AV Bridging and Ethernet AV™

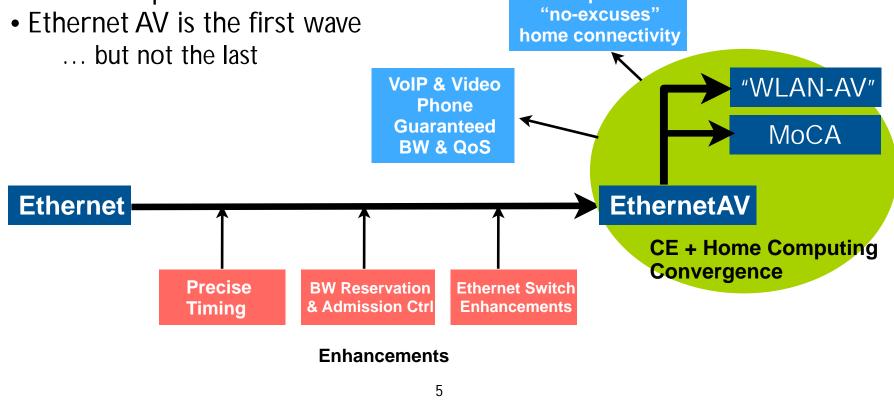
Michael Johas Teener

mikejt@broadcom.com

Agenda

- IEEE 802.1 summary
- What is AV bridging?
 - and Ethernet AV?
- Why is it needed?
- Where will it be used?
- How does it work?

IEEE 802.I

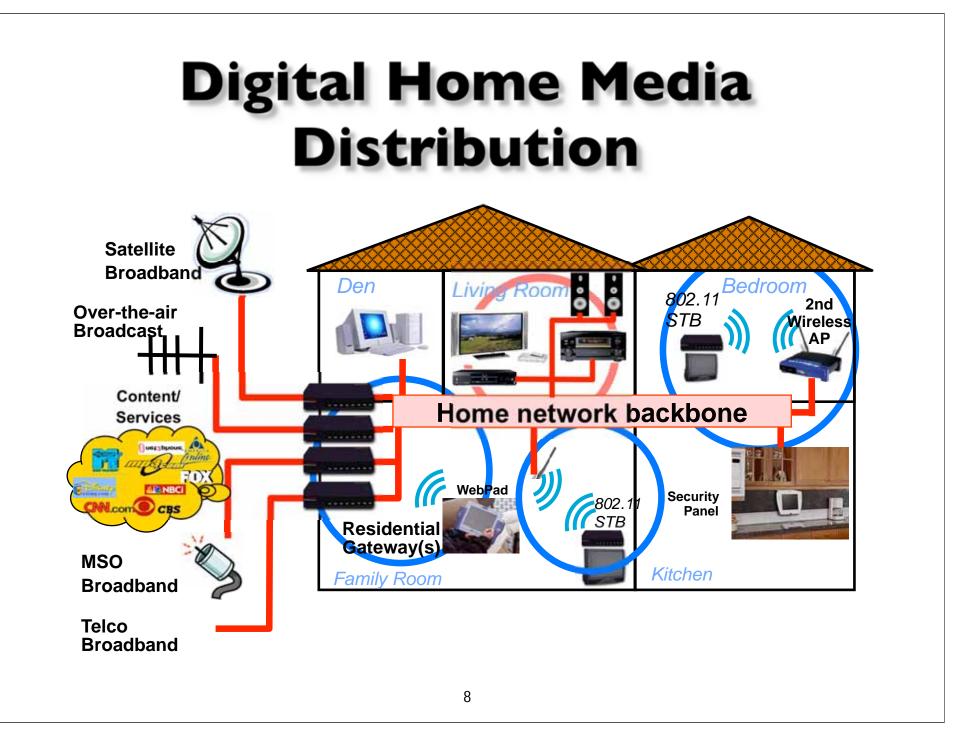

- Responsible for "higher level" services within 802 networks
 - architecture
 - "interworking" bridging between different 802 (and other) networks
 - link level security
 - management interface for layer 2 facilities
- Examples
 - 802.1D/Q bridging (usually called "switches")
 - 802.1X, 802.1AE MAC security
 - 802.1ad Provider Bridges

New Work in 802.I

- Audio Video Bridging Task Group
 - provides the specifications that will allow timesynchronized low latency streaming services through 802 networks
 - http://www.ieee802.org/1/pages/avbridges.html
- Congestion Management Study Group
 - (Pat will be talking about this)

What is AV bridging?

- Precise timing in an 802 network
- E2E bandwidth and latency guarantees using QoS and Admission Control
- Do both with very low cost adder (approaching zero) to meet CE market requirements.



Performance goals

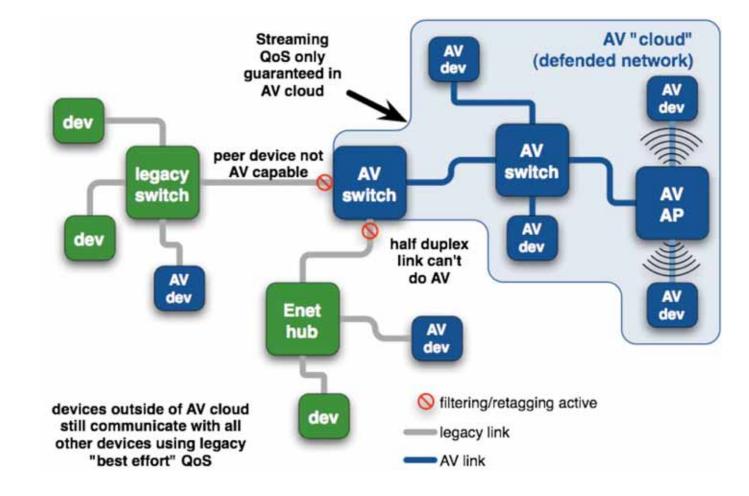
- Determined during the one-year life of the "Residential Ethernet Study Group"
 - http://www.ieee802.org/3/re_study/
- Timing synchronization to sub-microsecond
 - coordinating multiple audio devices (speakers and microphones) for proper phasing
- Clock jitter appropriate for applications
 - 100ns for "free", can be filtered down to 100ps
 - MTIE masks for most applications can be met
- Latency of no more than 2ms in a 7 hop Ethernet
 - viewed as worst case for most applications

Chaos in layer 2 steaming QoS

- "Isochronous" or "streaming" services required by some markets
 - Consumer electronics, professional A/V, telecom, and instrumentation in particular
- Always done in isolation with little thought of bridging to alternates
 - IEEE 1394 \neq 802.11e \neq HomePlug AV \neq MoCA \neq USB
 - good reasons (vastly different access protocols)
 - bad reasons (NIH)

Unified Layer 2 QoS

- Enhance network bridging
 - Define common QoS services and mapping between different layer 2 technologies
 - E.g., 802.3 Ethernet, 802.11 WiFi, UWB, MoCA, etc
 - IEEE 802.1 is the common technology
 - Ethernet "switches" (IEEE 802.1D/Q bridges)
 - Basis of 802.11 A/P attachment to Ethernet
 - Basis of non-802 network bridging (e.g., FDDI, carrier nets)
- Common endpoint interface for QoS
 - "API" for QoS-related services for ALL layer 2 technologies
 - Toolkit for higher layers


The first step: Ethernet AV™

- Simple enhancement to IEEE 802.1 bridges to support streaming QoS
 - 2 ms guaranteed latency through 7 Ethernet bridges
 - Admission controls (reservations) for guaranteed bandwidth
 - Precise timing and synchronization services for timestamps and media coordination
 - < I µs absolute synchronization between devices
 - jitter less than 100ns, filterable down to 100ps
- Change to IEEE 802.3 specs (but not implementations)
 - the actual time that a particular frame is sent or received
 - maybe use existing layer management services

Proposed architecture

- Changes to both IEEE 802.1Q and layer 2
 - 802.1Q bridges/switches most of work
 - 802.3 Ethernet MAC/PHY possible small change to MAC definition
 - 802.11n/HomeplugAV/MoCA more work, but basic tools in place
 - Not discussed in this presentation
- Three basic additions to 802.1/802.3
 - Traffic shaping and prioritizing (p802.1Qav for 802.3 only),
 - Admission controls (p802.1Qat), and
 - Precise synchronization (p802.1AS)

Topology & connectivity

Changes to Ethernet Equipment

- MAC changes
 - Frame Timer Accurately note time of RX/TX Ctrl Frame
- Queuing/DMA
 - Separate queues and DMA for class 4/5 frames to provide appropriate traffic shaping (scheduling)
- Admission Control (driver/bridge firmware)
 - Bandwidth allocation database associated with filtering database
 - Management using same methods (MRP) used for multicast addressing
- Real-time clock module
 - Master clock generator
 - Time Sync correction method

When?

- IEEE standardization process well under way
 - Originally an 802.3 study group, moved to 802.1 in November 2005 as "Audio/Video Bridging Task Group"
 - http://www.ieee802.org/1/pages/avbridges.html
 - Early drafts already available for 802.1AS and 802.1Qat
 - Expect technical closure in early 2007, WG ballots in mid-late 2007, IEEE standard in 2008
- First hardware/software soon after stablilization
 - Possibly a number of "pre standard" interations
- Will follow Ethernet-type product curve
 - 100M/1G/10G NIC/Switch all have markets for Ethernet AV

Interaction with IETF

- Unified services for L2 QoS and timing will be available
 - soon!
- IP-based services will likely be the most commonly used L3+ protocols on these new enhanced QoS L2
- 802.1 work is NOT finished
 - would like to make sure the new services have the right capabilities and interfaces

Specifics of interaction (feel free to correct me, here)

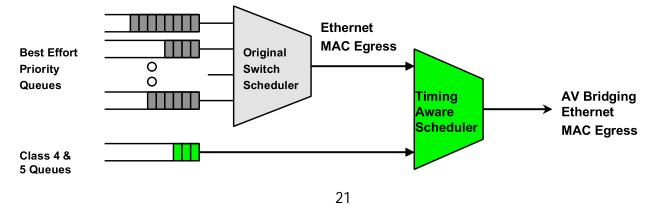
- For transport:
 - RTP (precise timestamping might help using p802.1AS services, guaranteed BW/latency provided by p802.1Qav might also reduce the need for RTCP messages?)
- For QoS signaling:
 - The 802.1AS team is largely looking at the interactions with RSVP (as well as the non-IETF UPnP QoS protocols)
 - We just became aware of NSIS this week ... perhaps this is the primary interaction point?
- For time synchronization:
 - Is NTP the right choice?

Thank you

Technical Details

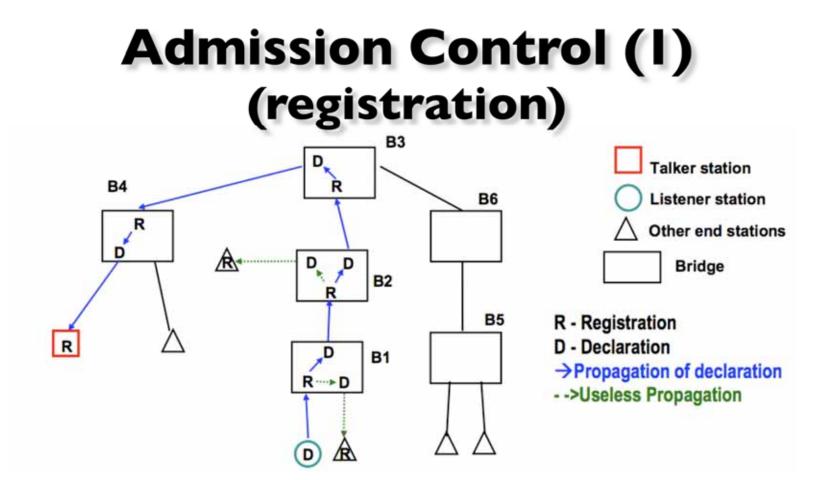
Summary of protocols

Establishing the AV cloud

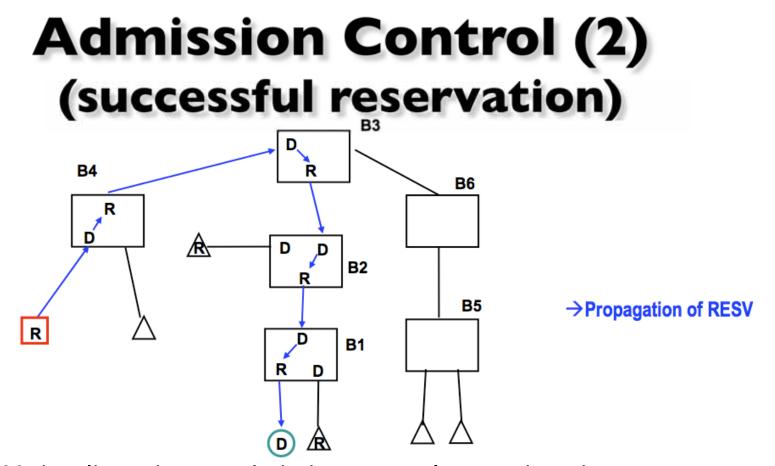

- IEEE Std 802.1AB defines "LLDP": Logical Link Discovery Protocol
 - Allows link peers to determine each other's characteristics
- Will be enhanced with P802.1AS service that gives a relatively precise round trip delay to a peer
 - Allows link peers to discover if any unmanaged bridges or other buffering devices are present on link

Traffic Shaping and Priorities (p802.1Qav - rev to 802.1Q)

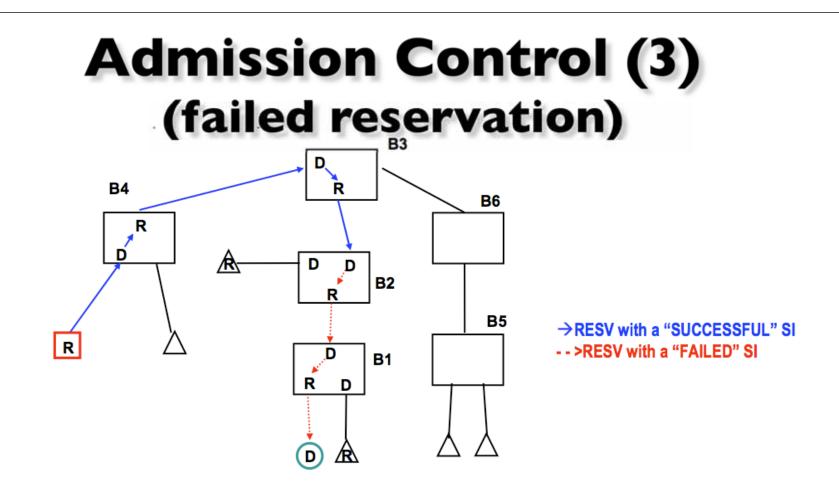
- Endpoints of Ethernet AV network must "shape traffic"
 - Schedule transmissions of streaming data to prevent bunching, which causes overloading of network resources (mainly switch buffers)
 - Shaping by limiting transmission to "x bytes in cycle n" where the cycle length is 125 µs or 1ms depending on traffic class
 - Traffic shaping in bridges will provide scalability
 - without it, all bridges need larger buffers
- Mapping between traffic class and priorities


Traffic Class?

- 802.1p introduced 8 different traffic classes
 - Highest (6 & 7) reserved for network management
 - low utilization, for emergencies
 - Next two for streaming (4 & 5)
 - Lowest four for "best effort"
- AV bridging:
 - Class 5 is for lowest latency streaming
 - Roughly 250 usec per bridge hop: interactive audio/video
 - Class 4 is for moderate latency streaming
 - Perhaps 1ms per bridge hop: voice over IP, movies

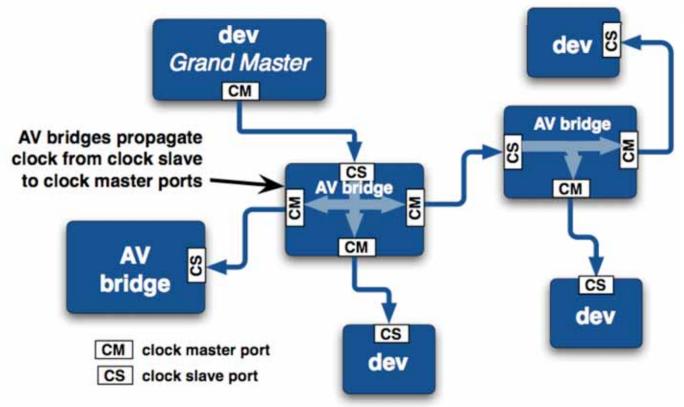


(p802.1Qat - added to 802.1Q)


- Streaming priority mechanism can reliably deliver data with a deterministic low latency and low jitter
 - but only if the network resources (bandwidth, in particular) are available along the entire path from the talker to the listener(s).
- For AV streams it is the listener's responsibility to guarantee the path is available and to reserve the resources.
- Done via a new 802.1ak "Multiple Registration Protocol" application: SRP ("Stream Registration Protocol")
 - Registers streams as multicast address/bandwidth/traffic class "tuples"
 - Perhaps other information useful for stream management such as path availability and a tag for higher layer mapping

- With SRP registration, the talker and intermediate bridges know where are
 potential listeners and how to get to them
- Assume in the above figure, B3/B4 have learned the talker's address, and B1/B2 haven't, then:
 - MSRP floods the registration if the talker's address is not in the bridge FDB (eg. B1, B2)
 - MSRP relays the registration through specific outbound port if the talker's address is known by the bridge FDB (eg. B3, B4)

- RESV signaling triggers admission control operations in intermediate bridges. It also locks resources and updates isochronous filtering database if the admission control is successful.
- In this example, admission control is successful along the wholepath. RESV signaling servers as the end-to-end explicit ACK signaling to listener.



- In this example, admission control is failed at B2. The SI (Status Indication) bit of RESV signaling will be set to FAILED.
- The RESV is still forwarded to the listener. However, downstreambridges (i.e., B1, B2) will not lock resources for the RESV signaling whose SI is set to FAILED.
- Listener is noted of the failure since RESV with FAILED SI serves as an end-to-end explicit NACK

Precise synchronization (p802.IAS)

- AV devices will periodically exchange timing information
 - both devices synchronize their time-of-day clock very precisely
 - the delay time between devices is very precisely known
- This precise synchronization has two purposes:
 - to enable streaming traffic shaping and
 - provide a common time base for sampling data streams at a source device and presenting those streams at the destination device with the same relative timing
- Very similar to IEEE std 1588-2004, but much simpler
 - will be the "native IEEE 802 layer 2 profile" of new IEEE 1588v2

AV Grand Master clock

- There is a single device within an Ethernet AV cloud that provides a master timing signal.
 - All other devices synchronize their clocks with this master.

Master clock selection

- Selection of the master is largely arbitrary (all AV devices will be master-capable), but can be overridden if the network is used in an environment that already has a "house clock".
 - Professional A/V studios
 - Homes with provider time-synchronization service
 - Carrier networks