BCN: Overview of Theory and Simulations

Balaji Prabhakar Stanford University

Co-presenters: Yi Lu, Stanford University Ashvin Lakshmikanta, UIUC

Some background

- Two flavors of network congestion...
 - Transient: Due to random fluctuations in the arrival rate of packets, and effectively dealt with using buffers and link-level pausing (or dropping packets, if applicable).
 - Sustained: Caused by an increase in the applied load either because existing flows send more traffic, or (more likely) because new flows have arrived.
 - The Backward Congestion Notification (BCN) mechanism is primarily concerned with dealing with the second type of congestion.

Congestion control in the Internet

- In the Internet
 - Various queue management schemes, notably RED, drop or mark packets using ECN at the links
 - TCP at end-systems uses these congestion signals to vary the sending rate
 - There exists a rich history of algorithm development, control-theoretic analysis and detailed simulation of queue management schemes and congestion control algorithms for the Internet
 - Jacobson, Floyd et al, Kelly et al, Low et al, Srikant et al, Misra et al, Katabi et al ...
 - The simulator ns-2

A one-slide (extreme) summary

- Internet congestion control:
 - The router could
 - Send *simple* signals: signal (drop/mark) based on queue-size alone (e.g. RED)
 - Send *detailed* signals: signal based on queue-size and link utilization (e.g. REM, PI controller)
 - The end-systems could
 - Have *simple* reactions: Cut window by a factor 1/2 (e.g. TCP)
 - Or *elaborate* reactions: Various increase/decrease behaviors (e.g. High-speed TCP, Fast TCP)
- For high bandwidth-delay-product networks
 - The simple-simple combo doesn't work
 - In addition, when buffers are short, it is v.useful (necessary?) to signal available rate or link utilization

The BCN proposal

- Has the following features
 - CPs signal queue-size and rate: (Q, Q_{delta})
 - RPs vary rate according to equations of AIMD
 - Similar to XCP and RCP in the Internet literature: change both router and end-host behaviors
- We consider the following issues re the BCN proposal
 - Stability
 - Optimality and fairness
 - Robustness
- We explain what each of these terms means and how one can verify them via theory and simulations

Stability

- View the BCN mechanism as a control system
 - CP--RP non-linear control loops
 - Linearize equations about an equilibrium operating point
 - Determine the "unit step response" of the linearized system
 - I.e. N sources supply unlimited amount of traffic indefinitely
 - Choose gain parameters for stability and responsiveness
- Large conclusions
 - Gain parameters depend on N and RTT
 - Some amount of "drift" necessary: for fail-safeness, fairness
 - Stability is a first-order property
 - Many schemes are stable, only some of these are fair and robust
 - Need to understand the performance of scheme under "dynamic inputs:" a situation where flows arrive and depart

Optimality and fairness

- Optimality and fairness
 - How responsive is the congestion control scheme to changes in the applied load?
 - How closely does it track an "ideal system?"
 - How quickly does a new flow achieve its fair rate allocation?
 - We will see that drift or "self-increase" plays a crucial part here because it allows sources to gently probe the network for available bandwidth
- Large conclusions
 - Dynamic loading, where flows arrive and depart, gives a lot of information
 - Three different types of drift introduced and their stability and fairness properties are studied
 - Main metric: Flow Completion Time (FCT)
 - Bdwdth = Flow size / FCT; therefore, can compare bdwdth obtained by flows of the same size
 - This gives fairness in a dynamic setting

Robustness

- Robustness: How "true" does the performance remain to changes in
 - Traffic or loading conditions
 - Change flow arrival rate, mean flow size, flow size distribution, etc
 - BCN parameter variations; including
 - Turning BCN off
 - Turning off switch-signaled rate increase
 - Varying the starting rate: 10 Gbps vs 1 Gbps
- Large conclusions
 - The proposed BCN is pretty robust
 - It gives consistent performance, measured in FCT and fairness
 - Even at high loads
 - And even when switch-signaled increase is turned off

Further work

- Want to see
 - How the sampling probability affects performance
 - How BCN(0,0) affects performance
 - Whether signaling can be cruder
- Generally, well-designed congestion management schemes are (and need to be) robust
 - The "law of large numbers" favors them
 - Not necessary to be exact on a per-packet basis
- Interactions with TCP

The related presentations

- Yi Lu
 - Stability analysis from paper presented at the Allerton conference
 - Available at: <u>http://simula.stanford.edu/luyi/</u> and at
 - http://www.ieee802.org/1/files/public/docs2006/au-Lu-et-al-BCN-study.pdf
 - Study of drift or "self-increase;" fairness of these schemes via FCT
- Ashvin Lakshmikantha
 - Detailed study of robustness of the BCN scheme
 - Under realistic network scenarios (topologies, varying loads ...)
 - Fairly dramatic perturbations of the BCN scheme