

Overview

Key Observations

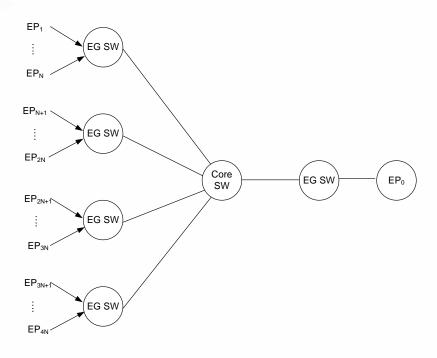
Scaling Number of Flows

Severe Congestion Management

- BCN(0,0)
 - When Q_inst>Qsc, set current rate R to 0
 - Set random timer [0, Tmax]
 - When timer expires, current rate R set to Rmin
 - If BCN(0,0) occurs again before timer expiration, Tmax doubled and Rmin halved (exponential backoff)
- BCN(MAX):
 - When Q>Qsc, send BCN(MAX) to decrease the rate by maximum amount
 - BCN(MAX) → (Qoff = Qeq, Qdelta = 2Qeq)
- Drift (or Self-Increase)
 - Increase rate at fixed time intervals Ti, the current rate is additively incremented by a configurable amount
 - Always active (except during BCN(0,0) timeout)

Key Observations

- BCN + PAUSF
 - Avoids frame loss
 - Minimizes throughput degradation on innocent flows due to head of line blocking (for contending long lived flows)
 - Improves fairness across contending flows
 - See au-sim-ding-bcn-pause-w-innocent_20061019.pdf
- Severe Congestion Management
 - Throughput variations are negligible between BCN(0,0) and BCN(MAX) for the single hop scenario examined
 - With PAUSE, BCN(0,0) provided better RMS Fairness than BCN(MAX)
 - Drift (or Self Increase) aids in improving fairness
 - See au-sim-ding-bcn-pause-102606.pdf
- Scaling Number of Flows
 - Parameters require adjustment as a function of number of contending flows at a congestion point.
 - Decrease gain
 - Sampling rate at congestion detection point
 - See au-sim-thaler-bcn-large-topo-110206.pdf


Overview

Key Observations

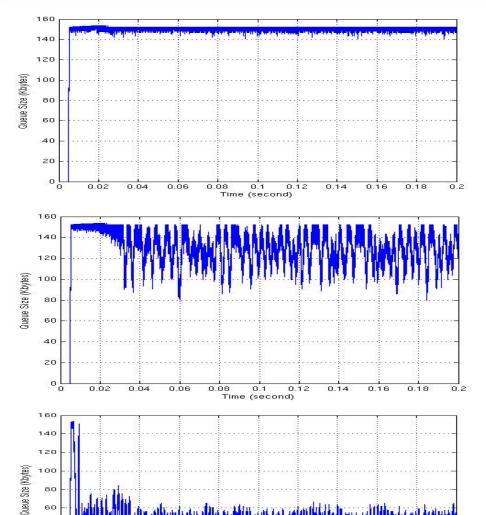
Scaling Number of Flows

Scaling Number of Flows Simulation Topology

- Link Capacity = 10 Gbps
- Egress Port Buffer Size = 150 KB
- Switch Latency = 1 us
- Link Length = 100 m (.5 us propagation delay)
- Endpoint response time = 1 us

Scaling Number of Flows Workload

- Traffic Type: 100% UDP (or Raw Ethernet) Traffic
- Frame Size Distribution: Fixed length (1500 bytes) frames
- Arrival Distribution: Bernoulli temporal distribution
- Offered Load/Endpoint = 2%
- N=25, Destination Distribution: EP₁ EP₁₀₀ send to EP₀
- Simulation Time
 - Each source starts at 5ms, and simulation stops at 200ms


BCN Parameters

- Qeq
 - 16 (1500-byte frames)
 - 375 * 64 byte pages
- Frame Sampling
 - Frames are sampled on average 150 KB received to the egress queue
- W = 2
- Gi = 12.42
 - Computed as (Linerate/10) * [1/((1+2*W)*Q_eq)]
 - Gi = 5.3 x 10⁻¹ * (1500/64) = 12.42
- Maximum rate decrease
 - 0.5, computed as $1/2*[1/((1+2*W)*Q_eq)]$
 - 0.95, computed as 0.95*[1/((1+2*W)*Q_eq)]
- Ru = 1 Mbps
- Drift (Self-Increase)
 - At fixed time intervals Ti, the current rate is incremented by a unit
 - Never stop drifting
 - Drift = 1 Mbps every 100us
- PAUSE is not active

Scaling Number of Flows - Results

Severe Congestion Behavior	Max Rate Decrease Percentage	Sampling Rate
BCN(MAX)	50%	150KB
BCN(MAX)	95%	150KB
BCN(MAX)	95%	25KB

CS Packet Loss

