any time and it shall do so when it
receives a Sync message with a TRUE
PTP_SYNC_BURST flag.

5 Sync, Announce,
Delay Response

TimeScaleAccurate The value of the time stamps generated by this
node is considered accurate.
When TimeScaleAccurate is true, the value of the
timestamp contained in this message is aligned to
the beginning of the PTP epoch.
When TimeScaleAccurate is false, the value of the
timestamp contained in this message will
increment with the n accuracy indicated by the
clockIdentifier but need not be aligned to the start
of the PTP epoch. [GMG Comment: I think I
understand the intent, but is the notation “n
accuracy” a typo (it is not clear what “n” is)? Can
this be clarified, e.g., could we say “… will
increment by an amount that reflects the frequency
accuracy indicated by the clockIdentifier…”?

4 Sync, Announce UTC_REASONABLE The value of the UTC_Offset in the transmitted
message is considered correct.

3 Sync, Announce,

Delay Request,
Path_Delay_Resp

TIME_APPROXIMATE The value of originTimeStamp is approximate.

 27

Bit
Contained in

Message Type Name Description
2 All Standby master True if the node is not the best master but is

transmitting SYNC and ANNOUNCE messages.
Otherwise false.

1 Sync, Announce PTP_LI_59 Value of leap_59 of global time properties data set

0 Sync, Announce PTP_LI_61 Value of leap_61 of global time properties data set

g) logSyncPeriod – the logarithm to base 2 of the current sync interval in seconds, for a port in

the PTP_MASTER state.
h) correctionNs and correctionSubNs – together, correctionNs and the correctionSubNs hold

the correction value that must be applied to the time information contained in this message.
When no time information is in the message, the correctionNs and correctionSubNs fields
should be transmitted as zero. The correction value, in nanoseconds, shall be interpreted

as 162
SubNscorrectionNscorrection + . The correctionNs field is a signed integer. If

correctionNs is negative, the unsigned correctionSubNs field shall also be interpreted as
negative. A value of one in all bits of the correctionNs and correctionSubNs fields, except
the most significant bit of correctionNs, indicates that the delay is too big to be represented.

i) sourceUuid – for AVB, Ethernet MAC address of the source of the message
j) sourcePortId – the ID of the port that is the source of the message. The ports on a network

element with N ports are numbered from 1 to N.
k) sourceCommunicationTechnology – indicates the communication medium and technology

for the port that issues the PTP message. Initially AVB will focus on Ethernet, for which
the value of this field is 1 (see Table 2 of [7] for a list of the various communications
technologies recognized in IEEE 1588 Version 1)

l) sequenceId – (i) If the message is a PDelay Request message, the value shall be one greater
than the sequenceId of the previous PDelay Request message issued by the port. (ii) If the
message is a PDelay Response message, the value shall be one greater than the sequenceId
of the previous PDelay Response message issued by the port. (iii) If the message is a
multicast event message and not a PDelay Request or PDelay Response message, the value
shall be one greater than the sequenceId of the previous such message. (iv) If the message
is a multicast general message, the value shall be one greater than the sequenceId of the
previous such message. (v) If the message is a unicast event message, the value shall be one
greater than the sequenceId of the previous unicast event message sent to the same
destination address (not relevant for AVB). (vi) If the message is a unicast general message,
the value shall be one greater than the sequenceId of the previous unicast general message
sent to the same destination address (not relevant for AVB).

m) control – not used in AVB (retained for backward compatibility with IEEE 1588 Version 1;
indicates the Version 1 message type (see Table 28 of [7] for allowable values).

3.4 Sync payloadmessage specific portion
X = 14 48 for Ethernet without 802.1Q tags
X = 18 52 for Ethernet with 802.1Q tags

SOF N Octet

N
Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

X+0 0 h0h1 h2h3 k0k1 k2k3 UInteger4 | transportSpecific | messageID

 28

SOF N Octet
N

Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

UInteger4 |
UInteger8 |
UInteger16

|versionPTP | reserved

X+4 4 h0h1 h2h3 k0k1 k2k3 UInteger16 |
UInteger16

totalMessageLength | subdomain

X+8 8 h0h1 h2h3 h4h5 h6h7 Octet[4] flags
X+12 12 k0k1 k2k3 k4k5 k6k7 Integer64 correctionField
X+16 16 k8k9 k10k11 k12k13 k14k15 Integer64(cont) correctionField(cont)
X+20 20 k0k1 j0j1 h0h1 h2h3 UInteger8 |

UInteger8
|Octet[6]

reserved |
sourceCommunicationTechnology |
sourceUuid

X+24 24 h4h5 h6h7 h8h9 h10h11 Octet[6](cont) sourceUuid(cont)
X+28 28 h0h1 h2h3 k0k1 k2k3 UInteger16 |

UInteger16
sourcePortId | sequenceId

X+32
0

32
0

h0h1j0j
1

h2h300 h0h1 h2h3 UInteger8
UInteger16 |
UInteger32 Octet
| UInteger16

 control | reserved | epochNumber |
originTimestamp (seconds)

X+36
4

36
4

h4h5h0
h1

Hh62h73 h0h1h4h5 h2h3h6h7 UInteger32 (cont)
| Uinteger32

originTimestamp (seconds) (cont) |
originTimestamp (nanoseconds)

X+40
8

40
8

h4h5h0
h1

h6h7h2h3 h4h5h0h1 h6h7h2h3 UInteger32 (cont)
| Integer16

originTimestamp (nanoseconds) (cont) |
currentUTCOffset

X+44 44 k0k1 k2k3 N/A N/A Integer16 currentUTCOffset

a) epochNumber – when the epoch is the PTP epoch, the epochNumber is the total number of

times the 32-bit seconds counter has rolled over since the PTP epoch.8 More generally, the
epochNumber may be treated as the most significant part of the total number of seconds
since the epoch (the least significant part is the 32-bit integer seconds portion of the PTP
timestamp). See Section 6.2.5.7 and Appendix B of [7] for more detail.

b) originTimestamp (seconds) – the seconds portion of the timestamp that carries any
timestamp measurement made on-the-fly by the master BC or OC that issues the Sync
message. AVB is not required to make on-the-fly measurements and, if it does make them,
there is no requirement that they be precise (i.e., AVB may still use Follow_Up messages in
this case). However, AVB is allowed to make precise timestamp measurements on-the-fly
and not use Follow_Up.

c) originTimestamp (nanoseconds) - the nanoseconds portion of the timestamp that carries any
timestamp measurement made on-the-fly by the master BC or OC that issues the Sync
message. AVB is not required to make on-the-fly measurements and, if it does make them,
there is no requirement that they be precise (i.e., AVB may still use Follow_Up messages in
this case). However, AVB is allowed to make precise timestamp measurements on-the-fly
and not use Follow_Up.

d) CurrentUTCOffset – the offset between the UTC and TAI timescales at the master BC or
OC that issues the Sync or Followup message.

8 In IEEE 1588, the term epoch is defined as the reference time that defines the origin of a timescale. For PTP,
the epoch is 0:00:00 on 1 January 1970 (see Appendix B, Table B.2 of [7]).

 29

3.4 5 Follow_Up message specific portionpayload
X = 14 48 for Ethernet without 802.1Q tags
X = 18 52 for Ethernet with 802.1Q tags

Note that the Follow_Up message specific portionpayload differs from the Sync payload message
specific portion in that:

a)currentUTCOffset is not repeated in Follow_Up (it is only in Sync) [Author’s Note:
epochNumber must be added to the table below. It also must be decided whether to add
currentUTCOffset to Followup (for the same reason it was added to Sync, namely that in
theory it could change between an initial, less precise timestamp measurement when Sync is
sent and the more precise later measurement.]

b)a) Follow_Up has the associatedSequenceId of the corresponding Sync
c)b) Follow_Up has a preciseOriginTimestamp instead of an originTimestamp.

SOF N Octet

N
Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

X+0 0 h0h1 h2h3 k0k1 k2k3 UInteger4 |
UInteger4 |
UInteger8 |
UInteger16

transportSpecific |
messageID|versionPTP | reserved

X+4 4 h0h1 h2h3 k0k1 k2k3 UInteger16 |
UInteger16

totalMessageLength | subdomain

X+8 8 h0h1 h2h3 h4h5 h6h7 Octet[4] flags
X+12 12 k0k1 k2k3 k4k5 k6k7 Integer64 correctionField
X+16 16 k8k9 k10k11 k12k13 k14k15 Integer64(cont) correctionField(cont)
X+20 20 k0k1 j0j1 h0h1 h2h3 UInteger8 |

UInteger8
|Octet[6]

reserved |
sourceCommunicationTechnology |
sourceUuid

X+24 24 h4h5 h6h7 h8h9 h10h11 Octet[6](cont) sourceUuid(cont)
X+0
X+28

02
8

h0h1h0
h1

h2h3h2h3 h0h1k0k1 h2h3k2k3 UInteger16 |
UInteger32
UInteger16 |
UInteger16

 epochNumber | originTimestamp
(seconds)sourcePortId | sequenceId

X+4
X+32

43
2

h4h5j0j
1

h6h700 h0h1h0h1 h2h3h2h3 UInteger32 (cont)
|
Uinteger32UInteg
er8 | Octet |
UInteger16

preciseOriginTimestamp (seconds)
(cont) | originTimestamp (nanoseconds)
control | reserved | associatedSequenceId

X+8
X+36

83
6

h4h5h0
h1

h6h7h2h3 h0h1h4h5 h2h3h6h7 UInteger32 (cont)
|
Integer16UIntege
r32

preciseOriginTimestamp (nanoseconds)
(cont) |
currentUTCOffsetpreciseOriginTimesta
mp (seconds)

X+40
X+12

40
12

h0h1h0
h1

h2h3h2h3 h4h5N/A h6h7N/A Integer32UIntege
r16

preciseOriginTimestamp
(nanoseconds)associatedSequenceId

 30

a) epochNumber – when the epoch is the PTP epoch, the epochNumber is the total number of

times the 32-bit seconds counter has rolled over since the PTP epoch.9 More generally, the
epochNumber may be treated as the most significant part of the total number of seconds
since the epoch (the least significant part is the 32-bit integer seconds portion of the PTP
timestamp). See Section 6.2.5.7 and Appendix B of [7] for more detail.

b) preciseOriginTimestamp (seconds) – the seconds portion of the more precise timestamp
measurement carried in a Follow_Up message.

c) preciseOriginTimestamp (nanoseconds) - the nanoseconds portion of the more precise
timestamp measurement carried in a Follow_Up message.

d) CurrentUTCOffset – the offset between the UTC and TAI timescales at the master BC or
OC that issues the Sync or Followup message.

e) associatedSequenceId – the sequenceId of the Sync message that corresponds to this
Follow_Up message.

3.5 Peer_DPdelay_Req payload message specific portion
To be supplied.
X = 48 for Ethernet without 802.1Q tags
X = 52 for Ethernet with 802.1Q tags

Note that the Pdelay_Req message specific portion consists of 28 reserved octets so that its length is
the same as the length of the Pdelay_Resp message.

SOF N Octet

N
Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

X+0 0 h0h1 h0h1 h0h1 h0h1 Octet[4] reserved
X+4 4 h0h1 h0h1 h0h1 h0h1 Octet[4] reserved
X+8 8 h0h1 h0h1 h0h1 h0h1 Octet[4] reserved
X+12 12 h0h1 h0h1 h0h1 h0h1 Octet[4] reserved
X+16 16 h0h1 h0h1 h0h1 h0h1 Octet[4] reserved
X+20 20 h0h1 h0h1 h0h1 h0h1 Octet[4] reserved
X+24 24 h0h1 h0h1 h0h1 h0h1 Octet[4] reserved

3.6 Peer_DPdelay_Resp message specific portionpayload
To be supplied.
X = 48 for Ethernet without 802.1Q tags
X = 52 for Ethernet with 802.1Q tags

SOF N Octet

N
Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

X+0 0 h0h1 h2h3 h0h1 h2h3 UInteger16 |
UInteger32

requestingSequenceId | originTimestamp
(seconds)

X+4 4 h4h5 h6h7 h0h1 h2h3 UInteger32 (cont)
| Uinteger32

originTimestamp (seconds) (cont) |
originTimestamp (nanoseconds)

X+8 8 h4h5 h6h7 h0h1 h2h3 UInteger32 (cont) originTimestamp (nanoseconds) (cont) |

9 In IEEE 1588, the term epoch is defined as the reference time that defines the origin of a timescale. For PTP,
the epoch is 0:00:00 on 1 January 1970 (see Appendix B, Table B.2 of [7]).

 31

SOF N Octet
N

Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

| UInteger32 requestReceiptTimestamp (seconds)
X+12 12 h4h5 h6h7 h0h1 h2h3 UInteger32 (cont)

| Uinteger32
requestReceiptTimestamp (seconds)
(cont) | requestReceiptTimestamp
(nanoseconds)

X+16 16 h4h5 h6h7 h0h1 h2h3 UInteger32 (cont)
| Octet[6]

requestReceiptTimestamp (nanoseconds)
(cont) | requestingPortUuid

X+20 20 h4h5 h6h7 h8h9 h10h11 Octet[6] (cont) requestingPortUuid (cont)
X+24 24 h0h1 h2h3 h0h1 h0h1 UInteger16 |

Octet | Octet
requestingPortPortId |
requestingPortCommunicationTechnolo
gy | reserved

a) requestingSequenceId – the sequenceId of the Pdelay_Req message that corresponds to this

Pdelay_Resp message.
e) originTimestamp (seconds) – the seconds portion of the timestamp that carries any

timestamp measurement made on-the-fly by the P2P TC when it issues the Pdelay_Resp
message. AVB is not required to make on-the-fly measurements and, if it does make them,
there is no requirement that they be precise (i.e., AVB may still use
Pdelay_Resp_Follow_Up messages in this case). However, AVB is allowed to make
precise timestamp measurements on-the-fly and not use Pdelay_Resp_Follow_Up.

f) originTimestamp (nanoseconds) - the nanoseconds portion of the timestamp that carries any
timestamp measurement made on-the-fly by the P2P TC when it issues the Pdelay_Resp
message. AVB is not required to make on-the-fly measurements and, if it does make them,
there is no requirement that they be precise (i.e., AVB may still use
Pdelay_Resp_Follow_Up messages in this case). However, AVB is allowed to make
precise timestamp measurements on-the-fly and not use Pdelay_Resp_Follow_Up.

b) requestReceiptTimestamp (seconds) and requestReceiptTimestamp (nanoseconds) – the
seconds and nanoseconds portions, respectively, of the timestamp for the receipt of the
corresponding Pdelay_Req message

c) requestingPortUuid – for AVB, the Ethernet MAC address of the Port that issued the
corresponding Pdelay_Req message

n) requestingPortPortId – the ID of the port that issued the corresponding Pdelay_Req message.
The ports on a network element with N ports are numbered from 1 to N.

o) requestingPortCommunicationTechnology – indicates the communication medium and
technology for the port that issued the corresponding Pdelay_Req message. Initially AVB
will focus on Ethernet, for which the value of this field is 1 (see Table 2 of [7] for a list of
the various communications technologies recognized in IEEE 1588 Version 1)

NOTE: The requestingPortUuid, requestingPortPortId, and
requestingPortCommunicationTechnology fields are included in the Pdelay_Resp message to
support any future solution to the 1:N problem in IEEE 1588. This is not relevant for AVB
networks because the AVB cloud will not contain E2E TCs nor non-PTP bridges.

 32

3.7 Peer_DPdelay_Resp_FollowUpFollow_Up message specific
portionpayload
To be supplied.
X = 48 for Ethernet without 802.1Q tags
X = 52 for Ethernet with 802.1Q tags

SOF N Octet

N
Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

X+0 0 h0h1 h2h3 h0h1 h2h3 UInteger16 |
UInteger32

associatedSequenceId |
preciseOriginTimestamp (seconds)

X+4 4 h4h5 h6h7 h0h1 h2h3 UInteger32 (cont)
| Uinteger32

preciseOriginTimestamp (seconds)
(cont) | preciseOriginTimestamp
(nanoseconds)

X+8 8 h4h5 h6h7 N/A N/A UInteger32 (cont) preciseOriginTimestamp (nanoseconds)
(cont)

f) associatedSequenceId – the sequenceId of the Pdelay_Resp message that corresponds to this

Pdelay_Resp_Follow_Up message.
g) preciseOriginTimestamp (seconds) – the seconds portion of the more precise timestamp

measurement carried in a Pdelay_Resp_Follow_Up message.
h) preciseOriginTimestamp (nanoseconds) - the nanoseconds portion of the more precise

timestamp measurement carried in a Pdelay_Resp_Follow_Up message.

3.8 Announce message specific portionpayload
To be supplied.
X = 48 for Ethernet without 802.1Q tags
X = 52 for Ethernet with 802.1Q tags

SOF N Octet

N
Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

X+0 0 h0h1 h2h3 h0h1 h2h3 UInteger16 |
UInteger32

 epochNumber | originTimestamp
(seconds)

X+4 4 h4h5 h6h7 h0h1 h2h3 UInteger32 (cont)
| Uinteger32

originTimestamp (seconds) (cont) |
originTimestamp (nanoseconds)

X+8 8 h4h5 h6h7 h0h1 h2h3 UInteger32 (cont)
| Integer16

originTimestamp (nanoseconds) (cont) |
currentUTCOffset

X+12 12 h0h1 h2h3 h0h1 h2h3 Octet[2] |
UInteger16

announceFlags | localStepsRemoved

X+16 16 h0h1 h2h3 h4h5 h6h7 Octet[6] grandmasterUuid
X+20 20 h8h9 h10h11 h0h1 h2h3 Octet[6] (cont) |

UInteger16
grandmasterUuid (cont)|
grandmasterPortId

X+24 24 h0h1 h0h1 h0h1 h0h1 Octer | Octer |
UInteger8 | Octet

grandmasterCommunicationTechnology
| reserved | grandmasterStratum |
grandmasterIdentifier

X+28 28 h0h1 h2h3 h0h1 h2h3 Integer16 | grandmasterVariance |

 33

SOF N Octet
N

Octet
N+1

Octet
N+2

Octet
N+3

Type
(informative)

Field name

UInteger16 grandmasterSequenceId
X+32 32 h0h1 h2h3 h4h5 h6h7 Octet[6] masterUuid
X+36 36 h8h9 h10h11 h0h1 h2h3 Octet[6] (cont) |

UInteger16
masterUuid (cont) | masterPortId

X+40 40 h0h1 h0h1 h0h1 h0h1 Octer | Octer |
UInteger8 | Octet

masterCommunicationTechnology |
reserved | localClockStratum |
localClockIdentifier

X+44 44 h0h1 h2h3 h0h1 h2h3 Integer16 |
Integer32

localClockVariance |
estimatedMasterClockPhaseChangeRate

X+48 48 h4h5 h6h7 h0h1 h2h3 Integer32 (cont) |
Integer16

estimatedMasterClockPhaseChangeRate
(cont) | estimatedMasterVariance

X+52 52 h0h1 N/A N/A N/A Integer8 logAnnouncePeriod

[Author’s note: The definitions of these fields will be supplied, may be found in IEEE 1588,
Version 1 [7]. AVB networks may not use all the fields.]

3.9 Definitions of selected payload fields
The definitions below are taken from [3], [5], and [7] and augmented by discussions in the February
22 – 24 IEEE 1588 face-to-face meeting.

Author’s Note: The definitions below are for Sync and Follow_Up message fields; modified
versions may be necessary for the Peer_DPdelay messages when they are supplied.

a)transportSpecific – not used by AVB networks (likely will be set to all zeros in AVB)
b)messageID – four-bit subtype that indicates the PTP message as indicated in Table 1 below.

Note that not all the message types are used in AVB networks. Note also that all the
messages that must be timestamped (i.e., the event messages) have the first bit of
messageID set to zero (and therefore this bit can be used as an indicator to timestamping
hardware of which messages must be timestamped [8].

Table 1. messageID for each PTP message

Category of message Message messageID value
Event Sync 0
Event Delay_Req 1
Event Peer_DPdelay_Req 2
Event Peer_DPdelay_Resp 3
Event reserved 4-7

General Follow_Up 8
General Delay_Resp 9
General Peer_DPdelay_Resp_FollowUpFollow_Up 10
General Announce 11
General PTP Management Message 12
General To be completed 13-15

 34

c)VersionPTP – version of the PTP standard implemented
d)TotalMessageLength – length of the PTP message payload
e)subdomain – the specific value for AVB is to be defined; note that an AVB network will

consist of a single PTP subdomain.
f)flags – To be supplied (an incomplete set of flags is contained in Table 3 of [5])
g)correctionField – the field that the TCs use to accumulate the residence time. This field is 8

bytes, and represents time in units of 2-16 ns (approximately 15.26 fs). Therefore, the format
of the this field is ns (represented by the most significant 6 bytes) and fraction of a ns
(represented by the least significant 2 bytes)

h)sourceCommunicationTechnology – indicates the communication medium and technology for
the port that issues the PTP message. Initially AVB will focus on Ethernet, for which the
value of this field is 1 (see Table 2 of [7] for a list of the various communications
technologies recognized in IEEE 1588 Version 1)

i)sourceUuid – for AVB, Ethernet MAC address of the source of the message
j)sourcePortId – the ID of the port that is the source of the message. The ports on a network

element with N ports are numbered from 1 to N.
k)sequenceId – an ID assigned to Sync and Follow_Up messages as they are transmitted on a

BC or OC port. IDs are assigned sequentially on each transmitting port for event messages
(i.e., Sync), and separately (but also sequentially) for general messages (i.e., Follow_Up and
Announce). [Author’s Note: Peer_DPdelay messages will be covered by this definition
when their formats are supplied.]

l)control – not used in AVB (retained for backward compatibility with IEEE 1588 Version 1;
indicates the Version 1 message type (see Table 28 of [7] for allowable values).

m)epochNumber – when the epoch is the PTP epoch, the epochNumber is the total number of
times the 32-bit seconds counter has rolled over since the PTP epoch.10 More generally, the
epochNumber may be treated as the most significant part of the total number of seconds
since the epoch (the least significant part is the 32-bit integer seconds portion of the PTP
timestamp). See Section 6.2.5.7 and Appendix B of [7] for more detail.

n)originTimestamp (seconds) – the seconds portion of the timestamp that carries any timestamp
measurement made on-the-fly by the master BC or OC that issues the Sync message. AVB
is not required to make on-the-fly measurements and, if it does make them, there is no
requirement that they be precise (i.e., AVB may still use Follow_Up messages in this case).
However, AVB is allowed to make precise timestamp measurements on-the-fly and not use
Follow_Up.

o)originTimestamp (nanoseconds) - the nanoseconds portion of the timestamp that carries any
timestamp measurement made on-the-fly by the master BC or OC that issues the Sync
message. AVB is not required to make on-the-fly measurements and, if it does make them,
there is no requirement that they be precise (i.e., AVB may still use Follow_Up messages in
this case). However, AVB is allowed to make precise timestamp measurements on-the-fly
and not use Follow_Up.

p)d) CurrentUTCOffset – the offset between the UTC and TAI timescales at the master
BC or OC that issues the Sync or Followup message.

q)e) AssociatedSequenceId – the sequenceId of the Sync message that corresponds to this
Follow_Up message.

r)preciseOriginTimestamp (seconds) – the seconds portion of the more precise timestamp
measurement carried in a Follow_Up message.

s)preciseOriginTimestamp (nanoseconds) - the nanoseconds portion of the more precise
timestamp measurement carried in a Follow_Up message.

10 In IEEE 1588, the term epoch is defined as the reference time that defines the origin of a timescale. For
PTP, the epoch is 0:00:00 on 1 January 1970 (see Appendix B, Table B.2 of [7]).

 35

4. Processing of PTP messages

4.1 Sync and Follow_Up messages

4.1.1 Description based on OC and P2P TC functions
The processing rules below for Sync and Follow_Up messages do not make any simplification
based on the fact that P2P TC and OC functions are collocated at every AVB node. Rather, the
architecture on the left hand side of Figure 1 is assumed, and P2P TC functions and OC functions
are assumed to be separate entities, with explicit reference to the logical link between the two. The
rules are taken from [3] and [4].

When a Sync or Follow_Up message arrives at a TC, it is terminated at Layer 2 (Ethernet) and
passed to the PTP layer for processing. A new Sync or Follow_Up message is generated for each
respective port that it needs to be transmitted on to reach each slave clock without looping. The new
Sync or Follow_Up messages are similar to the arriving message, except that the correction field has
possibly been altered by adding the residence time. As a result, the checksum also must be altered
when the message is transmitted. Note that the Sync or Follow_Up messages transmitted on each
port will not necessarily be the same, because they won’t necessarily be transmitted on the different
ports at exactly the same time (and therefore the residence times will differ). Therefore, from the
point of view of Layer 2, the Sync or Follow_Up message transmitted by each successive TC is a
new Sync or Follow_Up message compare to the arriving Sync or Follow_Up message that it
corresponds to. Nonetheless, we loosely refer to the Sync or Follow_Up message originally
transmitted by the GM as being transmitted to all the slaves as a multicast message, even though
relative to Layer 2 at each intermediate TC we really have termination, processing, and generation
of new messages.

When we refer to Sync or Follow_Up originating at a port, we mean that Sync or Follow_Up are
transmitted on this port not as a result of a corresponding Sync or Follow_Up having been received
on another port of the same node. This would happen at a GM port. Similarly, when we refer to
Sync or Follow_Up egressing the network, we mean that the message is terminated an no new
corresponding Sync or Follow_Up is generated. This would happen at a slave port.

1) As a result of executing the BMC algorithm, exactly one OC in the network will be the GM.
All the other OCs will be slaves. The GM port is in the master state with respect to Sync
and Follow_Up (and Announce) messages. Each port of each slave is in the slave state with
respect to Sync and Follow_Up (and Announce) messages.

2) Sync and Follow_Up messages can originate only at a master port (i.e., only a GM port),
and can egress the network only at a slave port.

If Follow_Up is transmitted by an OC only if the OC is in the master state (and its link is
therefore in the master state).

3) If the GM is on-the-fly, it sends Sync on its port with the follow-up flag (i.e., the
PTP_ASSIST flag) not set and the correction field initialized to zero. It measures the
departure time of the Sync message on the port and writes this time in the originTimestamp
field. It does not send Follow_Up.

4) If the GM is follow-up, it sends Sync on its port with the follow-up flag set and the
correction field initialized to zero. It measures the departure time of the Sync message, and

 36

writes this in the preciseOriginTimestamp of a Follow_Up message that it generates and
sends after the Sync message.

The GM sends Sync on its port with the follow-up flag (i.e., the PTP_ASSIST flag) set and the
correction field initialized to zero, and measures the time of departure of Sync on each port

The GM sends Follow_Up on its port with the correction field initialized to zero and the
preciseOrigin timestamp equal to the measured time of departure of the Sync message on
that port

5) Each P2P TC port that receives a Sync message measures its arrival time. This arrival time
is used for computation of the residence time for the case where the node is not the
destination,

6) Each slave OC that receives a Sync message measures its arrival time. This arrival time is
used froor computation of the slave offset for the case where the node is the destination.

7) When a slave OC receives a Sync message with the follow-up flag not set, it adds the
correction field of the Sync message and the propagation time on the link on which the Sync
arrived to the origin Timestamp in the Sync message. The result is subtracted from the
arrival time of the Sync message to obtain the slave offset.

8) When a slave OC receives a Sync message with the follow-up flag set, it waits for the
corresponding Follow_Up message., which corresponds to a Sync message for which this
slave is its destination, it It adds the correction fields in the Sync and Follow_Up messages
and the propagation time on the link on which the Sync arrived to the preciseOrigin
Timestamp in the Follow_Up message. The result is subtracted from the arrival time of the
Sync message to obtain the slave offset.

9) When a Sync message arrives at an on-the-fly P2P TC node, the residence time is measured
and added to the correction field of the Sync message as it is transmitted on each respective
port. The propagation time for the link on which the Sync message arrived is added to the
correction field of the Sync message. Any corresponding Follow_Up message (which may
be due either to the GM or one or more upstream P2P TCs being follow-up) is transmitted
without its correction field being altered. [Author’s note: There is a question of whether
an on-the-fly P2P TC should hold Sync for any follow-up messages just as a follow-up TC
would. It seemed that the Sync message should not be held; the main reason for holding
Sync until Follow_Up arrives in follow-up TCs is that the follow-up TC may not be able
to process Follow_Up as quickly as Sync, and a number of consecutive Sync messages
may arrive at a downstream node before the Follow_Up message corresponding to the
first Sync message. This should not be a problem for the case of an on-the-fly TC
because (1) it presumably has faster hardware, and (2) it doesn’t have to process the
Follow_Up, but merely send it on. Nonetheless, this point was not explicitly discussed in
the AVB group, and needs to be confirmed.]

10) When a Sync message with the follow-up flag set arrives at a follow-up P2P TC node, it is
held until the corresponding Follow_Up message arrives. On arrival or generation of the
Follow_Up message corresponding to the Sync message, the correction field of the
Follow_Up Message is added to the correction field of the Sync message. After performing
this computation, the Sync message is sent on the respective ports and its departure time on
each port is measured.

11) When a Sync message with the follow-up flag not set arrives at a follow-up P2P TC node,
the follow-up flag is set. The Sync message is sent on the respective ports and its departure
time is measured.

12) On arrival of the Follow_Up message corresponding to the Sync message in (9), the
correction field of the Follow_Up Message is added to the correction field of the Sync
message

 37

13) After performing the computation in (10), the Sync message is sent on the respective ports
indicated by the forwarding data base for multicast PTP messages, and its departure time on
each port is measured.

14) The residence time for the Sync message is computed on each port, and is placed in the
correction field of a respective new Follow_Up message generated for each port.

15) The propagation time for the link on which the Sync message arrived is added to the
correction field of the Follow_Up message.

16) Each new Follow_Up message is sent on the respective port for which it was generated.

4.1.2 Specialization of rules for processing Sync and Follow_Up to AVB node,
which always has collocated P2P TC and OC function

The rules below were obtained by modifying the rules in Section 4.1.1 (taken from [3] and [4]) to
apply to the case of a P2P TC colocatedcollocated with a GM or slave OC. We could have
alternatively left the rules in [4] as is by defining a logical link, internal to a node, between the OC
and PTP TC functions in the node. The rules below capture the behavior external to the node
without the need to define an internal, logical link. The discussion in the second and third
paragraphs of Section 4.1.1, where we describe how we loosely refer to the Sync or Follow_Up
message originally transmitted by the GM as being transmitted to all the slaves as a multicast
message, applies here also.

1) As a result of executing the BMC algorithm, exactly one OC in the network will be the GM.
All the other OCs will be slaves. All the ports of the GM are in the master state with respect
to Sync and Follow_Up (and Announce) messages. All the ports of the slaves are in the
slave state with respect to Sync and Follow_Up (and Announce) messages.11

2) Sync can originate only at a master port (i.e., only a GM port), and can egress the network
only at a slave port.

3) If Follow_Up is transmitted on a port without a corresponding Sync and Follow_Up (and
also a corresponding Sync) having been received on another port, then the port Follow_Up
is transmitted on must be a master port.

4) If the GM is on-the-fly, it sends Sync on each respective port with the follow-up flag (i.e.,
the PTP_ASSIST flag) not set and the correction field initialized to zero. It measures the
departure time of the Sync message on the port and writes this time in the originTimestamp
field. It does not send Follow_Up.

5) If the GM is follow-up, it sends Sync on each respective port with the follow-up flag set and
the correction field initialized to zero. It measures the departure time of the Sync message,
and writes this in the preciseOriginTimestamp of a Follow_Up message that it generates and
sends after the Sync message.

4)The GM sends Sync on each respective port (i.e., on all ports indicated by the forwarding data
base such that the multicast Sync reaches all slaves) with the follow-up flag (i.e., the
PTP_ASSIST flag) set and the correction field initialized to zero, and measures the time of
departure of Sync on each port

5)The GM sends Follow_Up on each respective port with the correction field initialized to zero
and the preciseOrigin timestamp equal to the measured time of departure of the Sync
message on that port

11 The master and slave states of ports are meaningful to Sync, Follow_Up, and Announce messages. This is
because an AVB node can be decomposed functionally into an OC function and a P2P TC function, as in the
left-hand illustration of Figure 1. In that illustration, the link connecting the OC and P2P TC is in either the
master or slave state. The master and slave states are not meaningful to the Peer_DPdelay messages, because
P2P TC ports are stateless. In the left-hand illustration of Figure 1, the Peer_DPdelay messages are
transmitted or received on the ports that emanate horizontally from the P2P TC, but not on the link to the OC.

 38

6) Each port that receives a Sync message measures its arrival time. This arrival time is used
for both (a) computation of the residence time for the case where the node is not the
destination, and (b) computation of the slave offset for the case where the node is the
destination.

7) When a slave (i.e., port in the slave state) receives a Sync message with the follow-up flag
not set, it adds the correction field of the Sync message and the propagation time on the link
on which the Sync arrived to the origin Timestamp in the Sync message. The result is
subtracted from the arrival time of the Sync message to obtain the slave offset, which is
made available to the slave OC function in the node.

8) When a slave (i.e., port in the slave state) receives a Sync message with the follow-up flag
set, it waits for the corresponding Follow_Up message. It adds the correction fields in the
Sync and Follow_Up messages and the propagation time on the link on which the Sync
arrived to the preciseOrigin Timestamp in the Follow_Up message. The result is subtracted
from the arrival time of the Sync message to obtain the slave offset, which is made available
to the slave OC function in the node..

9) When a Sync message arrives at an on-the-fly P2P TC node, the residence time is measured
and added to the correction field of the Sync message as it is transmitted on each respective
port. The propagation time for the link on which the Sync message arrived is added to the
correction field of the Sync message. Any corresponding Follow_Up message (which may
be due either to the GM or one or more upstream P2P TCs being follow-up) is transmitted
without its correction field being altered. [Author’s note: There is a question of whether
an on-the-fly P2P TC should hold Sync for any follow-up messages just as a follow-up TC
would. It seemed that the Sync message should not be held; the main reason for holding
Sync until Follow_Up arrives in follow-up TCs is that the follow-up TC may not be able
to process Follow_Up as quickly as Sync, and a number of consecutive Sync messages
may arrive at a downstream node before the Follow_Up message corresponding to the
first Sync message. This should not be a problem for the case of an on-the-fly TC
because (1) it presumably has faster hardware, and (2) it doesn’t have to process the
Follow_Up, but merely send it on. Nonetheless, this point was not explicitly discussed in
the AVB group, and needs to be confirmed.]

10) When a Sync message with the follow-up flag set arrives at a follow-up P2P TC node, it is
held until the corresponding Follow_Up message arrives. On arrival or generation of the
Follow_Up message corresponding to the Sync message, the correction field of the
Follow_Up Message is added to the correction field of the Sync message. After performing
this computation, the Sync message is sent on the respective ports and its departure time on
each port is measured.

11) When a Sync message with the follow-up flag not set arrives at a follow-up P2P TC node,
the follow-up flag is set. The Sync message is sent on the respective ports and its departure
time is measured.

12) The residence time for the Sync message is computed on each port, and is placed in the
correction field of a respective new Follow_Up message generated for each port.

13) The propagation time for the link on which the Sync message arrived is added to the
correction field of the Follow_Up message.

14) Each new Follow_Up message is sent on the respective port for which it was generated.
7)When a slave (i.e., port in the slave state) receives the Follow_Uup message corresponding to

a Sync message for which this slave is its destination, it adds the correction fields in the
Sync and Follow_Uup messages and the propagation time on the link on which the Sync
arrived to the preciseOrigin Timestamp in the Follow_Uup message. The result is
subtracted from the arrival time of the Sync message to obtain the slave offset.

8)When a Sync message arrives at a node that is not its destination, it is held until the
corresponding Follow_Up message arrives.

 39

9)On arrival of the Follow_Uup message corresponding to the Sync message in (8), the
correction field of the Follow_Uup Message is added to the correction field of the Sync
message

10)After performing the computation in (9), the Sync message is sent on the respective ports
indicated by the forwarding data base for multicast PTP messages, and its departure time on
each port is measured.

11)The residence time for the Sync message is computed on each port, and is placed in the
correction field of a respective new Follow_Up message generated for each port.

12)The propagation time for the link on which the Sync message arrived is added to the
correction field of the Follow_Up message.

13)15) Each new Follow_Uup message is sent on the respective port for which it was
generated

4.2 Peer_DPdelay messages
To be supplied.
The processing rules below describe the actions taken during the exchange of Pdelay messages
between a P2P TC delay requestor and a P2P TC delay responder. Note that the exchange occurs
separately and independently in both directions, i.e., each TC initiates sending Pdelay_Req to the
other TC independently of the other TC, and each TC responds to the Pdelay_Req received from the
other TC. In this manner, propagation time is measured by (and known to) both ends of the link.
Note that any consideration of intermediate E2E TCs between the delay requestor and delay
responder is omitted, as AVB networks will not contain E2E TCs (E2E TCs would need to be
included in a description of more general IEEE 1588 systems).

1) The P2P TC delay requestor sends Pdelay_Req with the correction field initialized to zero,
and notes the time t1 that it sends the message

2) The delay responder measures the arrival time of the Pdelay_Req message, t2.
3) The delay responder copies the correction field of the Pdelay_Req message to a

Pdelay_Resp message correction field, and places the time t2 (when the Pdelay_Req
message arrived) in the Pdelay_Resp message. (Author’s note: Since the correction fields
in Pdelay messages are not used in AVB networks (because there are no E2E TCs in AVB
networks), it actually is not necessary to set them to zero or copy the contents of the
Pdelay_Req correction field to the Pdelay_Resp correction field (as a means of setting it
to zero). The correction fields can simply be ignored.)

4) The delay responder sends the Pdelay_Resp message, and measures the time t3 that it sends
the message. If it is on-the-fly, it places t3 in the Pdelay_Resp message as it goes out. If it
is followup, it also sets the followup flag in the Pdelay_Resp message; it then generates a
Pdelay_Resp_Follow_Up message and places t3 in that message.

5) The delay requestor notes the time t4 when the Pdelay_Resp message arrives
6) The propagation time is estimated by the delay requestor as { t4 - t1 - (t3 - t2)}/2. This

formula assumes the delays are symmetric.
7) Neither P2P TC is master or slave; they are symmetric relative to each other. Each acts as a

delay requestor by sending Pdelay_Req to the other, and each acts as a responder by
responding to Pdelay_Req from the other. In this manner, each measures propagation time
(i.e., propagation time is known to both).

4.3 Announce message
To be supplied

 40

4.4 Frequency compensation
This subsection describes how the information in the Sync and Follow_Up messages received by a
P2P TC may be used to (1) measure frequency offset of the GM relative to the local free-running
oscillator and (2) synthesize the syntonized timing signal.

4.4.1 Measurement of the frequency offset of the GM relative to the local free-
running oscillator
The steps below are equivalent to Eq. (2-6). Note that this is not the only way to implement Eq. (2-
6); any implementation equivalent to Eq. (2-6) is acceptable. Note that on sync intervals when the
frequency offset measurement is made, it is made after the computation of the syntonized time in
Section 4.4.2 (i.e., the steps in Section 4.4.2 are done first).

1) On receipt of a Sync message, increment a counter. The purpose of this is to count M sync
intervals, because the frequency offset measurement is done every M sync intervals. At
present, M = 10 (though the value may change based on jitter/wander simulation results).

2) If the counter equals M, add the value of the timestamp for the time at which the Sync was
sent by the grandmaster (contained in the originTimestamp field if the follow-up flag is not
set or the preciseOriginTimestamp field if it is set) plus the correction fields in the Sync and
Follow_Up messages plus the measured propagation delay on the link that the Sync arrived
on. Save this sum.

3) Measure the local oscillator time when the Sync message arrives and save this value.
4) Subtract the sum indicated by step (2) calculated and saved at the previous frequency offset

measurement from the sum just calculated.
5) Subtract the local oscillator time measured when the Sync message at the previous

frequency offset measurement arrived (this value was saved) from the measurement in step
(3).

6) Divide the result of step (4) by the result of step (5)
7) Subtract 1 from the result of step (6), and save this value. This is the measured frequency

offset of the GM relative to the local free-running oscillator.
8) Discard the values saved on the previous frequency offset measurement as these are no

longer needed. Replace them by the corresponding values obtained for the current sync
interval in steps (2) and (3).

4.4.2 Synthesis of the syntonized timing signal
The steps below are equivalent to Eq. (2-9). Note that this is not the only way to implement Eq. (2-
9); any implementation equivalent to Eq. (2-8) or (2-9) is acceptable. Note that on sync intervals
when the frequency offset measurement is made, it is made after the computation of the syntonized
time in Section 4.4.2 (i.e., the steps in Section 4.4.1 are done after the steps here).

1) At each sync interval, measure the time of the local oscillator when the sync message
arrives. Save this value.

2) Subtract from the value measured in step (1) the corresponding value measured and saved
from the previous sync interval.

3) Multiply the value computed in step (2) by 1 plus the current measured frequency offset of
the GM relative to the local free-running oscillator. (Note: it is probably advantageous to
save 1 plus the measured frequency offset rather than the frequency offset, but this is a
matter of implementation.)

 41

4) Add the value computed in step (3) to the value of syntonized time computed when the
previous Sync message arrived.

5) Save the value computed in (4). This is the current value of syntonized time. Discard the
syntonized time value computed at the previous sync interval.

5. References
[1] IEEE Standard for Local and Metropolitan Area Networks – Timing and Synchronization for

Time-Sensitive Applications in Bridged Local Area Networks, Draft 802.1as PAR forwarded by
IEEE 802 EC to NesCom on March 10, 2006.

[2] IEEE 1588/802.1 AVB Design Meeting, February 21, 2006 (see meeting minutes).

[3] Transparent Clock – Working Technical Description, Revision 13, IEEE 1588 TC

Subcommittee, prepared during February 22 – 24, 2006 IEEE 1588 Face-to-Face Meeting.

[4] Geoffrey M. Garner, Initial Description of Possible Use of Sync and Followup Messages with

Peer-to-Peer Transparent Clocks in AVB, Samsung Contribution to IEEE 1588 and IEEE 802.1
AVB TG, Revision 1.0, March 1, 2006 (plus accompanying VG presentation dated March 6,
2006 and presented at March, 2006 802.1 meeting).

[5] Dave Tonks, Variable Length Unified Frames, Formats and Contents, Version 1.3, IEEE 1588

Short Frames Subcommittee, February 22, 2006.

[6] Ron Cohen and Silvana Rodrigues, Unifying Short and Long Messages, Contribution to Precise

Networked Clock Synchronization Working Group – IEEE 1588 revision, November 30, 2005.

[7] IEEE 1588, IEEE Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and control Systems, September 12, 2002.

[8] IEEE 1588 Timestamp Subcommittee calls through March 21, 2006.

[9] John Eidson and Bruce Hamilton, PTP Clock Synchronization Model, Draft material provided to

IEEE 1588 Rewrite Subcommittee for Clause 6 of IEEE 1588, Version 2, March, 2006April 10,
2006 version.

[10] Geoffrey M. Garner, End-to-End Jitter and Wander Requirements for ResE Applications,

Samsung Presentation for IEEE 802.3 ResE SG, May 16, 2005.

[11] Residential Ethernet(RE) (a working paper), Draft 0.142, maintained by David V. James and

based on work by him and other contributors, November 16, 2005.

[12] David Roe, Unified PTPv2 Frame Format Proposal, Revision 1, Short Frames – Proposal,

IEEE 1588 Short Frames Subcommittee, May 3, 2006.

[13] David Roe, Unified PTPv2 Frame Format Proposal, Revision 2, Short Frames – Proposal,

IEEE 1588 Short Frames Subcommittee, May 4, 2006.

[14] David Roe, Unified PTPv2 Frame Format Proposal, Revision 3, Short Frames – Proposal,

IEEE 1588 Short Frames Subcommittee, May 10, 2006.

 42

[15] David Roe, Unified PTPv2 Frame Format Proposal, Revision 4, Short Frames – Proposal,

IEEE 1588 Short Frames Subcommittee, May 12, 2006.

