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Abstract— Congestion is intrinsic to the operation of net-
works and is usually handled by a combination of algorithms
at the link and network/transport layers. Link level algorithms
alleviate “transient congestion” caused by the temporary over-
subscription of a link due to a burst of packets arriving at a
switch or router buffer. Network or transport level algorithms
alleviate “sustained congestion” which occurs when the long-
term arrival rate at a link exceeds its capacity. Algorithms at
the two levels interact to provide a scalable, stable and fair
bandwidth allocation to the flows passing through the network.

Link level algorithms are typically very simple: drop or
mark packets with increasing probability as buffer congestion
increases; moreover, if a packet arrives at a full buffer, drop it.
These dropped or marked packets are used by the transport
algorithms to adjust the transmission rate of sources.

In this paper we are concerned with networks in which
packets cannot be dropped when there is congestion. In such
networks a back-pressure mechanism “pauses” the link or links
feeding a congested buffer, thus preventing further packets from
arriving at the buffer. The links are later unpaused when the
buffer becomes uncongested.

This paper is a theoretical study of the stability and fairness
properties of network level congestion control when pause
mechanisms operate at the link level to prevent packet drops.
Our focus is on the Backward Congestion Notification (BCN)
algorithm which is being considered by the IEEE 802.1 stan-
dards body for deployment in switched Ethernet networks.

I. INTRODUCTION

Congestion control is a basic operation in networking and
has a rich history of algorithm development and theoretical
study in wide area networks, such as the Internet. Con-
gestion has two components: “transient” which is due to
temporary, random fluctuations in the packet arrival process,
and “sustained” which is due to a sustained oversubscription
of a link’s bandwidth. Transient congestion is effectively
dealt with using buffers at the links and dropping the
excess packets, while sustained congestion is alleviated by
transport protocols like TCP which reduce the transmission
rate of a flow when its packets are dropped or marked.
This combination of algorithms provides stable, scalable and
fair bandwidth sharing to flows which use the Internet. A
representative sample of the literature may be found in the
book [8], the survey papers [5], [9], and at the website [2].

Consider a different link level mechanism: when a buffer
begins to fill up, a back pressure mechanism pauses the
link(s) feeding the buffer, thereby preventing buffer overflow.
This type of mechanism leads to no packet losses but, poten-

tially, spreads congestion to upstream buffers and eventually
to the sources. A detrimental effect of congestion spreading
is that it is possible for a source, say S, which sends data
at a high rate to cause a number of links to be paused and
to adversely affect the throughput of other (non-congesting)
sources which share these links with S. To mitigate this, it is
desirable to have a mechanism for the network to signal to
S that it should decrease its sending rate. Such a mechanism
has been proposed: the Backward Congestion Notification
(BCN) mechanism [1] which is currently being considered
in the IEEE 802.1 Standards Committee for deployment in
switched Ethernets.

It is the purpose of this paper to analyze, via theory
and simulations, the stability and fairness properties of
the BCN mechanism. We shall describe the details of the
BCN mechanism that are relevant for the analysis. Other,
important, details related to frame formats and signalling are
out of the scope of the present treatment and we refer the
interested reader to the BCN specification.1

Before proceeding further, it is useful to understand an
anticipated use of link level pausing. Link level pausing is
defined in the IEEE 802.3x standard and allows an Ethernet
link to be paused by the switch which the link feeds. When
used at all the links of a network, this feature makes the
network “low-loss;” i.e., packets are not dropped because
of congestion (packets may still be dropped because of data
corruption). A low-loss network can help ensure that packets
are not retransmitted or duplicated, thereby avoiding the
use of large resequencing buffers and a potentially large
retransmission time. Therefore, an Ethernet with link-level
pausing can be used to carry traffic which require low-loss
and low-latency links; for example, storage traffic which has
been using the Fibre Channel (FC) networking technology
[6], [7].

The BCN mechanism (described in detail later) is a
way for mitigating the congestion spreading effects due to
link-level pause by enabling the network to signal sources
to reduce (or increase) their sending rates. The Ethernet
environment for which the BCN mechanism is designed is
to be contrasted with the Internet in the following crucial

1At the time of this writing the complete BCN specification was not yet
available because the IEEE 802.1au Work Group was still working on the
mechanism. A number of documents produced by the .1au WG can be found
at [10].



ways:
1. A router in the Internet can signal a source to decrease

its sending rate by marking or dropping its packets.
This signal is conveyed by (essentially per-packet)
acknowledgements from the receiver to the source; the
router does not directly signal the sources. Ethernet is a
layer-2 technology and cannot assume the existence of
such end-to-end protocols. Therefore, BCN messages
are directly generated by the switches and sent to the
source.

2. A TCP source increases its sending rate (actually,
its window size) voluntarily, probing for bandwidth
in the network; current routers do not signal rate
increases to sources. BCN allows switches to signal
both rate increase and decrease messages to sources.
The increase signals help sources consume available
link bandwidth rapidly.2 In this sense BCN is similar
to the XCP [4] protocol proposed in the literature for
the Internet.

3. New sources do not necessarily gently increase their
sending rate, a la the slow-start mechanism of TCP. A
source can initiate a transfer at the full line-rate (e.g.
10 Gbps).

With these preliminary remarks, we’re ready to describe
the contributions of the present paper. The BCN mechanism
is described in the next section, Section II. It opens a
congestion control loop from a source to a switch which
is, essentially, the “bottleneck switch” for that source (the
bottleneck may change for each source during the lifetime
of a session). In Section III we present a stability analysis
of this control loop. In Section IV we study the fairness
properties of the BCN mechanism and its impact on flow
completion times in a dynamic setting where flows come
and go. Finally, Section V presents conclusions and outlines
further work.

II. A DESCRIPTION OF THE BCN MECHANISM

Overview. We describe the main components of the BCN
mechanism, giving the details of congestion signalling and
reaction later.

1. Congestion Point (CP): This refers to a switch buffer
attached to a link that is being oversubscribed. The CP
samples an incoming packet and generates a BCN mes-
sage addressed to the source of the packet. The BCN
message contains information regarding the extent of
congestion to the source.

2. Reaction Point (RP): This refers to a rate limiter associ-
ated with the source which receives the BCN message.
The RP adjusts its sending rate based on the feedback
it received from the CP. An RP which has received
a BCN message signalling a rate decrease from a
CP becomes associated with that CP. Its subsequent
packets contain a rate limited tag (RLT) containing the

2We note that BCN sources do have the ability to increase their rates
without explicit increase signals from the network; thus, rate increase at
a BCN source can occur either due to signals from a switch or due to
self-increase.

identity of the CP currently associated with the RP. The
identity of the CP is referred to as CPID. An RP can be
associated with multiple CPs over time; however, only
one CP is associated with it at any given time (i.e., the
last CP which sent a rate decrease BCN message to
the RP).

3. The CP may send rate increase BCN messages to an
RP associated with it as congestion decreases. The
same sampling process picks out the packets for the
RP to potentially send rate increase signals to. A
CP shall not send rate increase signals to an RP not
associated with it. Similarly, an RP shall not respond
to rate increase signals from a CP with which it is not
currently associated.

4. Finally, an RP may increase its sending rate volun-
tarily (even when not instructed to do so by its CP).
Such a rate increase is typically small and serves
two purposes: to gently probe for extra bandwidth,
and to ensure fail-safe operation in the event that
messages from its CP are not delivered. We shall see an
additional important purpose of self-increase: it helps
achieve bandwidth fairness, especially for short-lived
flows.

The BCN Mechanism

As mentioned earlier, we shall only describe those parts of
the BCN mechanism which are relevant for our analysis of
stability and fairness. We omit a number of details important
for an exact implementation, and refer those interested to the
BCN specification.

Qsc

Sample Incoming packets

Q Qeq

Qoff

Fig. 1. Congestion detection and BCN message generation.

Figure 1 shows the buffer at a CP. The overall goal of BCN
is to hold the buffer occupancy at a level Qeq (for equilibrium
queue level) so that the buffer is neither overrutilized nor
underutilized. This is achieved using a proportional-integral
contol: offsets from Qeq, denoted Qoff , and the rate of
change of the queue-size, denoted Qδ , are used to adjust
the sending rate at the RPs.

The CP Mechanism. The CP samples packets with a
probability P .

Severe congestion: If Q exceeds a high threshold Qsc >
Qeq, then the RP is sent the “severe congestion” message,
BCN(0,0).



Decrease signal: If Qeq < Q < Qsc, compute Qoff = Q−
Qeq and Qδ = Q−Qold, where Qold is the value of the queue
at the previous sampling instant. Send BCN(Qoff , Qδ).

Increase signal: If Qeq > Q, then check to see if the packet
has an RLT (rate-limited tag) and if the CPID in the RLT
matches the identifier of the CP. If both of the above are true,
send BCN(Qoff , Qδ), where Qoff and Qδ are computed as
above; else, send no signals.

The RP Mechanism.

Severe congestion: When an RP receives a BCN(0,0) mes-
sage, it sets its current rate R to 0 and starts a timer which
will expire after a random amount of time. When the timer
expires, it sets its rate to a small value Rmin and sends
packets which will hopefully trigger a rate increase signal
from its CP.

When the RP receives a non-BCN(0,0) message, it com-
putes the quantity Fb = −(Qoff + wQδ), where w is a
weight parameter chosen as explained later.

Decrease: If Fb < 0, then it performs multiplicative decrease
and sets its current rate R to

R← R(1−Gd|Fb|),

where Gd is the decrease gain.

Increase: If Fb > 0, then it performs additive increase,
setting

R← R + GiFbRu,

where Gi is the increase gain and Ru is a constant that gives
the correct rate units (one can fold Ru into Gi, we’re being
faithful to the specification).
Note: The parameters w, Gd, Gi and Ru are chosen to
make the control loop stable, responsive and scalable. The
specification prescribes ranges for the parameters w, Gd, Gi

and Ru. In the next few sections we show how a control
theoretic analysis of the control loop with feedback delays
yields ranges for the parameters. We shall then present sim-
ulations with parameter values obtained from the analysis.

III. STABILITY ANALYSIS

This section presents a local stability analysis of the BCN
control loop. Due to a shortage of space, we are unable
to present all the work, especially the simulation studies of
various scenarios and configurations. We shall present it in
forthcoming publications.

We analyze the BCN mechanism where sources do not
increase voluntarily; that is, all rate decrease and increase
at an RP is due to signals from its CP. The analysis when
sources self-increase their rates follows as an extension.

First, note that when sources do not self-increase there
are multiple equilibrium points for the control system. An
illustrative example: consider one link of capacity C shared
by two sources with rates R1 and R2. Any set of values such
that R1 + R2 = C is an equilibrium point because in this

case the switch does not signal rate changes (there is no con-
gestion or free capacity) and the sources do not self-increase.
The following theorem, stated without proof, generalizes the
above observation to many flows and arbitrary networks.

Theorem 1: Let R be the vector of flow rates, A the
routing matrix and C the vector of link capacities. For a
general network, without self-increase, the equilibrium set
of rates R is the set of boundary points of {R|AR ≤ C}.
In particular, there is no unique equilibrium point for the
flow rates.

Given the lack of a unique equilibrium point around which
to linearize the control system, we shall choose the “fair
share” equilibrium point: R∗ = C

N , Q∗ = Qeq and Qδ = 0.
This equilibrium point is robust with respect to stochastic
perturbations in the arrival process which is the realistic
scenario.

A. The System Equations and Their Linearization
We shall now write down the basic equations which

describe the BCN mechanism, linearize them about the above
equilibrium point and then obtain the stability region.

Link (CP)
dq(t)
dt

= N ×R(t)− C.

Source (RP)

Fb(t) = −
[
(q(t)− qeq) + wS

CP ×
dq(t)

dt

]
/S

If Fb(t− τ) > 0,

dR(t)
dt

= [GiRu × Fb(t− τ)×R(t− τ)× P ] /S

If Fb(t− τ) < 0,
dR(t)

dt
= [R(t)×Gd × Fb(t− τ)×R(t− τ)× P ] /S

Notice Fb(t) is measured in terms of a fixed cell-size S.
Substituting for Fb(·) in the right hand side of the above

equations and by making the substitution: dq(t)
dt = N×R(t)−

C, we get

If Fb(t− τ) > 0,

dR(t)
dt

= GiRu

(
qeqP

S2
+

w

S

)
R(t− τ) (1)

−GiRuwN

CS
(R(t− τ))2 (2)

−GiRuP

S2
R(t− τ)q(t− τ). (3)

If Fb(t− τ) < 0,

dR(t)
dt

= Gd(
qeqP

S2
+

w

S
)R(t− τ)R(t) (4)

−GdwN

CS
(R(t− τ))2R(t)

−GdP

S2
R(t− τ)q(t− τ)R(t). (5)



Linearization

Linearizing equations (3) and (5) about the equilibrium
point R∗ = C

N , q∗ = qeq, and dq
dt

∗
= 0 is now straightfor-

ward, and we get the following linear equations:
If Fb(t− τ) > 0,

δṘ(t) = −GiRuw

S
δR(t− τ)− GiRuPC

NS2
δq(t− τ). (6)

If Fb(t− τ) < 0,

δṘ(t) = −GdwC

NS
δR(t− τ)− GdP

S2

(
C

N

)2

δq(t− τ) (7)

δq̇(t) = NδR(t). (8)

B. Stability Analysis of Linearized System

Note that there are two equations for the rate, R, in the
feedback system. The linearized versions of these equations
are described by equations (6) and (7), respectively. The sign
of Fb(t − τ) determines which equation is to be used at
any time t. We first show that the stability of each of the
two linearized systems separately is a sufficient condition
for the stability of the overall system. We then derive the
conditions for the stability of each of the two linearized
systems; together these conditions give conditions on the
stability of the overall linearized system.

There is a symmetry in the model: all sources behave the
same way; their rates are equal at all times. Hence it suffices
to consider the rate R of a single source in the following
theorem. Let System 1 refer to the system governed by the
pair of equations (6) and (8); i.e., the sytem enforced by
Fb(t − τ) > 0. Let System 2 refer to the one governed by
equations (7) and (8); the sytem enforced by Fb(t− τ) < 0.

Theorem 2: Suppose Systems 1 and 2 are individually
stable, and the flow rate R and queue size q in each
system converges to the same equilibrium values R∗ and qeq,
respectively. Then, the overall system, defined by equations
(6), (7) and (8) is stable. Moreover, R converges to R∗ and
q converges to qeq in the overall system.
Proof: Note, from equations (6) and (7), that δṘ(t) = 0 iff

wδR(t− τ) +
PC

NS
δq(t− τ) =

PC

NS
δFb(t− τ) = 0;

i.e., iff Fb(t− τ) = 0. Hence the switching between the two
systems occurs only when δṘ(t) = 0.

Since System 1 and 2 are second-order, they either have
two real poles or two complex poles. If at least one system
has two real poles and both systems are stable, switching can
happen at most once, and the system with two real poles will
bring δR(t) to 0.

Now suppose both System 1 and System 2 have two
complex poles and are stable (i.e., underdamped). Since
each is stable, the trajectory of δR(t) in each system (under
an impulse input) will oscillate about 0 with exponentially
decreasing peaks and increasing troughs, before eventually
converging to 0.

Consider the overall system when Systems 1 and 2 have
two complex poles. Without loss of generality assume (under
an impulse input) that System 1 brings δR(t) to a peak P1.
Since δṘ(t) = 0 at all peaks and troughs, the two systems
only switch at peaks and troughs. In particular, System 2
will start from P1 with gradient 0. Since System 2 is stable
on its own, it will bring δR(t) to a trough T1 such that
|T1| = α2|P1|, with α2 < 1. 3 As the switching repeats,
we see that the trajectory of δR(t) has the property |P1| =
|T1|/α2 = |P2|/α2α1 = |T2|/α2

2α1 = ..., bounded by two
alternating exponential decaying envelops. Hence the overall
system is stable.

Since δR(t) converges to 0, R(t) converges to R∗. Also,
q̇(t) = NR(t)−C converges to 0. Since the gradient of R(t)
goes to 0, Fb(t− τ) goes to 0. Thus we deduce δq(t) goes
to 0 and q(t) goes to qeq.

Theorem 3: The linearized BCN system is stable if the
following conditions hold:
(i) GiRuw

S ≤ 1
aτ , (ii) GiRuw2 > PC

b
√

b2+1
,

(iii) Gdw ≤ SN
aCτ , and (iv) Gdw

2 > PN
b
√

b2+1
,

where a ≥ 1 and b
a + arctan b = π

2 .
Proof: Conditions (i) and (ii) are sufficient for the stability
of System 1, while (iii) and (iv) are sufficient for the stability
of System 2. The Laplace transforms of equations (6) and
(8) are:

δR(s) = −
GiRuPC

NS2

s + GiRu w
S e−sτ

e−sτδQ(s) and δQ(s) =
N

s
δR(s).

As a first step, we would like the pole in the equation to
be simple; i.e., for GiRu w

S e−sτ ≈ GiRu w
S . It is shown in

Appendix I that this is true if

GiRuw

S
≤ 1

τ
. (9)

We introduce the design parameter a to control the size of
the margin between the pole GiRuw

S and the stability region.
In particular, we shall require that

GiRuw

S
≤ 1

aτ
, for a ≥ 1. (10)

Now, assuming that the pole is at the above bound; that
is, the pole is at p = 1

aτ . We obtain the frequency s∗ at
which the phase of the transfer function equals −180◦ as
the solution to the equation:

−90◦ − s

pa
− arctan

s

p
= −180◦.

Write b = s∗

p . We would like the magnitude of the transfer

3α2 is solely determined by the position of the complex poles of system
2. In particular, for poles at −a± ib, α2 = exp(−πa/b).



function at s∗ = bp to be less than 1. Or, we require:∥∥∥∥∥ GiRuPC
NS2

s + GiRuw
S

e−sτ N

s

∥∥∥∥∥
s=j

bGiRuw

S

=

∥∥∥∥∥ PC
wS

( sS
GiRuw + 1)s

∥∥∥∥∥
s=j

bGiRuw

S

=
PC

b
√

b2 + 1GiRuw2
< 1

⇒ GiRuw2 >
PC

b
√

b2 + 1
. (11)

Equations (10) and (11) correspond to conditions (i) and (ii)
of the theorem.

In an entirely similar fashion the transfer function of
System 2 yields conditions (iii) and (iv) of the theorem. This
completes the proof.

The four conditions in Theorem 3 provide guidelines for
choosing the parameters GiRu, Gd and w when P is fixed.
By varying a, one can obtain the complete set of parameters
that ensure the stability of the linearized system.

Figure 2 shows a simulation designed for a single link
network with N = 50 and τ = 200µs. We choose the
paramters as follows: Gi = 4, Ru = 1e6, w = 2, Gd =
1/128, which are obtained when a = 5 and b = 2.2 and
P = 0.01. The pole for increase is at 666 rad/s and the pole
for decrease is at 521 rad/s.
Remark about the simulation environment: It is important
to point out that all the simulations in this paper are run
without the sources obeying the “severe congestion” signal;
that is, the sources only perform additive increase and mul-
tiplicative decrease. The behavior expected with the severe
congestion mode (which will be presented in future work)
will be more stable, but perhaps with a more sluggish re-
sponse in terms of flow completion times. Moreover, packets
arriving to a full buffer are dropped and will be retransmitted
by the source. Therefore, a flow which has K packets to
send will transmit exactly K packets successfully; dropped
packets are requeued at the source. Even though we have not
incorporated link-level pause in our simulations, it is clearly
not necessary for the basic single-link topology studied in
this paper; the difference in performance is negligibly small.
We plan to include link-level pause and severe congestion
in future work where we shall simulate more complex
topologies. The control-theoretic analysis of this paper is
fully captured by our present simulations.

The simulation shows 400 sources arriving during the
simulation run-time, bursts of 50 arriving every 0.2 seconds,
each source starts at a rate of 100 Mbps thus bringing an
extra load of 5 Gbps every 0.2 seconds. The desired qeq

is 16 packets, all packets are 1500 bytes long. As Figure 2
shows, both the queue-size and the total rate are quite stable,
especially when considering that the system was loaded with
8 times more flows than the N = 50 value used for choosing
the parameters!
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Fig. 2. Queue-size at the buffer attached to a 10Gbps link; no self-increase.

C. Self-increase Algorithms

We present three algorithms that allow a source or RP
to increase its sending rate, even though it does not receive
an increase signal from its CP. As mentioned earlier, such
increases ensure fail-safe operation should BCN messages
be lost. We shall see in the next section how they also affect
the fairness in bandwidth allocation.
Algorithm: SI-1. This algorithm allows an RP to increase
its sending rate by an amount of I bps per second (denoted
henceforth as I bps/s). Under this algorithm, if the network
has N sources, then the total arrival rate increases by NI bps
every second. For a large enough N , this algorithm is clearly
unstable. This is evident from the plots shown in Figure 3.
The parameters and arrival patterns are all as in the setup of
Figure 2. As we can see, when we have a gentle self-increase
of I = 10Mbps/s the system is much more stable than when
I = 500Mbps/s.
Algorithm: SI-2. This algorithm allows an RP to increase
its sending rate by a constant factor. If the current rate is R
and rate increases occur every T seconds, then the rate at the
next increment time will equal R.i.T . This scheme enjoys
the advantage that the the net arrival rate on any link can only
increase by the factor i in fixed intervals of time, regardless
of the number of sources. This makes the algorithm more
stable compared to SI-1. Figure 4 (left) shows the queue-
sizes under SI-2. The factor i was chosen to be 10, which
is a pretty aggressive factor. Nevertheless, the figure shows
that the scheme is well-behaved.
Algorithm: SI-3. This algorithm increases the rate addi-
tively. The amount of increase is inversely proportional to the
number of negative feedback signals obtained by a source.
For example, if rate increases occur every T seconds, then
the current rate R will increase to R + I.T

#NegFb
, where I

is the increase amount and #NegFb equals the number of
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Fig. 3. Queue-sizes under algorithm SI-1. Gentle increase of 10 Mbs/s
(top) and aggressive increase of 500 Mbps/s (bottom).

negative Fb signals received by the RP in the increase interval
of T seconds. This algorithm is similar to SI-1, but fairer: it
does not let large sources increase by as much as SI-1 does.
Figure 4 (right) shows the queue-sizes under this algorithm.

IV. FAIRNESS

In this section we shall consider the fairness properties of
the schemes presented in the previous section. We shall call
the scheme with no self increase SI-0. As seen in Theorem 1
SI-0 gives rise to multiple equilibria, only one of which gives
an equal bandwidth allocation in the single-link case. This
equilibrium is, therefore, fair and is stable under stochastic
perturbations such as randomness in packet arrival processes.
While equilibrium bandwidth shares are one indication of
fairness, a more important figure of merit for any congestion
control algorithm is the speed with which it achieves fairness
when sources start off with an unequal bandwidth allocation.
Several “fairness indices” have been defined in the literature
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Fig. 4. Queue-sizes under algorithm SI-2 (top), and under algorithm SI-3
(bottom).

(see [3], for example) to measure the fairness of an algorithm.
We have performed the appropriate simulations, but do not
present them here due to a lack of space. We have also
found these indices not informative in practice because they
are concerned with the situation when infinite sources send
traffic.

The more realistic scenario corresponds to finite-sized
flows arriving and departing. In this case one can consider the
flow completion times and say that an algorithm is “fair” if
it makes the completion times of similar-sized flows equal.
We note that since bandwidth is shared by all flows, one
flow completing transmission quickly implies that another
must take longer. Hence, when considering similar (or equal)
sized flows, one cannot expect the mean flow completion
time to be an indication of fairness. This suggests defining
a “fair” algorithm as one which reduces the variance of
flow completion times across flows of similar size. We now



investigate the fairness of the schemes SI-0,...,SI-3 in the
sense described above.

We consider flows whose sizes are drawn from a Pareto
distribution with parameter 1.8 and mean flow size equal to
1 MB. The arrival rate is Poisson with mean 1125 flows/sec.
Hence the average traffic in the network is 9 Gbps. The
starting rate of all flows is 1 Gbps. Figure 5 compares the
mean and the normalized standard deviation of the flow
completion times. As expected, whereas all algorithms obtain
the same mean completion time, SI-0 is markedly inferior in
controlling the variance of the flow completion time. Thus,
the other algorithms are fairer.
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Fig. 5. A comparison of flow completion times under the algorithms SI-
0,...,SI-3. Means (top) and normalized standard deviation (bottom).

V. CONCLUSION AND FURTHER WORK

This paper presented the stability analysis of the BCN
mechanism being considered by the IEEE standardization
process. It points out, and analyzes, a subtlety that arises
in this context: the overall system switches between two
separate sets of equations depending on the sign of the

feeback variable, Fb. In addition to stability, the fairness
aspects of the BCN mechanism have been considered in
detail. Notably, we have put forth a new notion of fairness
involving the variance of flow completion times to compare
algorithms in a more realistic scenario.

There is much ongoing and future work. We have already
mentioned simulations which include the severe congestion
mode, especially with more complex network topologies. It
would be interesting to understand just how well link-level
pause and BCN work as network size scales. It would also be
very interesting to understand how BCN interacts with TCP,
which performs end-to-end congestion control and relies on
packet drops to get congestion notices.

Acknowledgment: We thank Paul Cuff for helping write the
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APPENDIX I

We look at a transfer function of the form 1
s+ae−sτ , or

in the standard frequency form 1
jw+ae−jwτ . Its magnitude is

equal to

1√
a2 + w2 − 2aw sinwτ

' 1√
a2 + w2

,

which is magnitude of

1
jw + a

when wτ is small.
Its phase is given by the expression

arctan
w − a sinwτ

a cos wτ
' arctan

w − awτ

a(1− (wτ)2

2 )
.



When aτ ≤ 1, we solve

1− (wτ)2

2
< 0⇒ w >

√
2

τ
> a

so aτ ≤ 1 is a sufficient condition to closely approximate
1

s+ae−sτ by 1
s+a . Note that when aτ > 1, there is positive

feedback from the beginning.


