Breaking Tie using Decimal Number Metric

- A Proposal for Shortest Path Bridging -

2007. Jan.

Jaihyung Cho, Tae Sik Cheung

Jaihyung@etri.re.kr

Issue of Equal Cost Paths in Shared VLAN Learning

- Bridge-A uses VLAN-1, and Bridge-E uses VLAN-2
- The path costs $(A \rightarrow B \rightarrow E)=(E \rightarrow D \rightarrow A)$ are equal!! $\operatorname{cost}(A \rightarrow B \rightarrow E)=3+4=7, \operatorname{Cost}(E \rightarrow D \rightarrow A)=3+4=7$
- After shared learning of Ta, Tb, bridges will discard frames of Ta, Tb because .. the path $\mathrm{Ta} \leftrightarrow \rightarrow$ Tb is not SYMMETRIC !!

Cost Metric of Unsigned Integer Number

Table 13-3-Internal Port Path Costs

Parameter	Link Speed	Recommended value	Recommended range	Range
Internal Port Path Cost	$\begin{aligned} & <=100 \mathrm{~Kb} / \mathrm{s} \\ & 1 \mathrm{Mb} / \mathrm{s} \\ & 10 \mathrm{Mb} / \mathrm{s} \\ & 100 \mathrm{Mb} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 200000000 \\ & 20000000 \\ & 2000000 \\ & 200000 \end{aligned}$	$\begin{aligned} & 20000000-200000000 \\ & 2000000-200000000 \\ & 200000-20000000 \\ & 20000-2000000 \end{aligned}$	$\begin{aligned} & 1-200000000 \\ & 1-200000000 \\ & 1-200000000 \\ & 1-200000000 \end{aligned}$
	$1 \mathrm{~Gb} / \mathrm{s}$ $10 \mathrm{~Gb} / \mathrm{s}$ $100 \mathrm{~Gb} / \mathrm{s}$ $1 \mathrm{~Tb} / \mathrm{s}$	$\begin{aligned} & 20000 \\ & 2000 \\ & 200 \\ & 20 \end{aligned}$	$\begin{aligned} & 2000-200000 \\ & 200-20000 \\ & 20-2000 \\ & 2-200 \end{aligned}$	$\begin{aligned} & 1-200000000 \\ & 1-200000000 \\ & 1-200000000 \\ & 1-200000000 \end{aligned}$
	$10 \mathrm{~Tb} / \mathrm{s}$	2	1-20	1-200000000

(802.1Q-2006,p213)

- Bridges often use identical link cost to same speed links
- It is likely that there are many equal cost paths in heavily meshed network
\rightarrow But, what if we use all different link costs?

Making Non-Equal Cost Paths

- Use decimal number for cost calculation
- Randomize the decimal portion of link costs
- Now, VLAN-1 path and VLAN-2 path between Ta,Tb become identical because the minimum cost path is unique
- $\operatorname{Cost}(A \rightarrow B \rightarrow E)=4.213+3.952=8.165$
- $\operatorname{Cost}(A \rightarrow D \rightarrow E)=4.003+3.352=7.355 \leqslant$ Minimum Cost
- Path Ta \leftarrow Tb become symmetric !!

Randomizing Decimal Part of Link Cost

- One of the peer bridge generate random decimal number ($0<n<1$) for each port
\rightarrow Use the number for decimal part of link cost
- Negotiate the decimal number link cost
- SPB supporting bridges use the decimal number metric for Spanning Tree calculation

BPDU Extension for SPB

Priority Vector

Integer Part (unchanged)

- We can add Path Cost Extension Field which represents sum of decimal part of link costs
- Not all nodes need to support the extension field
\rightarrow Only the nodes supporting SPB may participate in accumulation of decimals.
\rightarrow If any one of decimal number is properly randomized, then the resulting path cost will be unique with high probability

Conclusion

- Decimal number metric will make root path cost unique with high probability
- If there's no equal cost, No tiebreaking is necessary
- Shortest Path Bridges will converge to symmetric path using existing (R/M)STP solution.

Question: Do we still need link-status routing protocol for SPB?

