Sensitivity Analysis of BCN with ZRL Congestion Benchmark

Part 1

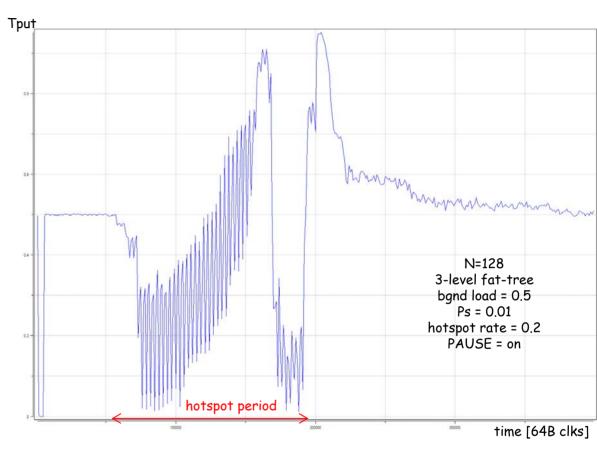
Mitch Gusat and Cyriel Minkenberg IEEE 802 Dallas Nov. 2006

IBM Zurich Research Lab GmbH

1

Outline

- Next phase: BCN validation
 - larger datacenter networks
 - > demanding traffic patterns
- ZRL congestion benchmarking
 - \succ congestion taxonomy and a practical toolbox
- Analytical dual ranking: The APS method
 - > BCN's algorithmical sensitivity to parameters
 - > Parameters' sensitivity to benchmarking traffic
- Simulation results
 - validation of analytical selection
 - > parameters' sweep: stability plane
- Conclusion

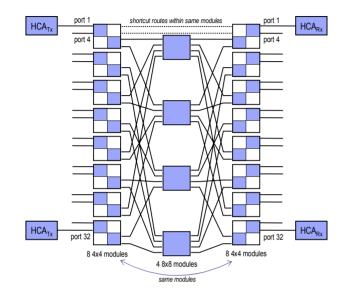

Next phase of BCN validation

- Baseline BCN: validated by multiple parties
 - \succ joint effort of the .1au adhoc simulation teams
- Basic scheme is functional
 - for detail conclusions see .1au repository
- Next: BCN w/ larger networks under stress traffic
- How to proceed?
 - Empirical approach: Brute force simulations (see next foil)
 - > More rigorous approach: ZRL congestion benchmarking
 - o Iterate between analytical and simulation models to systematically parse the combinatorial tree and reduce the dimension of the parameter space

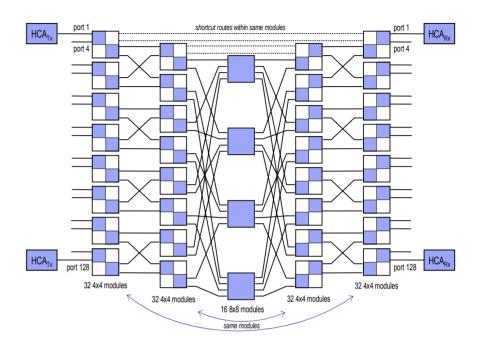
Empirical approach: Brute force simulations

Multi-dimensional problem

- 1. no. nodes
- 2. switch / adapter arch.
- 3. topology
- 4. LL-FC settings
- 5. BCN params
- 6. traffic scenario
- 7. metrics of interest
- 8. no. of simulation points
- ⇒ Combinatorial explosion
 of an 8D (actually 20+
 dim's) search space.
- ⇒ Not practical for standard work



BCN with baseline settings: unstable. Which dimension to explore 1st?


A More Rigorous Alternative

- Dimensions 1-3 (architectural) are determined by
 - market of datacenter and HPC
 - > 802 architectural definitions (e.g., ideal OQ)
- Dim's 4,5 (scheme settings) => Our main target.
- Dim's 6-8 (methodology) => Toolbox
- Toolbox proposal: "ZRL Congestion Benchmarking"
 - 1. Benchmarks designed for datacenter environments
 - 2. Combines analysis w/ simulation in a systematical method
 - 3. Tried and improved thru work in related standards.

Baseline Topology Proposal: Bidir Fat Trees (FT)

- 2-level / 3-stage bidir MIN
- Simulate: 8 32 nodes
- Time per run: < 1hr

- 3-level / 5-stage bidir MIN
- Simulate: 128 2K nodes
- Time per run: TBD

Fat-trees: Scalable, w/ excellent routing and performance properties. Optimum performance/cost with current trends in technology. Can emulate <u>any</u> k-ary n-fly *and* n-cube topology. Large body of knowledge.

Toolbox-1. Traffic: ZRL Congestion Benchmark

- Source nodes generate* one or more hotspots according to matrix $[\mathbf{\lambda}_{ij_hot}]$: $t_{p>q} = \alpha_{k_hot} [\mathbf{\lambda}_{ij_hot}]$: $t_{p>q}$, $[\mathbf{\lambda}_{ij_hot}]$ is specified** per case as below
- 1. Congestion type: IN- or OUT- put generated
- 2. Hotspot severity: HSV = $\Lambda_{aggr} / \mu_{HS}$, $\Lambda_{aggr} = \sum \Lambda_i$ at hotspotted output, μ_{HS} = service rate of the HS
 - ➢ Mild 1 < HSV <= 2</p>
 - Moderate 2 < HSV <= 10</p>
 - Severe HSV > 10.
- 3. Hotspot **degree**: HSD is the fan-in of congestive tree at the measured hotspot
 - Small HSD < 10% (of all sources inject hot traffic)</p>
 - ➤ Medium HSD ~ 20..60%
 - ➤ Large HSD > 90%.

* Traffic generation is a Markov-modulated process of burstiness B (indep. dimension) **Metrics and measurement methodology are subject of another deck

Toolbox-2: BCN Parameters. How to proceed?

BCN entails 6 params

- 1. Equilibrium threshold Q_{eq}
- 2. Rate unit R_u
- 3. Sampling rate P_s
- 4. Feedback weight W
- 5. Increase (additive) gain G_i
- 6. Decrease (multiplicative) gain G_d

Next step?

- a) The empirical approach is unsustainable because it generates too many singular points, as seen on foil #4
- b) A purely analytical approach is difficult owing to non-linearity of model. Would also require validation by simulation.

c) However, a combined analytical and simulation method is feasible!

Reduction of Simulation Space: Dual Ranking

- Using ZRL Benchmarking, the smallest simulation space is given by the tuple product
 - SimRuns = {topology, HS type, HS severity, HS degree, burstiness} x {BCN param} = 2*2*3*3*4 x {BCN param} = 144 x {6D}
- SimRuns = $144 \times \{Q_{eq}, R_{u}, P_{s}, W, G_{i}, G_{d}\}$... still a VERY large space!

- Further reduction by (simplified) dual ranking analysis
 - 1. algorithmical sensitivity to BCN params: which param matter most?
 - 2. parametrical sensitivity to traffic: which benchmarks are critical?

Next: Algorithmic and parametrical (AP) sensitivity of BCN Sensitivity is often a more accurate metric of stability margin than either gain or phase margin! However, here we didn't use canonical sensitivity.

Ranking by AP Sensitivity - 1

=>

=>

=>

From BCN stability model

- 1. Conservation: $dq/dt = HSD*\lambda(t) \mu_{HS}$
- 2. $q(s) = HSD^* \lambda(s) / s$
- 3. Feedback: $Fb(t) = -(q(t) Q_{eq}) + w^*(dq/dt) / (\mu_{HS}^* p_s) = >$
- 4. $Fb(s) \approx G * [1 + w*s / (\mu_{HS}*p_s)]$

5. AI:
$$d\lambda(t)/dt = G_i^*\lambda(t)^* p_s^*Fb(t-\tau)$$

- 6. $\delta AI(t)/\delta Fb(t-\tau) = G_i * p_s * \mu_{HS}/HSD$
- 7. AP sensitivity of $G_i = \delta AI(t)/\delta Fb(t-\tau) * HSD/(p_s*\mu_{HS})$
- 8. MD: $d\lambda(t)/dt = G_d^*\lambda(t)^*\lambda(t-\tau)^* p_s^*Fb(t-\tau)$
- 9. $\delta MD(t)/\delta Fb(t-\tau) \approx G_d * p_s * (\mu_{HS}/HSD)^2$
- 10. AP sensitivity of $G_d = \delta MD(t)/\delta Fb(t-\tau) * (\mu_{HS}/HSD)^{-2} / p_s$.

q(t) =queue occupancy; HSD=no. of hot flows, each with rate $\lambda(t)$, at hotspot served w/ rate μ_{HS}

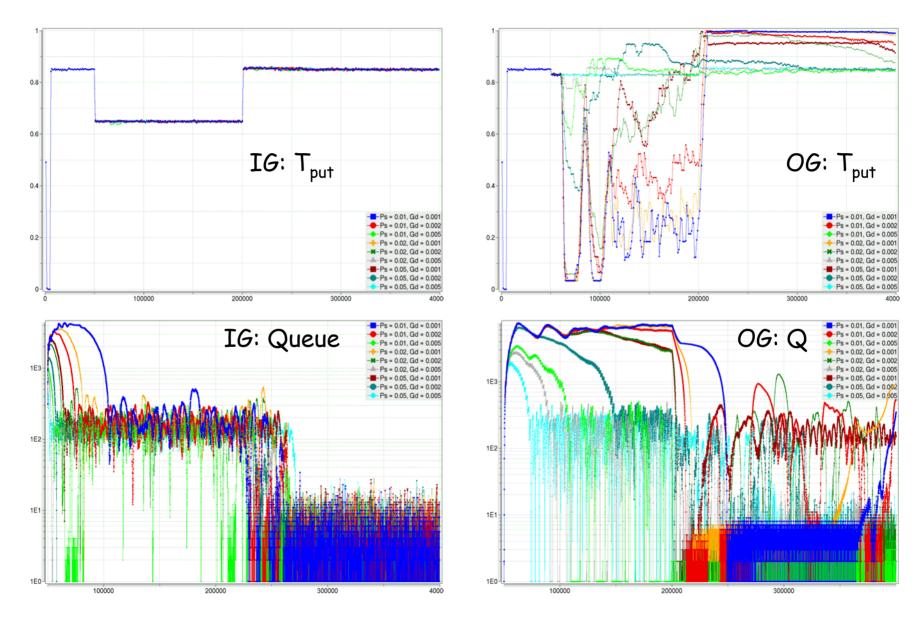
Ranking by AP Sensitivity - 2

(7,10) =>

- a) p_s directly impacts G_i and G_d
 - \blacktriangleright 1st order sensitivity on p_s
- b) G_i and G_d depend on the HSD/ μ_{HS} ratio
 - \blacktriangleright congestion w/ high HSD and low μ_{HS} stresses stability

(10) =>

c) G_d is *more* sensitive than G_i to the HSD/ μ_{HS} ratio (squared)


(4,7,10) =>

- if denominator ~ f ($p_s * \mu_{HS}$), where $p_s \ll 1$ and $\mu_{HS} \le 1$, -> the hotspot drain rate *further* increases the sensitivity to p_s
- d) everyting else being equal, *output-generated* (OG) congestion is more stressful for BCN's stability than IG

What to begin with?

- \succ BCN params: p_s and G_d
- $\succ~$ Traffic: Output-generated congestion w/ high HSD and low μ_{HS} .

Qualitative Validation: Input- vs. Output-Generated HS

IBM Zurich Research Lab GmbH

Simulations Confirm Our Sensitivity Ranking

- OG requires higher control effort than IG
 - Slower throughput recovery; overshoot
 - > Higher queue size fluctuations
 - > Less stability margin: more sensitive to parameter settings
- BCN's impulse response improves as P_s and G_d increase (within bounds!)
 - > Applies to both scenarios => as P_s and G_d increase, so does the system's distance between pole(s) and origin... up to a point
- Next: Simulation-based sensitivity analysis of P_s and G_d

Simulation Overview

- Single-stage network, 32 nodes
- Shared-memory switch
- Background traffic is uniformly distributed
- All frames minimum size (64 B, time slot = 51.2 ns)
- No TCP/IP, raw Ethernet!
- Parameters
 - > Mean load λ
 - > Mean burst size B
 - Shared-memory size M
 - Round-trip time RTT (in slots)
 - > BCN parameters (P_s , G_d , G_i , Q_{eq} , W, R_u)
- Metrics
 - Throughput (aggregate and per port/flow)
 - Latency (measured per burst)
 - Queue length (congested queue)
 - Fairness (RJFI, ALFI)
 - Number of PAUSE and BCN frames sent

Switch

Adapter Model

- Shared-memory outputqueued switch
- PAUSE enabled
 - Global high- and lowwatermark memory threshold trigger pause and unpause
 - High watermark T_h = M -N*(RTT*B + L_{max})
 - > Low watermark $T_1 = T_h / 2$
 - PAUSE renewed before expiry (take into account RTT)

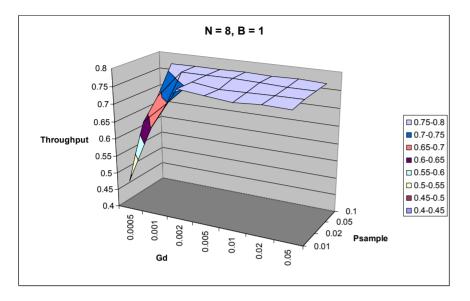
- VOQ-ed per end node
- Round-robin service discipline
- Number of rate limiters unlimited
- Egress buffer flow-controlled using PAUSE (high/low watermarks)

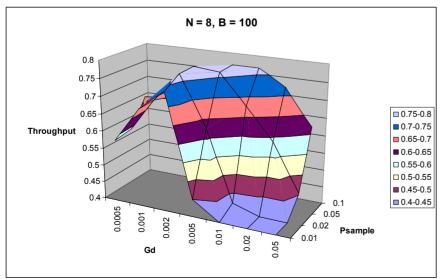
Lossless operation: No frame drops due to buffer overflows!

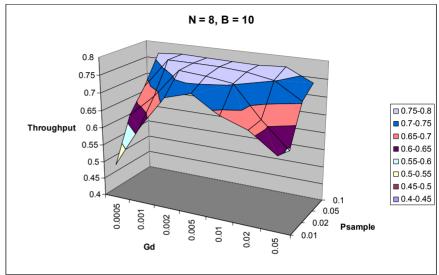
Traffic Scenarios

- Output-generated hotspot
 - Service rate of output 0 is reduced to 20% of full line rate
 - Results in an N-degree hotspot
 - Without CM, aggregate throughput is limited to 20% due to hogging

Initial Param Settings

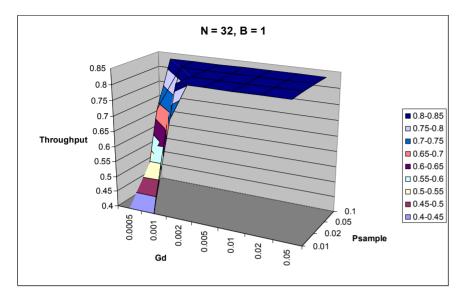

- 1. $Q_{eq} \leftarrow M / N$ (memory is partitioned to reduce hogging)
- 2. $R_u = R_{max} / 1000$
- 3. P_s = [0.01, 0.1]
- 4. W = 1

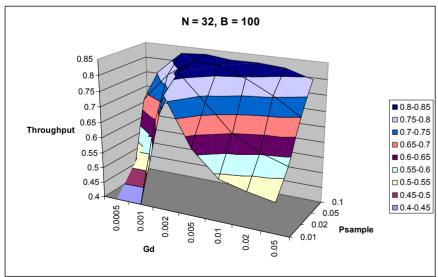

٠

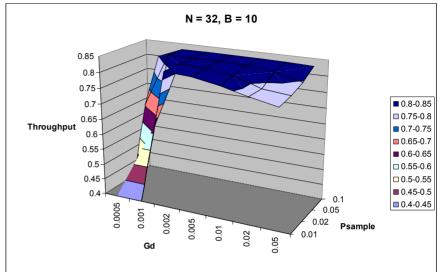

- 5. *G*_i = 1
- 6. *G*_d = [0.0005, 0.05]

Note: Above settings may be neither optimal nor a baseline match.

Results: OG hotspot (N=8)

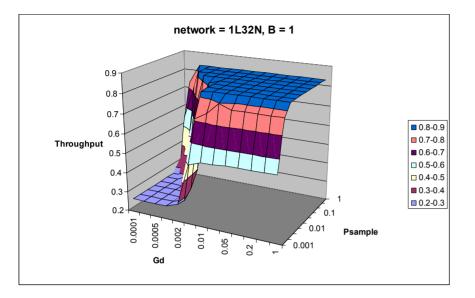


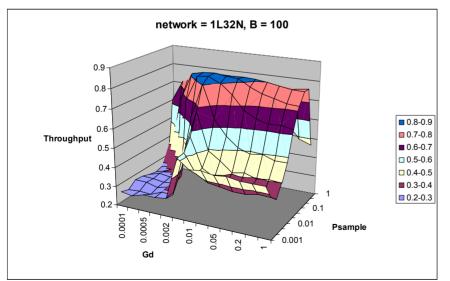


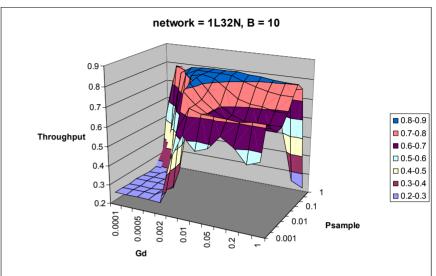


- RTT=0, M=256*N,Q_{eq}=M/N ٠
- Throughput measured during hotspot
- Hotspot rate = 20% ٠
- $Tp_{max} = \lambda * (N-1)/N + 0.2/N$ $\lambda = 85\%$, N=8 => $Tp_{max} = 0.77$ •
- Varying G_d and P_s

Results: OG hotspot (N=32)

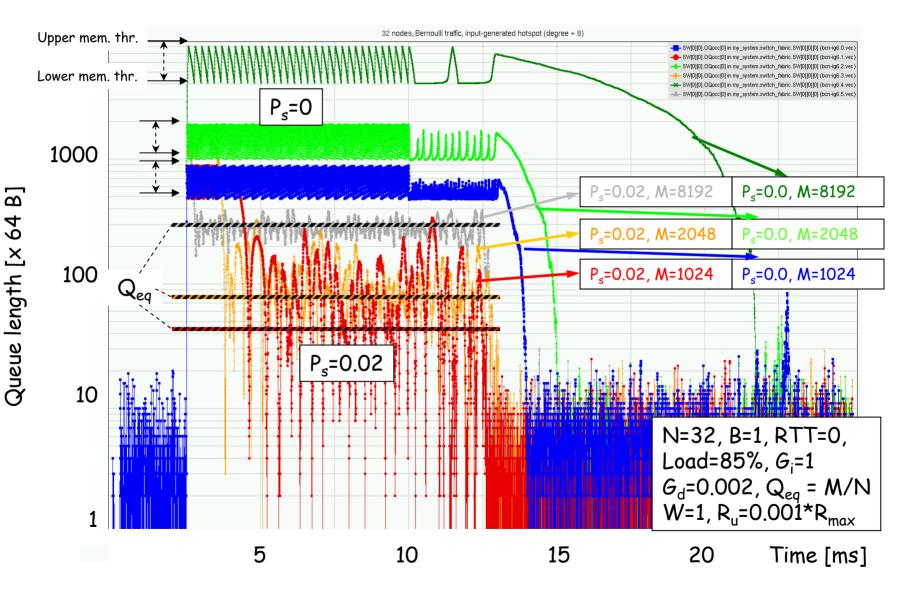






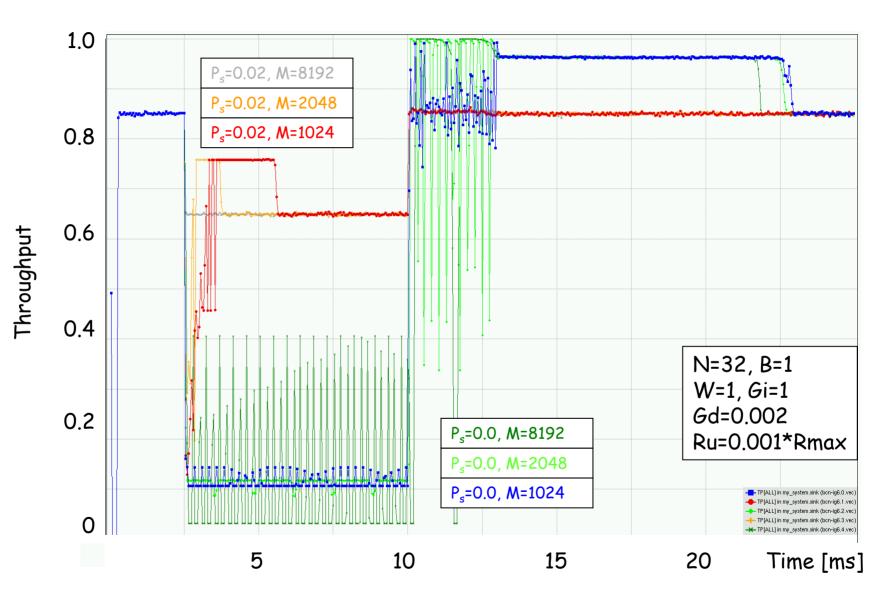
- RTT=0, M=256*N, Q_{eq}=M/N
- Throughput measured during hotspot
- Hotspot rate = 20%
- $Tp_{max} = \lambda * (N-1)/N + 0.2/N$
- λ =85%, N=32 => Tp_{max} = 0.83
- Varying G_d and P_s

Results with M/(2N) Memory Partitioning: OG hotspot 1L32N

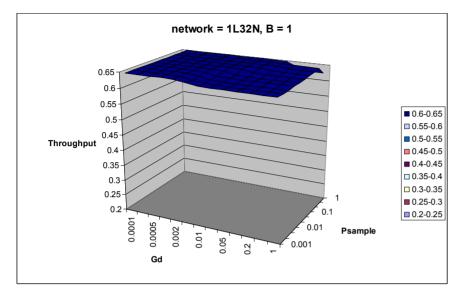


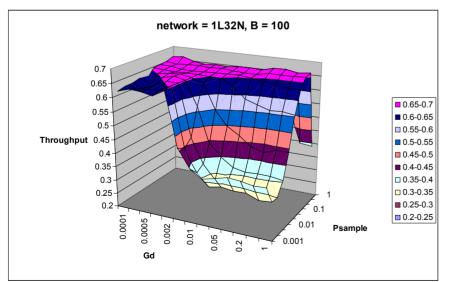
- RTT=0, M=256*N, Q_{eq}=M/(2N) ! Throughput measured during hotspot
- Hotspot rate = 20% => severity = 85%/20% = 425%
- $Tp_{max} = \lambda * (N-1)/N + 0.2/N$
- λ =85%, N=32 => Tp_{max} = 0.83 •
- Varying G_d and P_s

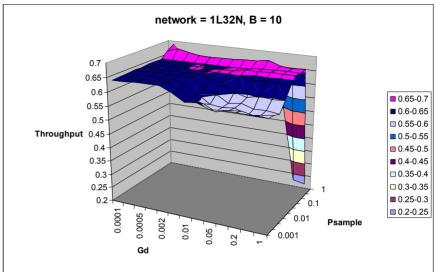
IG results


- Input-generated severe hotspot
 - > Uniform background traffic load = 85%
 - > Multiple (HSD) inputs send 100% of their traffic to output 0
 - o Primary HSD = 8 (all the other also send a smaller quota)
 - o Hotspot is targeted by 8 hot flows and 24 background flows
 - o Aggregate severity = (8*100% + 24*85%/32) = 863%
 - Without BCN, aggregate throughput is limited to about 100% / (HSD((N-1)/N)+1)

Results: Input-gen'd hotspot (1)


IBM Zurich Research Lab GmbH


Results: Input-gen'd hotspot (2)



IBM Zurich Research Lab GmbH

Results with M/(2N) Memory Partitioning: IG hotspot 1L32N

- RTT=0, M=256*N, Q_{eq}=M/(2N) Throughput measured during hotspot
- Hotspot severity = 863%
- $Tp_{max} = 0.65$
- Varying G_d and P_s

Conclusions

- Analytical and simulation modeling show that BCN's stability and performance depend on
 - > Two 1^{st} order params: p_s and G_d
 - > Type of traffic: Output-generated congestion is a stress test
- Optimal ranges for OG (assuming fixed W*, G_i, R_u, Q_{eq})
 ▷ P_s = [0.02, 0.05]
 ▷ G_d = [0.002, 0.005]
- Burstiness also determines sensitivity
 - Large bursts (MTU-Jumbo) increase the sensitivity
- Upcoming
 - > Increase network size to 128, with 2 and 3 levels.

* In simulations W proved less sensitive than we've analytically expected