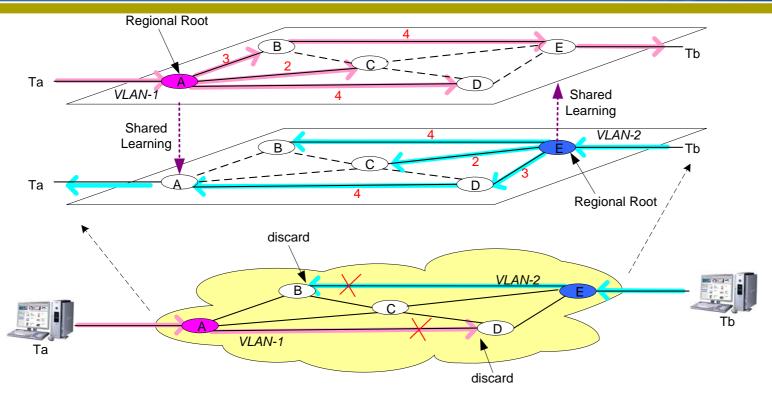
Breaking Tie using Decimal Number Metric

- A Proposal for Shortest Path Bridging -


2007. Jan.

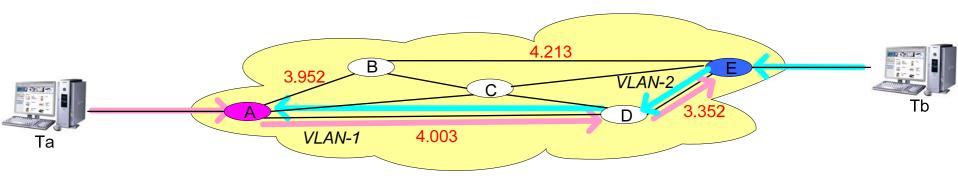
Jaihyung Cho, Tae Sik Cheung

Jaihyung@etri.re.kr

Issue of Equal Cost Paths in Shared VLAN Learning

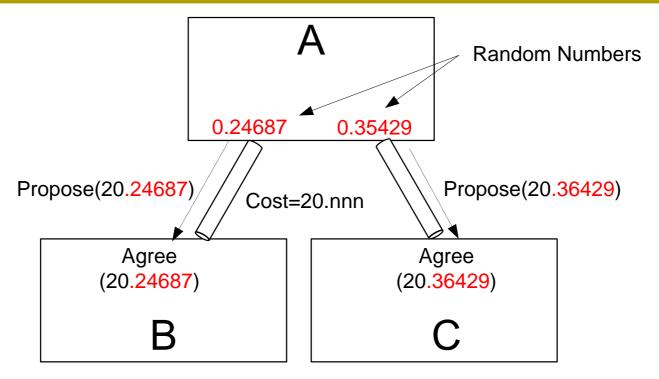
- Bridge-A uses VLAN-1, and Bridge-E uses VLAN-2
- The path costs $(A \rightarrow B \rightarrow E) = (E \rightarrow D \rightarrow A)$ are equal!! $Cost(A \rightarrow B \rightarrow E) = 3 + 4 = 7$, $Cost(E \rightarrow D \rightarrow A) = 3 + 4 = 7$
- After shared learning of Ta, Tb, bridges will discard frames of Ta, Tb because ..
 the path Ta ←→ Tb is not SYMMETRIC!!

Cost Metric of Unsigned Integer Number

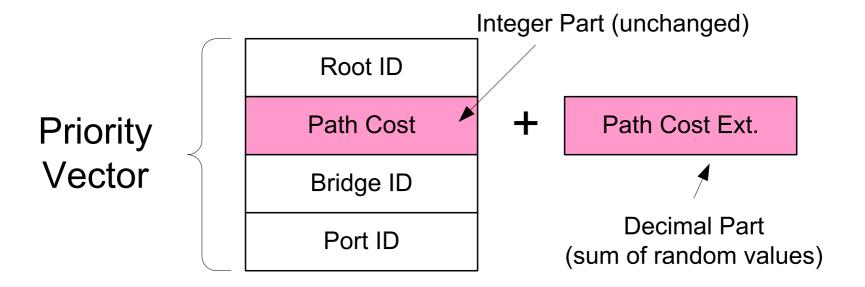

Table 13-3—Internal Port Path Costs

Parameter	Link Speed	Recommended value	Recommended range	Range
Internal Port Path Cost	<=100 Kb/s	200 000 000	20 000 000 – 200 000 000	1 – 200 000 000
	1 Mb/s	20 000 000	2 000 000 – 200 000 000	1 – 200 000 000
	10 Mb/s	2 000 000	200 000 – 20 000 000	1 – 200 000 000
	100 Mb/s	200 000	20 000 – 2 000 000	1 – 200 000 000
	1 Gb/s	20 000	2 000 – 200 000	1 – 200 000 000
	10 Gb/s	2 000	200 – 20 000	1 – 200 000 000
	100 Gb/s	200	20 – 2 000	1 – 200 000 000
	1 Tb/s	20	2 – 200	1 – 200 000 000
	10 Tb/s	2	1-20	1 – 200 000 000

(802.1Q-2006,p213)


- Bridges often use identical link cost to same speed links
- It is likely that there are many equal cost paths in heavily meshed network
 - → But, what if we use all different link costs?

Making Non-Equal Cost Paths


- Use decimal number for cost calculation
- Randomize the decimal portion of link costs
- Now, VLAN-1 path and VLAN-2 path between Ta,Tb become identical because the minimum cost path is unique
 - $Cost(A \rightarrow B \rightarrow E) = 4.213 + 3.952 = 8.165$
 - $Cost(A \rightarrow D \rightarrow E) = 4.003 + 3.352 = 7.355 \leftarrow Minimum Cost$
- Path Ta←→Tb become symmetric !!

Randomizing Decimal Part of Link Cost

- One of the peer bridge generate random decimal number (0< n<1) for each port
 - \rightarrow Use the number for decimal part of link cost
- Negotiate the decimal number link cost
- SPB supporting bridges use the decimal number metric for Spanning Tree calculation

BPDU Extension for SPB

- We can add **Path Cost Extension** Field which represents sum of decimal part of link costs
- Not all nodes need to support the extension field
 - → Only the nodes supporting SPB may participate in accumulation of decimals.
 - → If any one of decimal number is properly randomized, then the resulting path cost will be unique with high probability

Conclusion

- Decimal number metric will make root path cost unique with high probability
- If there's no equal cost, No tiebreaking is necessary
- Shortest Path Bridges will converge to symmetric path using existing (R/M)STP solution.

Question: Do we still need link-status routing protocol for SPB?