
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

JggDvj20050416
2007-03-20

(March 20, 2007)

DVJ Perspective on:
Timing and synchronization for
time-sensitive applications in bridges
local area networks

Draft 0.239
Contributors:
See page xx.

Abstract: This working paper provides background and introduces possible higher level concepts
for the development of Audio/Video bridges (AVB).
Keywords: audio, visual, bridge, Ethernet, time-sensitive

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
2 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of
the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers repre-
senting varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Insti-
tute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness
in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of
the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or
that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied
“AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, mar-
ket, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed
at the time a standard is approved and issued is subject to change brought about through developments in the state of the
art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five
years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is rea-
sonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users
are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to spe-
cific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action
to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to
ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the
members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpre-
tation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity
of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a
license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those
patents that are brought to its attention.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Editors’ Foreword

Comments on this draft are encouraged. PLEASE NOTE: All issues related to IEEE standards presen-
tation style, formatting, spelling, etc. should be addressed, as their presence can often obfuscate
relevant technical details.

By fixing these errors in early drafts, readers can devote their valuable time and energy to comments that
materially affect either the technical content of the document or the clarity of that technical content.
Comments should not simply state what is wrong, but also what might be done to fix the problem.

Information on 802.1 activities, working papers, and email distribution lists etc. can be found on the 802.1
Website:

http://ieee802.org/1/

Use of the email distribution list is not presently restricted to 802.1 members, and the working group has had
a policy of considering ballot comments from all who are interested and willing to contribute to the devel-
opment of the draft. Individuals not attending meetings have helped to identify sources of misunderstanding
and ambiguity in past projects. Non-members are advised that the email lists exist primarily to allow the
members of the working group to develop standards, and are not a general forum.

Comments on this document may be sent to the 802.1 email reflector, to the editors, or to the Chairs of the
802.1 Working Group and Interworking Task Group.

This draft was prepared by:

David V James
JGG
3180 South Court
Palo Alto, CA 94306
+1.650.494.0926 (Tel)
+1.650.954.6906 (Mobile)
Email: dvj@alum.mit.edu

Chairs of the 802.1 Working Group and Audio/Video Bridging Task Group:.

Michael Johas Teener
Chair, 802.1 Audio/Video Bridging Task
Broadcom Corporation
3151 Zanker Road
San Jose, CA
95134-1933
USA
+1 408 922 7542 (Tel)
+1 831 247 9666 (Mobile)
Email:mikejt@broadcom.com

Tony Jeffree
Group Chair, 802.1 Working Group
11A Poplar Grove
Sale
Cheshire
M33 3AX
UK
+44 161 973 4278 (Tel)
+44 161 973 6534 (Fax)
Email: tony@jeffree.co.uk

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
4 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Introduction to IEEE Std 802.1AS™

(This introduction is not part of P802.1AS, IEEE Standard for Local and metropolitan area networks—
Timing and synchronization for time-sensitive applications in bridged local area networks.)

This standard specifies the protocol and procedures used to ensure that the synchronization requirements are
met for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. The design
is based on concepts developed within the IEEE Std 1588, and is applicable in the context of IEEE Std
802.1D and IEEE Std 802.1Q.

Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as UTC or
TAI) is not part of this standard but is not precluded.

Version history

Version Date Edits by Comments

0.082 2005Apr28 DVJ Updates based on 2005Apr27 meeting discussions

0.085 2005May11 DVJ – Updated list-of-contributors, page numbering, editorial fixes.

0.088 2005Jun03 DVJ – Application latency scenarios clarified.

0.090 2005Jun06 DVJ – Misc. editorials in bursting and bunching annex.

0.092 2005Jun10 DVJ – Extensive cleanup of Clause 5 subscription protocols.

0.121 2005Jun24 DVJ – Extensive cleanup of clock-synchronization protocols.

0.127 2005Jul04 DVJ – Pacing descriptions greatly enhanced.

0.200 2007Jan23 DVJ Removal of non time-sync related information, initial layering proposal.

0.207 2007Feb01 DVJ Updates based on feedback from Monterey 802.1 meeting.
– Common entity terminology; Ethernet type code expandability.

0.216 2007Feb17 DVJ Updates based on feedback from Chuck Harrison:
– linkDelay based only on syntonization to one’s neighbor.
– Time adjustments based on observed grandMaster rate differences.

0.224 2007Mar03 DVJ Updates for whiplash free PLL cascading.

0.230 2007Mar05 DVJ Major changes:
– simplified back-interpolation
– first interation on an Ethernet-PON interface
– client-level clock-master and clock-slave interfaces defined

— TBD — —

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Formats

In many cases, readers may elect to provide contributions in the form of exact text replacements and/or
additions. To simplify document maintenance, contributors are requested to use the standard formats and
provide checklist reviews before submission. Relevant URLs are listed below:

General: http://grouper.ieee.org/groups/msc/WordProcessors.html
Templates: http://grouper.ieee.org/groups/msc/TemplateTools/FrameMaker/
Checklist: http://grouper.ieee.org/groups/msc/TemplateTools/Checks2004Oct18.pdf

TBDs

Further definitions are needed in the following areas:

a) Should low-rate leapSeconds occupy space in timeSync frames, if this information rarely changes?

b) What other (than leapSeconds) low-rate information should be transferred between stations?

c) When the grand-master changes, how should the new grand-master affect change:

1) Transition immediately to the rate of its reference clock.
2) Transition slowly (perhaps 1ppm/s) between previous and reference clock rates.

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
6 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Contents

List of figures... 8

List of tables... 10

1. Overview... 11

1.1 Scope ... 11
1.2 Purpose .. 11
1.3 Introduction ... 11

2. References... 13

3. Terms, definitions, and notation ... 14

3.1 Conformance levels ... 14
3.2 Terms and definitions .. 14
3.3 State machines ... 15
3.4 Arithmetic and logical operators ... 17
3.5 Numerical representation... 17
3.6 Field notations ... 18
3.7 Bit numbering and ordering... 19
3.8 Byte sequential formats ... 20
3.9 Ordering of multibyte fields .. 20

3.10 MAC address formats.. 21
3.11 Informative notes... 22
3.12 Conventions for C code used in state machines .. 22

4. Abbreviations and acronyms .. 23

5. Architecture overview .. 24

5.1 Application scenarios .. 24
5.2 Design methodology.. 25
5.3 Grand-master selection.. 26
5.4 Synchronized-time distribution ... 28
5.5 Distinctions from IEEE Std 1588 .. 30

6. GrandSync abstractions .. 31

6.1 Overview ... 31
6.2 GrandSync interface model ... 31
6.3 GrandSync interface parameters.. 32
6.4 GrandSync state machine .. 36
6.5 TimeSyncTxSlave state machine .. 39
6.6 TimeSyncRxClock state machine.. 42

7. Duplex-link state machines... 44

7.1 Overview ... 44
7.2 timeSyncDuplex frame format .. 48
7.3 TimeSyncRxDuplex state machine ... 50
7.4 TimeSyncTxDuplex state machine.. 53

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8. Wireless state machines.. 57

8.1 Overview ... 57
8.2 Link-dependent indications ... 57
8.3 Service interface overview .. 58
8.4 TimeSyncRxRadio state machine.. 59
8.5 TimeSyncTxRadio state machine.. 61

9. Ethernet-PON state machines ... 65

9.1 Overview ... 65
9.2 timeSyncPon frame format.. 66
9.3 TimeSyncRxPon state machine... 67
9.4 TimeSyncTxPon state machine ... 68

Annex A (informative) Bibliography .. 71

Annex B (informative) Time-scale conversions ... 72

Annex C (informative) Bridging to IEEE Std 1394.. 73

C.1 Hybrid network topologies .. 73

Annex D (informative) Review of possible alternatives ... 75

D.1 Clock-synchronization alternatives ... 75

Annex E (informative) Time-of-day format considerations ... 77

E.1 Possible time-of-day formats... 77

Annex F (informative) C-code illustrations.. 79

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
8 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

List of figures

Figure 1.1—Topology and connectivity .. 12

Figure 3.1—Bit numbering and ordering .. 19

Figure 3.2—Byte sequential field format illustrations .. 20

Figure 3.3—Multibyte field illustrations ... 20

Figure 3.4—Illustration of fairness-frame structure .. 21

Figure 3.5—MAC address format ... 21

Figure 3.6—48-bit MAC address format... 22

Figure 5.1—Garage jam session.. 24

Figure 5.2—Possible looping topology ... 25

Figure 5.3—Timing information flows ... 26

Figure 5.4—Grand-master precedence flows .. 27

Figure 5.5—Grand-master selector.. 27

Figure 5.6—Hierarchical flows ... 28

Figure 5.7—Cascaded PLL designs... 29

Figure 6.1—GrandSync interface model... 31

Figure 6.2—GrandSync interface components ... 31

Figure 6.3—Global-time subfield format .. 33

Figure 6.4—precedence subfields.. 33

Figure 6.5—clockID format... 34

Figure 6.6—Global-time subfield format .. 34

Figure 6.7—errorTime format ... 35

Figure 6.8—localTime format ... 35

Figure 6.9—GransSync interface model ... 36

Figure 6.10—Clock-slave interface model.. 39

Figure 6.11—Clock-master interface model ... 42

Figure 7.1—Duplex-link interface model ... 44

Figure 7.2—Contents of rxSync/txSync indications ... 44

Figure 7.4—Timer snapshot locations... 45

Figure 7.3—Rate-adjustment effects ... 45

Figure 7.5—timeSyncDuplex frame format .. 48

Figure 8.1—Radio interface model ... 57

Figure 8.2—Formats of wireless-dependent times.. 57

Figure 8.3—802.11v time-synchronization interfaces .. 58

Figure 9.1—PON interface model... 65

Figure 9.2—Format of PON-dependent times .. 65

Figure 9.3—timeSyncPon frame format.. 66

Figure 9.4—tickTime format ... 66

Figure C.1—IEEE 1394 leaf domains ... 73

Figure C.2—IEEE 802.3 leaf domains .. 73

Figure C.3—Time-of-day format conversions .. 74

Figure C.4—Grand-master precedence mapping .. 74

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 5.1—Global-time subfield format .. 77

Figure E.2—IEEE 1394 timer format.. 77

Figure E.3—IEEE 1588 timer format.. 78

Figure E.4—EPON timer format ... 78

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
10 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

List of tables

Table 3.1—State table notation example... 16

Table 3.2—Special symbols and operators.. 17

Table 3.3—Names of fields and sub-fields ... 18

Table 3.4—wrap field values ... 19

Table 6.1—GrandSync state table ... 38

Table 6.2—TimeSyncTxClock state table... 41

Table 6.3—TimeSyncRxClock state machine table .. 43

Table 7.1—Clock-synchronization intervals ... 49

Table 7.2—TimeSyncRxDuplex state machine table.. 52

Table 7.3—TimeSyncTxDuplex state machine table .. 55

Table 8.1—TimeSyncRxRadio state machine table .. 60

Table 8.2—TimeSyncTxRadio state table... 63

Table 9.1—TimeSyncRxPon state machine table ... 68

Table 9.2—TimeSyncTxPon state machine table.. 70

Table B.1—Time-scale conversions.. 72

Table D.1—Protocol comparison .. 75

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

DVJ Perspective on: Timing and
synchronization for time-sensitive
applications in bridges local area
networks

1. Overview

1.1 Scope

This draft specifies the protocol and procedures used to ensure that the synchronization requirements are met
for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. It specifies
the use of IEEE 1588 specifications where applicable in the context of IEEE Std 802.1D and IEEE Std
802.1Q. Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as
UTC or TAI) is not part of this standard but is not precluded.

1.2 Purpose

This draft enables stations attached to bridged LANs to meet the respective jitter, wander, and time
synchronization requirements for time-sensitive applications. This includes applications that involve
multiple streams delivered to multiple endpoints. To facilitate the widespread use of bridged LANs for these
applications, synchronization information is one of the components needed at each network element where
time-sensitive application data are mapped or demapped or a time sensitive function is performed. This
standard leverages the work of the IEEE 1588 WG by developing the additional specifications needed to
address these requirements.

1.3 Introduction

1.3.1 Background

Ethernet has successfully propagated from the data center to the home, becoming the wired home computer
interconnect of choice. However, insufficient support of real-time services has limited Ethernet’s success as
a consumer audio-video interconnects, where IEEE Std 1394 Serial Bus and Universal Serial Bus (USB)
have dominated the marketplace. Success in this arena requires solutions to multiple topics:

a) Discovery. A controller discovers the proper devices and related streamID/bandwidth parameters to
allow the listener to subscribe to the desired talker-sourced stream.

b) Subscription. The controller commands the listener to establish a path from the talker.
Subscription may pass or fail, based on availability of routing-table and link-bandwidth resources.

c) Synchronization. The distributed clocks in talkers and listeners are accurately synchronized.
Synchronized clocks avoid cycle slips and playback-phase distortions.

d) Pacing. The transmitted classA traffic is paced to avoid other classA traffic disruptions.

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
12 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

This draft covers the “Synchronization” component, assuming solutions for the other topics will be devel-
oped within other drafts or forums.

1.3.2 Interoperability

AVB time synchronization interoperates with existing Ethernet, but the scope of time-synchronization is
limited to the AVB cloud, as illustrated in Figure 1.1; less-precise time-synchronization services are
available everywhere else. The scope of the AVB cloud is limited by a non-AVB capable bridge or a
half-duplex link, neither of which can support AVB services.

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

1.3.3 Document structure

The clauses and annexes of this working paper are listed below.

— Clause 1: Overview
— Clause 2: References
— Clause 3: Terms, definitions, and notation
— Clause 4: Abbreviations and acronyms
— Clause 5: Architecture overview
— Clause 7: Duplex-link state machines
— Annex A: Bibliography
— Annex C: Bridging to IEEE Std 1394
— Annex D: Review of possible alternatives
— Annex E: Time-of-day format considerations
— Annex F: C-code illustrations

Figure 1.1—Topology and connectivity

AVB
bridge

AVB
bridge

AVB
device

AVB
device

AVB
device

AVB
device

AVB
bridgeEthernet

bridge

Peer device is
not AVB capable

Ethernet
hub

device

AVB
device

AVB
device

Half-duplex link
can’t do AVBdevice

device

AVB “cloud”

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2. References

The following documents contain provisions that, through reference in this working paper, constitute provi-
sions of this working paper. All the standards listed are normative references. Informative references are
given in Annex A. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this working paper are encouraged to investigate the possibility
of applying the most recent editions of the standards indicated below.

ANSI/ISO 9899-1990, Programming Language-C.1,2

IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access Control
(MAC) Bridges.

1Replaces ANSI X3.159-1989
2ISO documents are available from ISO Central Secretariat, 1 Rue de Varembe, Case Postale 56, CH-1211, Geneve 20, Switzer-
land/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42 Street, 13th Floor, New York, NY
10036-8002, USA

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3. Terms, definitions, and notation

3.1 Conformance levels

Several key words are used to differentiate between different levels of requirements and options, as
described in this subclause.

3.1.1 may: Indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”).

3.1.2 shall: Indicates mandatory requirements to be strictly followed in order to conform to the standard and
from which no deviation is permitted (“shall” means “is required to”).

3.1.3 should: An indication that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“should”
means “is recommended to”).

3.2 Terms and definitions

For the purposes of this working paper, the following terms and definitions apply. The Authoritative
Dictionary of IEEE Standards Terms [B2] should be referenced for terms not defined in the clause.

3.2.1 bridge: A functional unit interconnecting two or more networks at the data link layer of the OSI
reference model.

3.2.2 clock master: A bridge or end station that provides the link clock reference.

3.2.3 clock slave: A bridge or end station that tracks the link clock reference provided by the clock master.

3.2.4 cyclic redundancy check (CRC): A specific type of frame check sequence computed using a
generator polynomial.

3.2.5 grand clock master: The clock master selected to provide the network time reference.

3.2.6 link: A unidirectional channel connecting adjacent stations (half of a span).

3.2.7 listener: A sink of a stream, such as a television or acoustic speaker.

3.2.8 local area network (LAN): A communications network designed for a small geographic area,
typically not exceeding a few kilometers in extent, and characterized by moderate to high data transmission
rates, low delay, and low bit error rates.

3.2.9 MAC client: The layer entity that invokes the MAC service interface.

3.2.10 medium (plural: media): The material on which information signals are carried; e.g., optical fiber,
coaxial cable, and twisted-wire pairs.

3.2.11 medium access control (MAC) sublayer: The portion of the data link layer that controls and
mediates the access to the network medium. In this working paper, the MAC sublayer comprises the MAC
datapath sublayer and the MAC control sublayer.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.2.12 network: A set of communicating stations and the media and equipment providing connectivity
among the stations.

3.2.13 plug-and-play: The requirement that a station perform classA transfers without operator intervention
(except for any intervention needed for connection to the cable).

3.2.14 protocol implementation conformance statement (PICS): A statement of which capabilities and
options have been implemented for a given Open Systems Interconnection (OSI) protocol.

3.2.15 span: A bidirectional channel connecting adjacent stations (two links).

3.2.16 station: A device attached to a network for the purpose of transmitting and receiving information on
that network.

3.2.17 topology: The arrangement of links and stations forming a network, together with information on
station attributes.

3.2.18 transmit (transmission): The action of a station placing a frame on the medium.

3.2.19 unicast: The act of sending a frame addressed to a single station.

3.3 State machines

3.3.1 State machine behavior

The operation of a protocol can be described by subdividing the protocol into a number of interrelated
functions. The operation of the functions can be described by state machines. Each state machine represents
the domain of a function and consists of a group of connected, mutually exclusive states. Only one state of a
function is active at any given time. A transition from one state to another is assumed to take place in zero
time (i.e., no time period is associated with the execution of a state), based on some condition of the inputs to
the state machine.

The state machines contain the authoritative statement of the functions they depict. When apparent conflicts
between descriptive text and state machines arise, the order of precedence shall be formal state tables first,
followed by the descriptive text, over any explanatory figures. This does not override, however, any explicit
description in the text that has no parallel in the state tables.

The models presented by state machines are intended as the primary specifications of the functions to be
provided. It is important to distinguish, however, between a model and a real implementation. The models
are optimized for simplicity and clarity of presentation, while any realistic implementation might place
heavier emphasis on efficiency and suitability to a particular implementation technology. It is the functional
behavior of any unit that has to match the standard, not its internal structure. The internal details of the
model are useful only to the extent that they specify the external behavior clearly and precisely.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.3.2 State table notation

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

State machines may be represented in tabular form. The table is organized into two columns: a left hand side
representing all of the possible states of the state machine and all of the possible conditions that cause transi-
tions out of each state, and the right hand side giving all of the permissible next states of the state machine as
well as all of the actions to be performed in the various states, as illustrated in Table 3.1. The syntax of the
expressions follows standard C notation (see 3.12). No time period is associated with the transition from one
state to the next.

Row 3.1-1: Do nothing if the size of the queued MAC control frame is larger than the PTQ space.
Row 3.1-2: Do nothing in the absence of MAC control transmission credits.
Row 3.1-3: Otherwise, transmit a MAC control frame.

Row 3.1-4: When the transmission completes, start over from the initial state (i.e., START).
Row 3.1-5: Until the transmission completes, remain in this state.

Each combination of current state, next state, and transition condition linking the two is assigned to a
different row of the table. Each row of the table, read left to right, provides: the name of the current state; a
condition causing a transition out of the current state; an action to perform (if the condition is satisfied); and,
finally, the next state to which the state machine transitions, but only if the condition is satisfied. The symbol
“—” signifies the default condition (i.e., operative when no other condition is active) when placed in the
condition column, and signifies that no action is to be performed when placed in the action column.
Conditions are evaluated in order, top to bottom, and the first condition that evaluates to a result of TRUE is
used to determine the transition to the next state. If no condition evaluates to a result of TRUE, then the state
machine remains in the current state. The starting or initialization state of a state machine is always labeled
“START” in the table (though it need not be the first state in the table). Every state table has such a labeled
state.

NOTE—The following state machine notation was used within 802.17, due to the exactness of C-code
conditions and the simplicity of updating table entries (as opposed to 2-dimensional graphics).
Early state table descriptions can be converted (if necessary) into other formats before publication.

Table 3.1—State table notation example

Current

R
ow

Next

state condition action state

START sizeOfMacControl > spaceInQueue 1 — START

passM == 0 2

— 3 TransmitFromControlQueue(); FINAL

FINAL SelectedTransferCompletes() 4 — START

— 5 — FINAL

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

3.4 Arithmetic and logical operators

In addition to commonly accepted notation for mathematical operators, Table 3.2 summarizes the symbols
used to represent arithmetic and logical (boolean) operations. Note that the syntax of operators follows
standard C notation (see 3.12).

3.5 Numerical representation

Decimal, hexadecimal, and binary numbers are used within this working paper. For clarity, decimal numbers
are generally used to represent counts, hexadecimal numbers are used to represent addresses, and binary
numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their usual 0, 1, 2, … format. Hexadecimal numbers are represented by
a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16, except in C-code
contexts, where they are written as 0x123EF2 etc. Binary numbers are represented by a string of one or
more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be represented
as “1A16” or “110102”.

Table 3.2—Special symbols and operators

Printed character Meaning

&& Boolean AND

|| Boolean OR

! Boolean NOT (negation)

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

 = Assignment operator

// Comment delimiter

NOTE—The following notation was taken from 802.17, where it was found to have benefits:
– The subscript notation is consistent with common mathematical/logic equations.
– The subscript notation can be used consistently for all possible radix values.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

MAC addresses and OUI/EUI values are represented as strings of 8-bit hexadecimal numbers separated by
hyphens and without a subscript, as for example “01-80-C2-00-00-15” or “AA-55-11”.

3.6 Field notations

3.6.1 Use of italics

All field names or variable names (such as level or myMacAddress), and sub-fields within variables (such as
thisState.level) are italicized within text, figures and tables, to avoid confusion between such names and
similarly spelled words without special meanings. A variable or field name that is used in a subclause
heading or a figure or table caption is also italicized. Variable or field names are not italicized within C code,
however, since their special meaning is implied by their context. Names used as nouns (e.g., subclassA0) are
also not italicized.

3.6.2 Field conventions

This working paper describes fields within packets or included in state-machine state. To avoid confusion
with English names, such fields have an italics font, as illustrated in Table 3.3.

Run-together names (e.g., thisState) are used for fields because of their compactness when compared to
equivalent underscore-separated names (e.g., this_state). The use of multiword names with spaces (e.g.,
“This State”) is avoided, to avoid confusion between commonly used capitalized key words and the
capitalized word used at the start of each sentence.

A sub-field of a field is referenced by suffixing the field name with the sub-field name, separated by a
period. For example, thisState.level refers to the sub-field level of the field thisState. This notation can be
continued in order to represent sub-fields of sub-fields (e.g., thisState.level.next is interpreted to mean the
sub-field next of the sub-field level of the field thisState).

Two special field names are defined for use throughout this working paper. The name frame is used to
denote the data structure comprising the complete MAC sublayer PDU. Any valid element of the MAC
sublayer PDU, can be referenced using the notation frame.xx (where xx denotes the specific element); thus,
for instance, frame.serviceDataUnit is used to indicate the serviceDataUnit element of a frame.

Unless specifically specified otherwise, reserved fields are reserved for the purpose of allowing extended
features to be defined in future revisions of this working paper. For devices conforming to this version of
this working paper, nonzero reserved fields are not generated; values within reserved fields (whether zero or
nonzero) are to be ignored.

Table 3.3—Names of fields and sub-fields

Name Description

newCRC Field within a register or frame

thisState.level Sub-field within field thisState

thatState.rateC[n].c Sub-field within array element rateC[n]

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.6.3 Field value conventions

This working paper describes values of fields. For clarity, names can be associated with each of these
defined values, as illustrated in Table 3.4. A symbolic name, consisting of upper case letters with underscore
separators, allows other portions of this working paper to reference the value by its symbolic name, rather
than a numerical value.

Unless otherwise specified, reserved values allow extended features to be defined in future revisions of this
working paper. Devices conforming to this version of this working paper do not generate nonzero reserved
values, and process reserved fields as though their values were zero.

A field value of TRUE shall always be interpreted as being equivalent to a numeric value of 1 (one), unless
otherwise indicated. A field value of FALSE shall always be interpreted as being equivalent to a numeric
value of 0 (zero), unless otherwise indicated.

3.7 Bit numbering and ordering

Data transfer sequences normally involve one or more cycles, where the number of bytes transmitted in each
cycle depends on the number of byte lanes within the interconnecting link. Data byte sequences are shown in
figures using the conventions illustrated by Figure 3.1, which represents a link with four byte lanes. For
multi-byte objects, the first (left-most) data byte is the most significant, and the last (right-most) data byte is
the least significant.

Figures are drawn such that the counting order of data bytes is from left to right within each cycle, and from
top to bottom between cycles. For consistency, bits and bytes are numbered in the same fashion.

NOTE—The transmission ordering of data bits and data bytes is not necessarily the same as their counting order; the
translation between the counting order and the transmission order is specified by the appropriate reconciliation sublayer.

Table 3.4—wrap field values

Value Name Description

0 STANDARD Standard processing selected

1 SPECIAL Special processing selected

2,3 — Reserved

Figure 3.1—Bit numbering and ordering

data[n+0] data[n+1] data[n+2] data[n+3]

data[n+4] data[n+5] data[n+6] data[n+7]

bit
0

bit
31

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.8 Byte sequential formats

Figure 3.2 provides an illustrative example of the conventions to be used for drawing frame formats and
other byte sequential representations. These representations are drawn as fields (of arbitrary size) ordered
along a vertical axis, with numbers along the left sides of the fields indicating the field sizes in bytes. Fields
are drawn contiguously such that the transmission order across fields is from top to bottom. The example
shows that field1, field2, and field3 are 1-, 1- and 6-byte fields, respectively, transmitted in order starting
with the field1 field first. As illustrated on the right hand side of Figure 3.2, a multi-byte field represents a
sequence of ordered bytes, where the first through last bytes correspond to the most significant through least
significant portions of the multi-byte field, and the MSB of each byte is drawn to be on the left hand side.

NOTE—Only the left-hand diagram in Figure 3.2 is required for representation of byte-sequential formats. The
right-hand diagram is provided in this description for explanatory purposes only, for illustrating how a multi-byte field
within a byte sequential representation is expected to be ordered. The tag “Transmission order” and the associated
arrows are not required to be replicated in the figures.

3.9 Ordering of multibyte fields

In many cases, bit fields within byte or multibyte objects are expanded in a horizontal fashion, as illustrated
in the right side of Figure 3.3. The fields within these objects are illustrated as follows: left-to-right is the
byte transmission order; the left-through-right bits are the most significant through least significant bits
respectively.

Figure 3.2—Byte sequential field format illustrations

Figure 3.3—Multibyte field illustrations

field1
field2

field3

field4

field5

field6

field7

field8

byte[5]

1
1

6

6

2

2

n

4

byte[3]

byte[4]

byte[1]

byte[2]

byte[0]

Transmission
order

byte[4] byte[5]

byte[0] byte[1] byte[2] byte[3]

byte[0]

byte[1]

byte[2]

byte[3]

byte[4]

byte[5] twoByteField

MSB LSB

fourByteField

LSBMSB

byte representation

field representation

byte representation

field representation

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The first fourByteField can be illustrated as a single entity or a 4-byte multibyte entity. Similarly, the second
twoByteField can be illustrated as a single entity or a 2-byte multibyte entity.

To minimize potential for confusion, four equivalent methods for illustrating frame contents are illustrated in
Figure 3.4. Binary, hex, and decimal values are always shown with a left-to-right significance order,
regardless of their bit-transmission order.

3.10 MAC address formats

The format of MAC address fields within frames is illustrated in Figure 3.5.

3.10.1 oui: A 24-bit organizationally unique identifier (OUI) field supplied by the IEEE/RAC for the
purpose of identifying the organization supplying the (unique within the organization, for this specific
context) 24-bit dependentID. (For clarity, the locallyAdministered and groupAddress bits are illustrated by
the shaded bit locations.)

NOTE—The following text was taken from 802.17, where it was found to have benefits:
The details should, however, be revised to illustrate fields within an AVB frame header serviceDataUnit.

Figure 3.4—Illustration of fairness-frame structure

Figure 3.5—MAC address format

a) Sequential-byte format

1 subType

6 sa

2 protocolType

1 hopcount

6 da

(…)

b) Field names

subType

da_lo

sa_lo

protocolType hopCount

da_hi

sa_hi

c) Hexadecimal values

0116

45 6716

48 76 54 3216

FA CE16 0316

AC DE 48 2316

AC DE16

d) Binary values

0000 00012

0100 0101 0110 01112

0100 1000 0111 0110 0101 0100 0011 00102

1111 1010 1100 11102 0000 00112

1010 1100 1101 1110 0100 1000 0010 00112

1010 1100 1101 11102

MSB LSB

oui

6

dependentID

gl

Legend:
l : locallyAdministered
 (called the ‘U/L address bit’ or ‘universally or locally administered bit in IEEE 802)

g : groupAddress
(called the ‘I/G address bit’ or ‘individual/group bit’ in IEEE 802)

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.10.2 dependentID: An 24-bit field supplied by the oui-specified organization. The concatenation of the
oui and dependentID provide a unique (within this context) identifier.

To reduce the likelihood of error, the mapping of OUI values to the oui/dependentID fields are illustrated in
Figure 3.6. For the purposes of illustration, specific OUI and dependentID example values have been
assumed. The two shaded bits correspond to the locallyAdministered and groupAddress bit positions illus-
trated in Figure 3.5.

3.11 Informative notes

Informative notes are used in this working paper to provide guidance to implementers and also to supply
useful background material. Such notes never contain normative information, and implementers are not
required to adhere to any of their provisions. An example of such a note follows.

NOTE—This is an example of an informative note.

3.12 Conventions for C code used in state machines

Many of the state machines contained in this working paper utilize C code functions, operators, expressions
and structures for the description of their functionality. Conventions for such C code can be found in
Annex F.

Figure 3.6—48-bit MAC address format

MSB LSB

AC166 2316 4516 6716

OUI value: AC-DE-48
Organization assigned extension: 23-45-67

DE16 4816

byte transmission order

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 23

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4. Abbreviations and acronyms

This working paper contains the following abbreviations and acronyms:

AP access point

AV audio/video

AVB audio/video bridging

AVB network audio/video bridged network

BER bit error ratio

BMC best master clock

BMCA best master clock algorithm

CRC cyclic redundancy check

FIFO first in first out

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ISO International Organization for Standardization

ITU International Telecommunication Union

LAN local area network

LSB least significant bit

MAC medium access control

MAN metropolitan area network

MSB most significant bit

OSI open systems interconnect

PDU protocol data unit

PHY physical layer

PLL phase-locked loop

PTP Precision Time Protocol

RFC request for comment

RPR resilient packet ring

VOIP voice over internet protocol

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5. Architecture overview

5.1 Application scenarios

5.1.1 Garage jam session

As an illustrative example, consider AVB usage for a garage jam session, as illustrated in Figure 5.1. The
audio inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges,
mixed within an audio console, return through two bridges, and return to the ear through headphones.

Using Ethernet within such systems has multiple challenges: low-latency and tight time-synchronization.
Tight time synchronization is necessary to avoid cycle slips when passing through multiple processing
components and (ultimately) to avoid under-run/over-run at the final D/A converter’s FIFO. The challenge
of low-latency transfers is being addressed in other forums and is outside the scope of this draft.

Figure 5.1—Garage jam session

t0 = 1 ms
A/D conversion

delay

t7 = 2 ms
processing

delay

t12 = 6 ms
(air delay for
6’ distance)

t3 = 1 ms
processing

delay

t11 = 1 ms
D/A conversion

delay

t10 = T

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.1.2 Looping topologies

Bridged Ethernet networks currently have no loops, but bridging extensions are contemplating looping
topologies. To ensure longevity of this standard, the time-synchronization protocols are tolerant of looping
topologies that could occur (for example) if the dotted-line link were to be connected in Figure 5.2.

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

5.2 Design methodology

5.2.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.

b) All clocks are accurate, typically to within ±100PPM.

c) Details of the best time-synchronization protocols are physical-layer dependent.

5.2.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.

b) Inexpensive. For consumer AVB devices, the costs of synchronized timers are minimal.
(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol is independent of the networking technology. In particular:

1) Cyclical physical topologies are supported.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

Figure 5.2—Possible looping topology

AVB
bridge

AVB
bridge

AVB
device

AVB
device

AVB
device

AVB
device

AVB
bridgeEthernet

bridge

Peer device is
not AVB capable

Ethernet
hub

device

AVB
device

AVB
device

Half-duplex link
can’t do AVBdevice

device

AVB “cloud”

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.2.3 Strategies

Strategies used to meet these objectives include the following:

a) Precision is achieved by calibrating and adjusting grandTime clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:

1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Feed-forward. PLLs are unnecessary within bridges, but possible within applications.
3) Frequent. Frequent (nominally 100 Hz) interchanges reduces needs for overly precise clocks.

5.3 Grand-master selection

5.3.1 Grand-master overview

Clock synchronization involves streaming of timing information from a grand-master timer to one or more
slave timers. Although primarily intended for non-cyclical physical topologies (see Figure 5.3a), the
synchronization protocols also function correctly on cyclical physical topologies (see Figure 5.3b), by
activating only a non-cyclical subset of the physical topology.

In concept, the clock-synchronization protocol starts with the selection of the reference-timer station, called
a grand-master station (oftentimes abbreviated as grand-master). Every AVB-capable station is grand-master
capable, but only one is selected to become the grand-master station within each network. To assist in the
grand-master selection, each station is associated with a distinct preference value; the grand-master is the
station with the “best” preference values. Thus, time-synchronization services involve two subservices, as
listed below and described in the following subclauses.

a) Selection. Looping topologies are isolated (from a time-synchronization perspective) into a
spanning tree. The root of the tree, which provides the time reference to others, is the grand master.

b) Distribution. Synchronized time is distributed through the grand-master’s spanning tree.

5.3.2 Grand-master selection

As part of the grand-master selection process, stations forward the best of their observed preference values
to neighbor stations, allowing the overall best-preference value to be ultimately selected and known by all.

Figure 5.3—Timing information flows

a) Non-cyclical grand-master topologies

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

a) Cyclical grand-master topologies

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The station whose preference value matches the overall best-preference value ultimately becomes the
grand-master.

The grand-master station observes that its precedence is better than values received from its neighbors, as
illustrated in Figure 5.4a. A slave stations observes its precedence to be worse than one of its neighbors and
forwards the best-neighbor precedence value to adjacent stations, as illustrated in Figure 5.4b. To avoid
cyclical behaviors, a hopCount value is associated with preference values and is incremented before the
best-precedence value is communicated to others.

When stabilized, the value of n equals one and the hopCount value reflects the distance between this station
and its grand master, in units of hops-between-bridges. Other values are used to quickly stabilize systems
with rogue frames, as summarized in Equation 5.1.

#define HOPS 255 (5.1)
n = (frame.hopCount > hopCount) ? (HOPS - frame.hopCount) / 2 : 1;

NOTE—A rogue frame circulates at a high precedence, in a looping manner, where the source stations is no longer
present (or no longer active) and therefore cannot remove the circulating frame. The super-linear increase in n is
intended to quickly scrub rogue frames, when the circulation loop consists of less than HOPS stations.

5.3.3 Grand-master preference

Grand-master preference is based on the concatenation of multiple fields, as illustrated in Figure 5.5. The
port value is used within bridges, but is not transmitted between stations.

This format is similar to the format of the spanning-tree precedence value, but a wider clockID is provided
for compatibility with interconnects based on 64-bit station identifiers.

Figure 5.4—Grand-master precedence flows

Figure 5.5—Grand-master selector

a) Grand-master station flows

MinimumValue

thisPrecedence hopCount +=n

b) Clock-slave station flows

MinimumValue

thisPrecedence hopCount +=n

MSB
clockID

LSB
priority1 varianceclass

precedence tie-breaker

Legend: timeSrc: timeSource hop : hopCount

hop portpriority2timeSrc

preference

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 28

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.4 Synchronized-time distribution

5.4.1 Hierarchical grand masters

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations,
as illustrated in Figure 5.6a. A more detailed illustration shows pairs of synchronized clock-master and
clock-slave components, as illustrated in Figure 5.6b. The active clock agents are illustrated as
black-and-white components; the passive clock agents are illustrated as grey-and-white components.

Internal communications distribute synchronized time from clock-slave agents b1, c1, and e1 to the other
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. Within a clock-slave, precise time
synchronization involves adjustments of timer value and rate-of-change values.

Time synchronization yields distributed but closely-matched grandTime values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs,) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter
from the supplied grandTime values.

Figure 5.6—Hierarchical flows

b0

b1

c0 c1 c2 c3

e0

e1

e2

S

S
e3

S

a) Clock synchronization flow

Legend:
grand-master clock slave
streaming data

G

G S

b2

b3

SS

S

S

b) Agents along the synchronization path

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b3 e3

e0

e1

e2

Legend:
grand master slave station
master agent slave agent
internal coupling clock-synch flow

b2

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.4.2 Back-in-time interpolation (no gain-peaking)

A transient phenomenon associated with cascaded PLLs is called whiplash or gain-peaking, depending on
how the phenomenon is observed. A whiplash effect is visible as ringing after a injected spike and/or a step
change in frequency. The gain-peaking effect is visible as a frequency gain, that becomes increasingly larger
through cascaded PLLs, for selected frequencies. For basic cascaded PLLs (see Figure 5.7a), this phenome-
non is unavoidable, although its effects can be reduced through careful design or manual tuning of peaking
frequencies.

To avoid this phenomenon when passing through multiple bridges, two signal values are transmitted over
intermediate hops: grandTime and errorTime (see Figure 5.7a). For stability, the grandTime value corre-
sponds to an interpolated DELAY time in the past (DELAY is typically assumed to be four transmission
intervals). For accuracy, the errorTime value represents errors due to differences in DELAY, as measured by
local-clock and syntonized-clock timers.

Within the context of Figure 5.7a, the clock-master stationA could send time-varying grandTime values and
a zero-valued errorTime value. The stationB bridge outputs a revised rate-interpolated whiplash-free
grandTime value, along with nonzero errorTime values.

The stationC bridge behaves similarly; producing a whiplash-free grandTime output along with revised
errorTime values. The propagation of (relatively DC-free) errorTime values is deferred for a DELAY-time
interval, so that new values can be conveniently interpolated between past-observed values.

The concept of whiplash-free interpolation assumes the presence of relatively stable clock rates. The next
grandTime output value out[m] is computed by interpolating between the last grandTime output value
out[m-1] and the most-recent relay[n]-supplied grandTime values, as illustrated in Figure 5.7b. To
compensate for the back-in-time error, the value of out[m]+DELAY is transmitted as the current grandTime
value.

From an intuitive perspective, the whiplash-free nature of the back-in-time interpolation is attributed to the
use of interpolation (as opposed to extrapolation) protocols. Interpolation between input values never
produces a larger output value, as would be implied by a gain-peaking (larger-than-unity gain) algorithm. A
disadvantage of back-in-time interpolation is the requirement for a side-band errorTime communication
channel, over which the difference between nominal and rate-normalized DELAY values can be transmitted.

Figure 5.7—Cascaded PLL designs

a) Cascaded PLL-error propagation

clock
master

bridge clock
slavebridge

grandTime

errorTimeA B C D

b) Interpolation of grandTime into the “past”

time

relay[n] current
time

DELAY
relay[n-N] relay[n-N/2]

interpolation slopes

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.5 Distinctions from IEEE Std 1588

Advantageous properties of this protocol that distinguish it from other protocols (including portions of
IEEE Std 1588) include the following:

a) Synchronization between grand-master and local clocks occurs at each station:

1) All bridges have a lightly filtered synchronized image of the grand-master time.
2) End-point stations have a heavily filtered synchronized image of the grand-master time.

b) Time is uniformly represented as scaled integers, wherein 40-bits represent fractions-of-a-second.

1) Grand-master time specifies seconds within a more-significant 40-bit field.
2) Local time specifies seconds within a more-significant 8-bit field.

c) Locally media-dependent synchronized networks don’t require extra time-snapshot hardware.

d) Error magnitudes are linear with hop distances; PLL-whiplash and O(n2) errors are avoided.

e) Multicast (one-to-many) services are not required; only nearest-neighbor addressing is assured.

f) A relatively frequent 100 Hz (as compared to 1 Hz) update frequency is assumed:

1) This rate can be readily implemented (in today’s technology) for minimal cost.
2) The more-frequent rate improves accuracy and reduces transient-recovery delays.
3) The more-frequent rate reduces transient-recovery delays.

g) Only one frame type simplifies the protocols and reduces transient-recovery times. Specifically:

1) Cable delay is computed at a fast rate, allowing clock-slave errors to be better averaged.
2) Rogue frames are quickly scrubbed (2.6 seconds maximum, for 256 stations).
3) Drift-induced errors are greatly reduced.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6. GrandSync abstractions

6.1 Overview

This clause specifies the state machines that support media-independent processing. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the primitives and formal procedures and the
interfaces in any particular implementation.

6.2 GrandSync interface model

The time-synchronization service model assumes the presence of one or more time-synchronized AVB ports
communicating with a MAC relay, as illustrated in Figure 6.1. A received MAC frame is associated with
link-dependent timing information, processed within the TimeSync (TS) state machine, and passed to the
GrandSync protocol entity. The preference of the passed frames determine whether the frame is ignored by
the GrandSync protocol entity or modified and redistributed to the remaining TimeSync state machines.

All components are assumed to have access to a common free-running (not adjustable) local timer. There is
not necessarily a one-to-one correspondence between the primitives and formal procedures and the inter-
faces in any particular implementation.

Information exchanged with the GrandSync entity includes a source-port identifier, hops&precedence infor-
mation for grand-master selection, a globally synchronized grandTime, neighbor-syntonized localTime, and

Figure 6.1—GrandSync interface model

Figure 6.2—GrandSync interface components

802.n MAC

PHY

LAN

ISS

LLC

TS

802.n MAC

PHY

LAN

ISS

MS
LLC

TS

MS

GrandSync protocol entity

MAC relay

port

precedence:

seconds fractiongrandTime:

localTime:

source: hopsdistance:

seconds fraction

clockIDpriority1 varianceclass priority2timeSrc

errorTime: subfraction

tockTime: seconds fraction

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
32 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

a cumulative errorTime, as illustrated in Figure 6.2. A clock-slave end-point can filter the sum of grandTime
and errorTime values, thereby yielding its image of the globally synchronized grandTime value.

6.3 GrandSync interface parameters

6.3.1 MA_SYNC.indication

6.3.1.1 Function

6.3.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MA_SYNC.indication {
da, // Destination address
sa, // Optional
protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between timeSync and other AVB frames
version, // Distinguishes between timeSync frame versions
precedence, // Precedence for grand-master selection
grandTime, // Global-time snapshot (1-cycle delayed)
errorTime, // Accumulated grandTime error
port, // Identifies the source port
hopCount, // Distance from the grand-master station
localTime, // Local-time snapshot (1-cycle delayed)
tockTime // Nominal timeSync transmission interval

}

NOTE—The grandTime field has a range of approximately 36,000 years, far exceeding expected equipment life-spans.
The localTime and linkTime fields have a range of 256 seconds, far exceeding the expected timeSync frame transmission
interval. These fields have a 1 pico-second resolution, more precise than the expected hardware snapshot capabilities.
Future time-field extensions are therefore unlikely to be necessary in the future.

The parameters of the MA_DATA.indication are described as follows:

6.3.1.2.1 da: A 48-bit (destination address) field that allows the frame to be conveniently stripped by its
downstream neighbor. The da field contains an otherwise-reserved group 48-bit MAC address (TBD).

6.3.1.2.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field
contains an individual 48-bit MAC address (see 3.10), as specified in 9.2 of IEEE Std 802-2001.

6.3.1.2.3 protocolType: A 16-bit field contained within the payload that identifies the format and function of
the following fields.

6.3.1.2.4 function: An 8-bit field that distinguishes the timeSync frame from other AVB frame type.

6.3.1.2.5 version: An 8-bit field that identifies the format and function of the following fields (see xx).

6.3.1.2.6 precedence: A 14-byte field that has specifies precedence in the grand-master selection protocols
(see 6.3.1.4).

6.3.1.2.7 grandTime: An 80-bit field that specifies the grand-master synchronized time within the source
station, when the previous timeSync frame was transmitted (see 6.3.1.6).

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 33

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.3.1.2.8 errorTime: A 32-bit field that specifies the cumulative grand-master synchronized-time error.
(Propagating errorTime and grandTime separately eliminates whiplash associated with cascaded PLLs.)

6.3.1.2.9 port: An 8-bit field that identifies the port that sourced the timedSync frame.

6.3.1.2.10 hopCount: An 8-bit field that identifies the maximum number of hops between the talker and
associated listeners.

6.3.1.2.11 localTime: A 48-bit field that specifies the local free-running time within this station, when the
previous timeSync frame was received (see 6.3.1.8).

6.3.1.2.12 frameCount: An 8-bit field that is incremented by one between successive timeSync frame trans-
mission.

6.3.1.2.13 localTime: A 48-bit field that specifies the local free-running time within the source station, when
the previous timeSync frame was transmitted (see 6.3.1.8).

6.3.1.2.14 tockTime: A 48-bit field that specifies the nominal period between timeSync frame transmissions.

NOTE—The tockTime value is a port-specific constant value which (for apparent simplicity) has been illustrated as a
relayed frame parameter. Other abstract communication techniques (such as access to shared design constants) might be
selected to communicate this information, if requested by reviewers for consistency with existing specification
methodologies.

6.3.1.3 Version format

For compatibility with existing 1588 time-snapshot, a single bit within the version field is constrained to be
zero, as illustrated in Figure 6.3. The remaining versionHi and versionLo fields shall have the values of 0
and 1 respectively.

6.3.1.4 precedence subfields

The precedence field includes the concatenation of multiple fields that are used to establish precedence
between grand-master candidates, as illustrated in Figure 6.4.

6.3.1.4.1 priority1: An 8-bit field that can be configured by the user and overrides the remaining
precedence-resident precedence fields.

6.3.1.4.2 class: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.

6.3.1.4.3 gmAcc: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.

6.3.1.4.4 variance: A 16-bit precedence-selection field defined by the like-named IEEE-1588 field.

Figure 6.3—Global-time subfield format

Figure 6.4—precedence subfields

LSB

8 bits

MSB

0versionHi versionLo

MSB LSB
clockIDpriority1 varianceclass priority2gmAcc

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
34 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.3.1.4.5 priority2: A 8-bit field that can be configured by the user and overrides the remaining
precedence-resident clockID field.

6.3.1.4.6 clockID: A 64-bit globally-unique field that ensures a unique precedence value for each potential
grand master, when {priority1, class, variance, priority2} fields happen to have the same value (see 6.3.1.5).

6.3.1.5 clockID subfields

The 64-bit clockID field is a unique identifier. For stations that have a uniquely assigned 48-bit macAddress,
the 64-bit clockID field is derived from the 48-bit MAC address, as illustrated in Figure 6.5.

6.3.1.5.1 oui: A 24-bit field assigned by the IEEE/RAC (see 3.10.1).

6.3.1.5.2 extension: A 16-bit field assigned to encapsulated EUI-48 values.

6.3.1.5.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see 3.10.2).

6.3.1.6 Global-time subfield formats

Time-of-day values within a frame are based on seconds and fractions-of-second values, consistent with
IETF specified NTP[B7] and SNTP[B8] protocols, as illustrated in Figure 6.6.

6.3.1.6.1 seconds: A 40-bit signed field that specifies time in seconds.

6.3.1.6.2 fraction: A 40-bit unsigned field that specifies a time offset within each second, in units of 2-40

second.

The concatenation of these fields specifies a 96-bit grandTime value, as specified by Equation 6.1.

grandTime = seconds + (fraction / 240) (6.1)

Figure 6.5—clockID format

Figure 6.6—Global-time subfield format

MSB LSBmacAddress

FFFE16

oui ouiDependent

oui ouiDependentextension

seconds fraction

40 bits

LSB

40 bits

MSB

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.3.1.7 errorTime format

The error-time values within a frame are based on a selected portion of a fractions-of-second value, as
illustrated in Figure 6.7. The 40-bit signed fraction field specifies the time offset within a second, in units of
2-40 second.

6.3.1.8 localTime formats

The localTime value within a frame is based on a fractions-of-second value, as illustrated in Figure 6.8. The
40-bit fraction field specifies the time offset within the second, in units of 2-40 second.

6.3.2 MA_SYNC.request

6.3.2.1 Function

6.3.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MA_SYNC.request {
da, // Destination address
sa, // Optional
protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between timeSync and other AVB frames
version, // Distinguishes between timeSync frame versions
precedence, // Precedence for grand-master selection
grandTime, // Global-time snapshot (1-cycle delayed)
errorTime, // Accumulated grandTime error
port, // Identifies the source port
hopCount, // Distance from the grand-master station
localTime, // Local-time snapshot (1-cycle delayed)
tockTime // Nominal timeSync transmission interval

}

The parameters of the MA_DATA.request are described in 6.3.1.2.

Figure 6.7—errorTime format

Figure 6.8—localTime format

subFraction

32 bits

LSBMSB

seconds fraction

40 bits

LSB

8 bits

MSB

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
36 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.4 GrandSync state machine

6.4.1 Function

The GransSync protocol entity assumes the presence of one or more TimeSync entities communicating with
a GrandSync protocol entity, as illustrated on the top-side of Figure 6.9. A listener-only clock-slave capable
entity is not required to be grand-master capable

The GrandSync state machine (illustrated with an italics name and darker boundary) is responsible for
saving time parameters from observed MA_SYNC.indication parameters and generating
MA_SYNC.request parameters for delivery to other ports. The sequencing of this state machine is specified
by Table 6.1; details of the computations are specified by the C-code of Annex F.

6.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

ONES
A large constant wherein all binary bits of the numerical representation are set to one.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MA_IND—The queue identifier associated with indications from TS entities.
Q_MA_REQ—The queue identifier associated with requests to TS entities.

6.4.3 State machine variables

curentTime
A local variable representing current time.

gPtr
A pointer to the GrandSync data structure, where the data structure includes the following:

info—The parameters associated with an MA_SYNC.indication (see 6.3.1.2).
timer—Tthe time of the last observed MA_SYNC.indication, used for timeout purposes.

preferenceNew, preferenceOld
Local variables consisting of concatenated preference, hopCount, and port parameters.

rxInfo
The parameters associated with an MA_SYNC.indication (see 6.3.1.2).

txInfo
The parameters associated with an MA_SYNC.request (see 6.3.1.2).

Figure 6.9—GransSync interface model

GrandSync protocol entity

802.n MAC

PHY

LAN

ISS

TS

802.n MAC

PHY

LAN

ISS

LLC

TS

MS

MAC relay

LLC
MS

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.4.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

info—The next available parameters.
NULL—No parameters available.

Enqueue(queue,info)
Places the info parameters at the tail of the specified queue on all ports.

GetLocalTime(gPtr)
Returns the value of the station’s shared local timer, encoded as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
38 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.4.5 GrandSync state table

The GrandSync state machine includes a media-dependent timeout, which effectively restarts the
grand-master selection process in the absence of received timeSync frames, as specified by Table 6.2.

Row 6.1-1: Available indication information is processed; the preference comparison is precomputed.
The preferenceNew and preferenceOld values consist of precedence, hopCount, and port values.
Row 6.1-2: The absence of indications forces the timeout, after a port-specific delay
Row 6.1-3: Wait for changes of conditions.

Row 6.1-4: Aged indications are discarded.
Row 6.1-5: Same-port indications always have preference.
Row 6.1-6: Preferred indications are accepted.
Row 6.1-7: Other indications are discarded.

Row 6.1-8: Increasing hopCount values are indicative of a rogue frame and are therefore quickly quashed.
Row 6.1-9: Non-increasing hopCount values are incremented and are thus aged slowly.

Row 6.1-10: Accept the preferred-indication parameters and reset the timeout timer.
Retransmit accepted indication parameters to all attached ports, including the source port.

Table 6.1—GrandSync state table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_MA_IND))
!= NULL

1 // Summary of PreferenceBetter()
preferenceNew = MERGE(rxInfo.precedence,
rxInfo.hopCount, rxInfo.port);

preferenceOld = MERGE(gPtr->info.precedence,
gPtr->info.hopCount, gPtr->info.port);

better = (preferenceNew <= preferenceOld;)

SERVE

(currentTime – gPtr->timer)
> 4 * gPtr->info.tockTime

2 // Summary of PreferenceTimeout()
gPtr->info.hopCount = gPtr->info.port =
gPtr->info.precedence = ONES;

gPtr->timer = currentTime;

START

— 3 currentTime = GetLocalTime();

SERVE rxInfo.hopCount == HOPS 4 — START

rxInfo.portID == gPtr->info.portID 5 gPtr->info = txInfo = rxInfo; NEAR

better 6

— 7 — START

NEAR rxInfo.hopCount >
gmPtr->info.hopCount

8 txInfo.hopCount =
MIN(HOPS, 1 + (HOPS + rxInfo.hopCount) / 2);

LAST

— 9 txInfo.hopCount = rxInfo.hopCount + 1;

LAST — 10 gPtr->timer = currentTime;
Enqueue(Q_MA_REQ, txInfo);

START

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.5 TimeSyncTxSlave state machine

6.5.1 Function

The time-synchronization service model assumes the presence of one or more clock-slave capable TimeSync
entities communicating with a GransSync protocol entity, as illustrated on the top-side of Figure 6.10. A
listener-only clock-slave capable entity is not required to be grand-master capable

The TimeSyncTxSlave state machine (illustrated with an italics name and darker boundary) is responsible
for saving time parameters from relayed timedSync frames and servicing time-sync requests from the
attached clock-slave interface. The sequencing of this state machine is specified by Table 6.2; details of the
computations are specified by the C-code of Annex F.

6.5.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MA_REQ—The queue identifier associated with information from the GrandSync entity.
Q_CI_REQ—The queue identifier associated with slavePoke requests.
Q_CI_IND—The queue identifier associated with slaveSync indications.

T10ms
A constant the represents a 10 ms value.

6.5.3 State machine variables

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.

Figure 6.10—Clock-slave interface model

GrandSync protocol entity

802.n MAC

PHY

LAN

ISS

TS

802.n MAC

PHY

LAN

ISS

LLC

TS

MS

MAC relay

LLC
MS

slaveSync
slavePoke

clock-slave

TS

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
40 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

frame
The contents of a MAC-supplied frame.

req
A contents of a higher-level supplied time-synchronization request, including the following:

infoCount—A value that increments on each masterSync frame transmission.
res

A contents of a lower-level provided time-synchronization response, including the following:
infoCount—The value of currentTime associated with the last timeSync packet arrival.
grandTime—The value of grand-master synchronized time, at the localTime snapshot.

port
A data structure of port-specific information sufficient to compute grand-master synchronized time.

6.5.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

FrameToSlave(pPtr, localTime)
Computes the globalTime value at localTime, as specified by the C code of Annex F.

RelayToState(pPtr, frame, currentTime)
Copies a high-preference MAC-relay frame to port storage, as specified by the C code of Annex F.
(Low preference MAC-relay frames are simply discarded.)

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 41

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.5.5 TimeSyncTxClock state table

The TimeSyncTxClock state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSync frames, as illustrated in Table 6.2.

Row 6.2-1: The received MA_SYNC.request frames set clock-interpolation parameters.
Row 6.2-2: A clock-slave request generates an affiliated information-providing indication.
Row 6.2-3: Wait for the next change-of-conditions.

Table 6.2—TimeSyncTxClock state table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_MA_REQ))
!= NULL

1 GrandToState(pPtr, rxInfo); START

((reqInfo = Dequeue(Q_CI_REQ))
!= NULL

2 // Summary of TimeSyncTxClockA()
grandTimes = StateToGrand(pPtr, currentTime);
resInfo.count = reqInfo.count;
resInfo.grandTime =
grandTimes.grandTime+grandTimes.errorTime;

Enqueue(Q_CI_IND, resInfo);

— 3 currentTime = GetLocalTime(pPtr);

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
42 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.6 TimeSyncRxClock state machine

6.6.1 Function

The time-synchronization service model assumes the presence of one or more grand-master capable entities
communicating with a MAC relay, as illustrated on the left side of Figure 6.11. A grand-master capable port
may also provide clock-slave functionality, so that any non-selected clock-master capable station can
synchronize to the selected grand-master station..

The clock-master TimeSyncRxClock state machine (illustrated with an italics name and darker boundary) is
responsible for monitoring its port’s masterSync requests and sending MAC-relay frames. The sequencing
of this state machine is specified by Table 6.3; details of the computations are specified by the C-code of
Annex F.

6.6.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

CYCLE
A numerical constant equal to the range of the info.frameCount field value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_CE_SET—The queue identifier associated with received clock-master sync frames.
Q_MA_IND—The queue identifier for information sent from the GrandSync entity.

6.6.3 State machine variables

info
A contents of a higher-level supplied time-synchronization request, including the following:

grandTime—The value of grand-master time, when the previous masterSync frame was sent.
frameCount—A value that increments on each masterSync frame transmission.

next
A transient value representing the expected value of the next info.frameCount field value.

Figure 6.11—Clock-master interface model

802.n MAC

PHY

LAN

ISS

TS

802.n MAC

PHY

LAN

ISS

LLC

TS

MS

MAC relay

slaveSync
slavePoke

LLC
MS

TS

clock master/slave

masterSync

GrandSync protocol entity

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 43

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

port
A data structure containing port-specific information comprising the following:

rxSyncFrame—The next frame to be transmitted over the MAC-relay.
rxFrameCount—The value of frameCount within the last received frame.
rxSnapShot0—The info.snapShot field value from the last receive-port poke indication.
rxSnapShot1—The value of the pPtr->rxSnapShot0 field saved from the last poke indication.

6.6.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

6.6.5 TimeSyncRxClock state table

The TimeSyncRxClock state table encapsulates clock-provided sync information into a MAC-relay frame,
as illustrated in Table 6.3.

Row 6.3-1: Update snapshot values on masterSync request arrival.
Row 6.3-2: Wait for the next masterSync request arrival.

Row 6.3-3: Nonsequential requests are discarded.
Row 6.3-4: Sequential requests are forwarded over the MAC-relay.

Table 6.3—TimeSyncRxClock state machine table

Current

R
ow

Next

state condition action state

START (info = Dequeue(Q_CI_SET))
!= NULL

1 // Summary of TimeSyncRxClockA
pPtr->rxSnapShot1 = pPtr->rxSnapShot0;
pPtr->rxSnapShot0 = currentTime;
count= (pPtr->rxFrameCount+1)%COUNT;
pPtr->rxFrameCount = infoReq.frameCount;
wrong = (count != infoReq.frameCount);

SEND

— 2 currentTime = GetLocalTime(pPtr); START

SEND wrong 3 — START

— 4 // Summary of TimeSyncRxClockB
txPtr = &(txInfo);
SetupInfo(pPtr, txPtr);
txPtr->hopCount = 0;
txPtr->precedence = pPtr->precedence;;
txPtr->grandTime = info.grandTime;
txPtr->errorTime = 0;
txPtr->localTime = pPtr->rxSnapShot1;
Enqueue(Q_MA_IND, txInfo);

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
44 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7. Duplex-link state machines

7.1 Overview

This clause specifies the state machines that support duplex-link 802.3-based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the formal specification and the interfaces in
any particular implementation.

7.1.1 Duplex-link indications

The duplex-link TimeSyncRxDuplex state machines are provided with snapshots of timeSync-frame
reception and transmission times, as illustrated by the ports within Figure 7.1. These link-dependent indica-
tions can be different for bridge ports attached to alternative media..

The rxSync and txSync indications provide a tag (to reliably associate them with MAC-supplied timeSync
frames) and a localTime stamp indicating when the associated timeSync frame was received, as illustrated
within Figure 7.2.

7.1.2 Rate-normalization requirements

If the absence of rate adjustments, significant grandTime errors can accumulate between periodic updates, as
illustrated in Figure 7.3. The 2 µs deviation is due to the cumulative effect of clock drift, over the 10 ms
send-period interval, assuming clock-master and clock-slave crystal deviations of −100 PPM and +100 PPM
respectively.

While this regular sawtooth is illustrated as a highly regular (and thus perhaps easily filtered) function,
irregularities could be introduced by changes in the relative ordering of clock-master and clock-slave

Figure 7.1—Duplex-link interface model

Figure 7.2—Contents of rxSync/txSync indications

GrandSync protocol entity

802.n MAC

PHY

LAN

ISS

TS

802.n MAC

PHY

LAN

ISS

LLC

TS

MS

MAC relay

LLC
MS

rxSync
txSync

localTime

seconds fractioncount

tag

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

transmissions, or transmission delays invoked by asynchronous frame transmissions. Tracking peaks/valleys
or filtering such irregular functions are thought unlikely to yield similar grandTime deviation reductions.

To reduce such time deviations, a lower-rate (currently assumed to be 80 ms) activity measures the ratio of
each station’s frequency to that of its adjacent neighbor. When these calibration factors are applied, the
effects of rate differences are easily be reduced to less than 1 PPM, based on the aforementioned
time-accuracy assumptions. At this point, the timer-offset measurement errors (not clock-drift induced
errors) dominate the clock-synchronization error contributions.

7.1.3 Duplex-link delays

On some forms of duplex-link media, time-synchronization involves periodic not-necessarily synchronized
packet transmissions between adjacent stations, as illustrated in Figure 7.4a. The transmitted frame contains
the following information:

precedence—Specifies the grand-master precedence.
grandTime—An estimation of the grand-master time.
localTime—A sampling of the neighbor’s local time.
thatTxTime—The adjacent link’s timeSync transmit time.
thatRxTime—The adjacent link’s timeSync receive time.

Snapshots are taken when packets are transmitted (illustrated as txA and txB) and received (illustrated as rxA
and rxB), as illustrated in Figure 7.4b. The receive snapshot is double buffered, in that the value of rxB0 is

Figure 7.3—Rate-adjustment effects

Figure 7.4—Timer snapshot locations

grandTime
deviation

time

2 µs

6 ns

470 ms 480 ms 490 ms 500 ms 510 ms 520 ms 530 ms460 ms

a) Basic time-sync messages

packB

rxB0

packA

rxA0

sendA

sendB

localTime

grandTime

txB

txA

precedence

~10ms

~10ms

thatTxTime

stationA stationB

rxB1

rxA1

rxB2

rxA2

thatRxTime

b) Relevant snap-shot storage

rxA0

rxB0

rxA0

rxA0

sendA

sendBtxB

txA

~10ms

~10ms

stationA stationB

rxB1

rxA1

rxB2

rxA2

localTime

grandTime

precedence

thatTxTime

thatRxTime

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
46 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

copied to rxB1 when the rxB0 snapshot is taken. Similarly, the value of rxA0 is copied to rxA1 when the
rxA0 snapshot is taken.

The physical entity that triggers the received-frame and transmitted-frame snapshot operations is
deliberately left ambiguous. Mandatory jitter-error accuracies are sufficiently loose to allow transmit/receive
snapshot circuits to be located with the MAC. Vendors may elect to further reduce timing jitter by latching
the receive/transmit times within the PHY, where the uncertain FIFO latencies can be more easily avoided.

The the timeSync frame arrives from stationA, the frame’s localTime value is copied to the rxB2 register,
and is simultaneously available with the updated rxB1 snapshot value. Similarly, when the timeSync frame
arrives from stationB, the frame’s localTime value is copied to the rxA2 register, and is simultaneously avail-
able with the updated rxA1 snapshot value.

For stationB, the values inserted into each frame include the following:
localTime—The txB value, representing the last timeSync frame-transmission time on this link.
thatTxTime—The rxB2 value, representing a timeSync frame-transmission time on the other link.
thatRxTime—The rxB1 value, representing a timeSync frame-reception time on the other link.
grandTime—The computed grand-master time associated with the co-resident localTime value.

For stationA, the values inserted into each frame include the following:
localTime—The txA value, representing the last timeSync frame-transmission time on this link.
thatTxTime—The rxA2 value, representing a timeSync frame-transmission time on the other link.
thatRxTime—The rxA1 value, representing a timeSync frame-reception time on the other link.
grandTime—The computed grand-master time associated with the co-resident localTime value.

Assuming the local stationA and stationB timers have the same frequencies and the two links on the span
have identical delays, the link delay can be computed at stationB and stationA, based on the contents of the
most-recently received timeSync frame, as specified by Equation 7.1 and Equation 7.2 respectively.

linkDelayB = ((rxB1 - frame.thatTxTime) - (frame.localTime - frame.thatRxTime))/2; (7.1)
linkDelayA = ((rxA1 - frame.thatTxTime) - (frame.localTime - frame.thatRxTime))/2; (7.2)

If the stationA-to-stationB and stationB-to-stationA links have different propagation delays, these linkDelay
calculations do not correspond to the different propagation delays, but represent the average of the two link
delays. Implementers have the option of manually specifying the link-delay differences via MIB-accessible
parameters, within tightly-synchronized systems where this inaccuracy might be undesirable.

7.1.4 Received timeSync computations

The baseline link-delay calculations of 7.1.3 are sufficient for 802.11v and other interconnects wherein the
timeSync turn-around latencies are tightly controlled by the MAC. For 802.3 and other interconnects, the
turnaround times can be done above the MAC and can be much larger than the packet-transmission times.
For such media, the duplex-link delay calculations must be compensated by measured differences in
adjacent-station clock rates, as discussed within this subclause.

Assuming the local stationA and stationB timers have the different frequencies and the two links on the span
have identical delays, the link delay can be computed at stationB based on the contents of the most-recently
received timeSync frame.

NOTE—The rating portion of the linkDelay computation is based on the station-local time within adjacent-neighbor
exchanges and is therefore unaffected by discontinuities in the distributed grand-master time reference.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 47

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.5 Transmitted timeSync computations

At the bridge’s co-resident clock-master port, the current grandTime value is estimated by interpolating a
fixed local-timer amount (40 ms) into the past, as summarized by Equation 7.3. The input error value is
similarly interpolated into the past and incremented by the local-error contribution.

// Update information when transmitted frame is formed. (7.3)
// This code summarizes the behavior of StateToTimes() in Annex F.
tockTime = (2 * (TOCK_TIME + MIN(TOCK_TIME, relay.tockTime))) // Sampling interval
delay = (tockTime - ((THIS_TOCK + relay.tockTxTime) / 2)) // Ensures interpolation
lapseTime = txB - delay; // Back-in-time location
if (lapseTime < localTime0) { // Remote interpolation:

grandRated = grandRate1; // based on grand rate;
errorRated = errorRate1; // based on rate

} else { // Recent interpolation:
grandRated = grandRate0; // based on grand rate;
errorRated = errorRate0; // based on recent rate

}
grandTime = grandTime1 + (lapseTime-localTime1)*grandRated; // Grand-time estimate
errorTime = errorTime1 + (lapseTime-localTime1)*errorRated; // Error-time estimate
errorPlus = errorTimer + delay * (rating - ONE); // adds to cumulative
frame.grandTime = grandTimer; // Extrapolate to future
frame.localTime = txB; // Transmit snapshot
frame.errorTime = (errorTime + errorPlus); // adds to cumulative

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
48 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.2 timeSyncDuplex frame format

7.2.1 timeSyncDuplex fields

Duplex-link time-synchronization (timeSyncDuplex) frames facilitate the synchronization of neighboring
clock-master and clock-slave stations. The frame, which is normally sent at 10ms intervals, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in Figure 7.5. The
gray boxes represent physical layer encapsulation fields that are common across Ethernet frames.

NOTE— Existing 1588 time-snapshot hardware captures the values between byte-offset 34 and 45 (inclusive). The
location of the frameCount field (byte-offset 44) has been adjusted to ensure this field can be similarly captured for the
purpose of unambiguously associating timeSync-packet snapshots (that bypass the MAC) and timeSync-packet contents
(that pass through the MAC).

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocolType, 8-bit function,
8-bit version, 14-byte precedence, 80-bit grandTime, 32-bit errorTime, 8-bit hopCount, and 6-byte
localTime field are specified in 6.3.1.2.

7.2.1.1 frameCount: An 8-bit field that is incremented by one between successive timeSync frame
transmission.

7.2.1.2 thatTxTime: A 48-bit field that specifies the local free-running time within the source station, when
the previous timeSync frame was transmitted on the opposing link (see 6.3.1.8).

7.2.1.3 thatRxTime: A 48-bit field that specifies the local free-running time within the target station, when
the previous timeSync frame was received on the opposing link (see 6.3.1.8).

7.2.1.4 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

Figure 7.5—timeSyncDuplex frame format

6 da

6 sa

2 protocolType

4 fcs

— Transmitter local-time snapshot (1 cycle delayed)

10 grandTime — Transmitter grand-time snapshot (1 cycle delayed)

6 thatTxTime — Opposing link’s frame transmission time

— Frame check sequence

— Destination MAC address

— Source MAC address

1 function

— Distinguishes AVB frames from others

— Distinguishes timeSync from other AVB frames

1 hopCount — Hop count from the grand master

6 localTime

— Precedence for grand-master selection14 precedence

1 version — Distinguishes between timeSync frame versions

1 frameCount — A (sequence number) count of time-sync frames

6 thatRxTime — Opposing link’s frame reception time

68 bytes total

4 errorTime — Back-prediction error for grandTime computation

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 49

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.2.2 Clock-synchronization intervals

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional messages can
cancel the cable-delay effects.

Clock synchronization involves the processing of periodic events. Multiple time periods are involved, as
listed in Table 7.1. The clock-period events trigger the update of free-running timer values; the period affects
the timer-synchronization accuracy and is therefore constrained to be small.

The send-period events trigger the interchange of timeSync frames between adjacent stations. While a
smaller period (1 ms or 100 µs) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

Table 7.1—Clock-synchronization intervals

Name Time Description

clock-period < 20 ns Resolution of timer-register value updates

send-period 10 ms Time between sending of periodic timeSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
50 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3 TimeSyncRxDuplex state machine

7.3.1 Function

The TimeSyncRxDuplex state machine is responsible for monitoring its port’s rxSync indications, receiving
MAC-supplied frames, and sending MAC-relay frames. The sequencing of this state machine is specified by
Table 7.2; details of the computations are specified by the C-code of Annex F.

7.3.2 State machine definitions

HOPS
A constant representing the largest-possible frame.hopCount value.

value—255.
NULL

A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
queue values

Enumerated values used to specify shared FIFO queue structures.
Q_MR_HOP—The queue identifier associated with MAC frames sent into the relay.
Q_RX_MAC—The queue identifier associated with the received MAC frames.
Q_RX_SYNC—The queue identifier associated with rxSync, sent from the lower levels.

7.3.3 State machine variables

cableDelay, cableDelay0
Scaled integers representing cable-delay times.

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
delta0, delta1

Scaled integers representing times since the recent time-rating snapshots.
fPtr

A pointer to a MAC-supplied frame (see below).
frame

A MAC-supplied frame (see xx); the frame comprising the following.
grandTime—A value synchronized to the grand-master time.
localTime—The local time associated with the grandTime value.
frameCount—A value that is incremented for successive timeSync transmissions.
hopCount—Distance from the grand-master station, measured in station-to-station hops.

info
A contents of a lower-level supplied time-synchronization poke indication, including the following:

localTime—The value of currentTime associated with the last timeSync packet arrival.
frameCount—The value of the like-named field within the last timeSync packet arrival.

pPtr
A pointer to a data structure that contains port-specific information comprising the following:

rxFrameCount—The value of frameCount within the last received frame.
rxRated—The ratio of the local-station and remote-station local-timer rates.
rxSnapCount—The value of info.frameCount saved from the last poke indication.
rxSnapShot0—The info.snapShot field value from the last receive-port poke indication.
rxSnapShot1—The value of the pPtr->rxSnapShot1 field saved from the last poke indication.
rxSyncFrame—The value of the previously observed timeSync frame.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 51

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

rPtr
A pointer to a MAC-relay frame (see xx); the frame comprising the following.

grandTime—A value synchronized to the grand-master time.
localTime—The local time associated with the grandTime value.
sourcePort—Identifies the source port that generated the MAC-relay frame.
hopCount—Distance from the grand-master station, measured in station-to-station hops.

thisDelay, thatDelay, thatDelay, thisDelta, thisTime, thatTime, tockTime
Scaled integer representing intermediate local-time values.

7.3.4 State machine routines

BigAddition(x, y)
Returns the sum of 128-bit x and y values.

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

DivideHi(x, y)

Returns (x/y)×240 for integer values of x and y.
(This represents x /y, when y is assumed to be a scaled-integer.

DuplexToRelay(pPtr, frame)
Computes the average link-delay, based on neighbor-syntonized timers.
The averaged link-delay value is added to the frame, which is then forwarded over the MAC-relay.

Enqueue(queue)
Places the frame at the tail of the specified queue.

LongToBig(x)
Returns a sign-extended 128-bit version of value x.

MIN(x, y)
Returns the minimum of x and y values.

MultiplyHi(x, y)

Returns (x×y)×2-40 for integer values of x and y.
(This represents x×y, when y is assumed to be a scaled-integer.

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.

7.3.5 TimeSyncRxDuplex state machine table

The TimeSyncRxDuplex state machine associates PHY-provided sync information with arriving timeSync
frames and forwards adjusted frames to the MAC-relay function, as illustrated in Table 7.2

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
52 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

.

Table 7.2—TimeSyncRxDuplex state machine table

Current

R
ow

Next

state condition action state

START (info = Dequeue(Q_RX_SYNC))
!= NULL

1 // Summary of TimeSyncRxDuplexA()
pPtr->rxSnapShot1 = pPtr->rxSnapShot0;
pPtr->rxSnapShot0 = info.localTime;
pPtr->rxSnapCount = info.frameCount;

PAIR

(frame = Dequeue(Q_RX_MAC))
!= NULL

2 // Summary of TimeSyncRxDuplexB()
fPtr = &duplexFrame;
count = (pPtr->rxFrameCount + 1) % COUNT;
pPtr->rxFrameCount = fPtr->frameCount;
wrong = (count != fPtr->frameCount);

TEST

— 3 currentTime = GetLocalTime(pPtr); START

TEST !TimeSyncFrame(frame) 4 Enqueue(Q_MR_HOP, frame); START

fPtr->hopCount == HOPS 5 —

wrong 6 —

— 7 rPtr = &(relayFrame); PAIR

PAIR fPtr->frameCount ==
pPtr->rxSnapCount

8 // Summary of TimeSyncRxDuplexC()
thatTime = fPtr->localTime;
thisTime = pPtr->rxSnapShot1;
pPtr->rxThisTxTime = thatTime;
pPtr->rxThisRxTime = thisTime;
tockTime = pPtr->txThisTock;
recent =
thisTime – pPtr->rxThisTime0 >= 3 * tockTime;
remote =
thisTime – pPtr->rxThisTime1 >= 8 * tockTime;

NEXT

— 9 — START

NEXT recent && remote 10 // Summary of TimeSyncRxDuplexD()
thisDelta = thisTime – pPtr->rxThisTime1;
thatDelta = thatTime – pPtr->rxThatTime1;
pPtr->rxRated = DivideHi(thisDelta, thatDelta);
pPtr->rxThisTime1 = pPtr->rxThisTime0;
pPtr->rxThatTime1 = pPtr->rxThatTime0;
pPtr->rxThisTime0 = thisTime;
pPtr->rxThatTime0 = thatTime;

LAST

— 11 —

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 53

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 7.2-1: Update snapshot values on timeSync frame arrival.
Row 7.2-2: Initiate inspection of frames received from the lower-level MAC.
Row 7.2-3: Wait for the next change-of-state.

Row 7.2-4: The non-timeSync frames are passed through.
Row 7.2-5: Discard obsolete timeSync frames.
Row 7.2-6: Non-sequential frames are discarded.
Row 7.2-7: Sequential timeSync frames are processed.

Row 7.2-8: Inhibit processing when the frame and snap-shot counts are different.
Row 7.2-9: Broadcast revised timeSync frames over the MAC-relay.

Row 7.2-10: Periodic neighbor-timer ratings are performed.
Row 7.2-11: To reduce computation loads, neighbor-timer ratings are infrequently performed.
Row 7.2-12: The grand-master time is compensated by the timer-rate differences.

7.4 TimeSyncTxDuplex state machine

7.4.1 Function

The TimeSyncTxDuplex state machine is responsible for saving time parameters from relayed timedSync
frames and forming timeSync frames for transmission over the attached link.

7.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with frames sent from the relay.
Q_TX_MAC—The queue identifier associated with frames sent to the MAC.
Q_TX_SYNC—The queue identifier associated with txSync, sent from the lower levels.

T10ms
A constant the represents a 10 ms value.

LAST — 12 // Summary of TimeSyncRxRelayC()
rPtr = &relayFrame;
localTime = pPtr->rxSnapShot1;
roundTrip = localTime – pPtr->thatTxTime;
turnRound = fPtr->localTime – fPtr->thatRxTime;
cableDelay = MIN(0, roundTrip –
MultiplyHi(turnRound, pPtr->rxRated));
SetRelayFrame(pPtr, rPtr);
rPtr->grandTime = fPtr->grandTime + cableDelay;
rPtr->localTime = localTime;
rPtr->hopCount = fPtr->hopCount;
Enqueue(Q_MR_HOP, relayFrame);

START

Table 7.2—TimeSyncRxDuplex state machine table

Current

R
ow

Next

state condition action state

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
54 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.4.3 State machine variables

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
info

A contents of a lower-level supplied time-synchronization poke indication, including the following:
localTime—The value of currentTime associated with the last timeSync packet arrival.
frameCount—The value of the like-named field within the last timeSync packet arrival.

port
A data structure containing port-specific information comprising the following:

txSnapShot—The value of the info.time field saved from the last transmit-port poke indication.
txSyncFrame—The value of the next to-be-transmitted timeSync frame.
txSeenTime—The currentTime value when the last timeSync frame was received.
txSentTime—The currentTime value when the last timeSync frame enqueued for transmission.

7.4.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

StateToTimes(pPtr, frame)
Transfers the frame to the MAC, as specified by the C code of Annex F.

RelayToState(pPtr, frame)
Copies a high-preference MAC-relay frame to port storage, as specified by the C code of Annex F.
(Low preference MAC-relay frames are simply discarded.)

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 55

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.4.5 TimeSyncTxDuplex state machine table

The TimeSyncTxDuplex state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSync frames, as illustrated in Table 7.3.

Table 7.3—TimeSyncTxDuplex state machine table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_MR_HOP))
!= NULL

1 — SINK

(currentTime – pPtr->txSentTime)
> T10ms

2 pPtr->txLastTime = currentTime; SEND

(info = Dequeue(Q_TX_SYNC))
!= NULL

3 // Summary of TimeSyncTxRelayA()
pPtr->txSnapShot = info.localTime;
pPtr->txSnapCount = info.frameCount;

START

— 4 currentTime = GetLocalTime(pPtr);

SINK !TimeSyncFrame(frame) 5 RelayToMac(pPtr, frame); START

RelayToState(pPtr, frame) == TOP 6 pPtr->txTestTimer = currentTime;

— 7 —

SEND pPtr->txHopCount >= HOPS 8 — START

— 9 // Summary of TimeSyncTxRelayB()
dPtr = &duplexFrame;
bothTimes =
StateToGrand(pPtr, pPtr->txSnapShot);

pPtr->txFrameCount =
(pPtr->txSnapCount + 1) % COUNT;

SetDuplexFrame(pPtr, dPtr);
dPtr->hopCount = pPtr->txHopCount;
dPtr->frameCount = pPtr->txFrameCount;
dPtr->grandTime = bothTimes.grandTime;
dPtr->errorTime = bothTimes.errorTime;
dPtr->localTime = pPtr->txSnapShot;
dPtr->rxThatTxTime = pPtr->rxThisTxTime;
dPtr->rxThatRxTime = pPtr->rxThisRxTime;
Enqueue(Q_TX_MAC, duplexFrame);

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
56 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 7.3-1: Relayed frames are further checked before being processed.
Row 7.3-2: Transmit periodic timeSync frames.
Row 7.3-3: Update snapshot values on timeSync frame departure.
Row 7.3-4: Wait for the next change-of-state.

Row 7.3-5: Non-timeSync frames are retransmitted in the standard fashion.
Row 7.3-6: Relevant timeSync parameters are saved for the next periodic transmission.
Row 7.3-7: MAC-relay frames from non grand-master stations are discarded.

Row 7.3-8: Discard obsolete timeSync frames.
Row 7.3-9: Form the next timeSync frame; enqueue this frame for immediate transmission.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 57

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8. Wireless state machines

NOTE—This clause is based on indirect knowledge of the 802.11v specifications, as interpreted by the
author, and have not been reviewed by the 802.1 or 802.11v WGs. The intent was to provide a forum for
evaluation of the media-independent MAC-relay interface, while also triggering discussion of 802.11v
design details. As such, this clause is highly preliminary and subject to change.

8.1 Overview

This clause specifies the state machines that support wireless 802.11v-based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the formal specification and the interfaces in
any particular implementation.

8.2 Link-dependent indications

The wireless 802.11v TimeSyncRadio state machines are provided with MAC service-interface parameters,
as illustrated within Figure 8.1. These link-dependent indications can be different for bridge ports attached
to alternative media..

The rxSync and txSync indications are localized communications between the MAC-and-PHY and are not
directly visible to the a TimeSync state machines. Client-level interface parameters include the timing
information, based on the formats illustrated within Figure 8.2.

Figure 8.1—Radio interface model

Figure 8.2—Formats of wireless-dependent times

GrandSync protocol entity

802.n MAC

PHY

LAN

ISS

TS

802.n MAC

PHY

LAN

ISS

TS

MS

MAC relay service interfaces

fastTime

ticks

levelTime

seconds nanoSeconds

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
58 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.3 Service interface overview

A sequence of 802.11v TimeSync service interface actions is illustrated in Figure 8.3. A periodic trigger is
assumed to initiate the initial MLME_PRESENCE_REQUEST.request action. Processing of the returned
MLME_PRESENCE_REQUEST.confirm triggers the following MLME_PRESENCE_RESPONSE.request
action. The sequence completes with the final MLME_PRESENCE_RESPONSE.confirm action.

The properties of these service interfaces are summarized below:

MLME_PRESENCE_REQUEST.request
Generated periodically by the clock-master entity.
Triggers an M1.request, to update clock-slave resident timing parameters.

MLME_PRESENCE_REQUEST.indication
Generated in response to receiving an M1.request message.
Provides t2 and t3 timing information to the clock-slave entity.

MLME_PRESENCE_REQUEST.confirm
Generated after the M1.ack message is returned.
Provides time1 and time4 timing information to the clock-master entity.

MLME_PRESENCE_RESPONSE.request
Generated shortly after processing a returned M1.ack message
Triggers an M1.request, to update clock-slave resident timing parameters.

MLME_PRESENCE_RESPONSE.indication
Generated in response to receiving an M2.request message.
Provides time4, time4–time1, and levelTime information to the clock-slave entity.

MLME_PRESENCE_RESPONSE.confirm
Generated after the M2.ack message is returned.
Confirms completion of the time-synchronization exchange.

Figure 8.3—802.11v time-synchronization interfaces

MLME_PRESENCE_REQUEST.request

MLME_PRESENCE_REQUEST.indication

request

ack
MLME_PRESENCE_REQUEST.confirm

request

ack

MLME_PRESENCE_RESPONSE.request

MLME_PRESENCE_RESPONSE.confirm

MLME_PRESENCE_RESPONSE.indication

increasing
time

t1
t2

t3
t4

M1

M2
Provides: t4, t4– t1 and levelTime.

Clock-master
requester

Clock-slave
responder

Provides: t2 and t3.

Provides: t1 and t4.

Supplies: t4, t4–t1 and levelTime.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 59

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.4 TimeSyncRxRadio state machine

8.4.1 Function

The TimeSyncRxRadio state machine consumes primitives provided by the MAC service interface and (in
response) generates MAC-relay frames.

8.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—Queue identifier associated with MAC frames sent into the relay.
Q_S1_IND—Queue identifier for MLME_PRESENCE_REQUEST.indication parameters.
Q_S2_IND—Queue identifier for MLME_PRESENCE_RESPONSE.indication parameters.

8.4.3 State machine variables

args1
A set of values returned within the MLME_PRESENCE_REQUEST.indication service primitive:

fastTime2—A local-timer snapshot corresponding to the time of M1.request reception.
fastTime3—A local-timer snapshot corresponding to the time of M1.ack transmission.

args2
A set of values provided to the MLME_PRESENCE_RESPONSE.indication service primitive:

fastTime4—A neighbor-timer snapshot corresponding to the time of M1.ack reception.
fastTimed—A neighbor-timer snapshot corresponding to a time difference:

(M2.request transmission) – (M1.request transmission)
levelTime—Grand-master synchronized time at the fastTime4 neighbor-time snapshot.

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
port

A data structure containing port-specific information, including the following:
rxFastTime2—Saved args1.fastTime2 value.
rxFastTime3—Saved args1.fastTime3 value.
rxFastTime4—Saved args2.fastTime4 value.
rxFastTimed—Saved args2.fastTimed value.
rxLevelTime—Saved args2.levelTime value.

8.4.4 State machine routines

DequeueService(queue)
Returns service parameters from the specified queue.

args—The next available service parameters.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
60 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

PonToRelay(pPtr)
Computes the average link-delay, based on neighbor-syntonized timers.
The averaged link-delay value is added to the frame, which is then forwarded over the MAC-relay.

8.4.5 TimeSyncRxRadio state table

The TimeSyncRxRadio state machine consumes MAC-provided service-primitive information and forwards
adjusted frames to the MAC-relay function, as illustrated in Table 8.1.

Row 8.1-1: Wait until indication parameters become available.
Row 8.1-2: Update snapshot values based on MLME_PRESENCE_REQUEST.indication parameters.

Row 8.1-3: Wait until indication parameters become available.
Row 8.1-4: Update snapshot values based on MLME_PRESENCE_RESPONSE.indication parameters.
Based on those parameters, generate a timeSync frame for MAC-relay transmission.

Table 8.1—TimeSyncRxRadio state machine table

Current

R
ow

Next

state condition action state

START (req1 = Dequeue(Q_S1_IND))
!= NULL

1 // Summary of TimeSyncRxRadio1Indicate()
pPtr->rxTurnRound =
req1.fastTime3 – req1.fastTime2;

WAIT

— 2 localTimes = RadioLocalTimes(pPtr); START

WAIT (req2 = Dequeue(Q_S2_IND))
!= NULL

3 // Summary of TimeSyncRxRadio2Indicate()
rPtr = &(relayFrame);
twice = req2.roundTrip – pPtr->rxTurnRound;
moved = localTimes.ticksTime – req2.fastTime4;
SetRelayFrame(pPtr, rPtr);
rPtr->grandTime =
RadioToGrand(req2.radioTime) +
MultiplyHi((twice/2) + moved, RADIO_TIME);
rPtr->localTime = localTimes.localTime;
Enqueue(Q_MR_HOP, relayFrame);

START

— 4 —

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 61

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.5 TimeSyncTxRadio state machine

8.5.1 Function

The TimeSyncTxRadio state machine consumes MAC-relay frames and (in response) generates calls to the
time-synchronization related MAC service interface.

8.5.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with MAC frames sent into the relay.
Q_RX_MAC—The queue identifier associated with the received MAC frames.
Q_RX_SYNC—The queue identifier associated with rxSync, sent from the lower levels.

8.5.3 State machine variables

args1
A set of values returned within the MLME_PRESENCE_REQUEST.confirm service primitive:

time1—A local-timer snapshot corresponding to the time of M1.request transmission.
time2—A local-timer snapshot corresponding to the time of M2.request reception.

args2
A set of values provided to the MLME_PRESENCE_REQUEST.request service primitive:

time1—The value of the previously returned args1.time1 value.
timed—The difference of previously returned values: args1.time4 – args1.time1.
levelTime—The value of grandTime associated with the returned args1.time1 timer.

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
reqArgs

MLME_PRESENCE_REQUEST.request parameters unrelated to time-synchronization services.
resArgs

MLME_PRESENCE_RESPONSE.request parameters unrelated to time-synchronization services.
port

A data structure containing port-specific information for determining grandTime values.

8.5.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

EnqueueService(queue)
Places the service-interface parameters in the specified queue.

StateToTimes(pPtr, frame)
Transfers the non-timeSync frame to the MAC.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 62

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

RelayToState(pPtr, frame)
Copies a high-preference MAC-relay frame to port storage, as specified by the C code of Annex F.
(Low preference MAC-relay frames are simply discarded.)

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 63

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.5.5 TimeSyncTxRadio state table

NOTE—The following state machine is highly preliminary; sequence timeouts and grand-master
selection code are not yet included.

The TimeSyncTxRadio state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timedSync frames, as illustrated in Table 8.2.

Table 8.2—TimeSyncTxRadio state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_MR_HOP))
!= NULL

1 — SINK

(currentTime – pPtr->txSentTime)
> T10ms

2 pPtr->txSentTime = currentTime; SEND

(con1 = Dequeue(Q_S1_CON))
!= NULL

3 // Summary of TimeSyncRxRadio1Confirm()
pPtr->txSnapShot1 = con1.ticksTime1;
pPtr->txRoundTrip =

con1.ticksTime4 – con1.ticksTime1;
phase2 = TRUE;

WAIT

— 4 localTimes = RadioLocalTimes(pPtr); START

SINK !TimeSyncFrame(frame) 5 RelayToMac(pPtr, frame); START

RelayToState(pPtr, frame) == TOP 6 pPtr->txTestTimer = currentTime;

— 7 —

SEND pPtr->txFrame.hopCount == HOPS 8 — START

— 9 EnqueueService(Q_S1_REQ, reqArgs); WAIT1

WAIT1 phase2 == TRUE 10 // Summary of TimeSyncTxRadio2Request()
lapseTime =

localTimes.radioTime – pPtr->txSnapShot4;
localTime = localTimes.localTime –
MultiplyHi(lapseTime, RADIO_TIME);

grandTimes = StateToGrand(pPtr, localTime);
req2.ticksTime4 = pPtr->txSnapShot4;
req2.roundTrip = pPtr->txRoundTrip;
req2.levelTime =
GrandToRadio(grandTimes.grandTime);

req2.errorTime = grandTimes.errorTime;
req2.precedence = pPtr->txPrecedence;
req2.hopCount = pPtr->txHopCount;
EnqueueService(Q_S2_REQ, req2);

WAIT2

— 11 —

WAIT2 (args2 = Dequeue(Q_S2_CON))
== NULL

12 — WAIT1

— 13 — START

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 8.2-1: Relayed frames are further checked before being processed.
Row 8.2-2: Initiate periodic service-interface primitive calls.
Row 8.2-4: Wait for the next change-of-state.

Row 8.2-5: Non-timeSync frames are retransmitted in the standard fashion.
Row 8.2-6: Relevant timeSync parameters are saved for the next periodic transmission.
Row 8.2-7: MAC-relay frames from non grand-master stations are discarded.

Row 8.2-8: Discard obsolete timeSync frames.
Row 8.2-9: Transmit parameters through the MLME_PRESENCE_REQUEST.request interface.

Row 8.2-10: Wait for parameters arriving through the MLME_PRESENCE_REQUEST.confirm interface.
Row 8.2-11: Transmit parameters through the MLME_PRESENCE_RESPONSE.request interface.

Row 8.2-12: Wait for parameters arriving through the MLME_PRESENCE_RESPONSE.confirm interface.
Row 8.2-13: Confirm completion and continue.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9. Ethernet-PON state machines

NOTE—This clause is based on indirect knowledge of the Ethernet-PON specifications, as interpreted by
the author, and have not been reviewed by the 802.1 or 802.3 WGs. The intent was to provide a forum for
evaluation of the media-independent MAC-relay interface, while also triggering discussion of 802.3-PON
design details. As such, the contents are highly preliminary and subject to change.

9.1 Overview

This clause specifies the state machines that support Ethernet-PON based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the formal specification and the interfaces in
any particular implementation.

9.1.1 Link-dependent indications

The TimeSyncPon state machines have knowledge of network-local synchronized timers. With this
knowledge, the TimeSyncPon state machines can operated on frames received from the LLC, as illustrated
in Figure 9.1. Link-dependent indications could be required for bridge ports attached to alternative media..

The localTime values are represented as timers that are incremented once every 16 ns interval, as illustrated
on the left side of Figure 9.2. Each synchronized local timer is roughly equivalent to a 6-bit sec (seconds)
field and a 26-bit fraction (fractions of second) field timer, as illustrated on the right side of Figure 9.2.

The Ethernet-PON MAC is supplied with frame transmit/receive snapshots, but these are transparent-to and
not-used-by the TimeSync state machine. Instead, these are used to synchronize the ticksTime values in
associated MACs and the TimeSyncPon state machines have access to these synchronized ticksTime values.

Figure 9.1—PON interface model

Figure 9.2—Format of PON-dependent times

GrandSync protocol entity

802.n MAC

PHY

LAN

ISS

TS

802.n MAC

PHY

LAN

ISS

TS

MAC relay

LLC
MS

LLC
MS

(ticksTime) (ticksTime)

tickTime

nanoseconds16

(approximate equivalent)

sec fraction

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
66 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.2 timeSyncPon frame format

The timeSyncPon frames facilitate the synchronization of neighboring clock-master and clock-slave sta-
tions. The frame, which is normally sent at 10 ms intervals, includes time-snapshot information and the
identity of the network’s clock master, as illustrated in Figure 9.3. The gray boxes represent physical layer
encapsulation fields that are common across Ethernet frames.

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocolType, 8-bit function,
8-bit version, 14-byte precedence, 80-bit grandTime, 32-bit errorTime, and 8-bit hopCount fields are
specified in 6.3.1.2.

9.2.1 frameCount: An 8-bit field that is incremented by one between successive timeSync frame
transmission.

9.2.2 ticksTime: A value representing local time in units of a 16 ns timer ticks, as illustrated in Figure 9.4.

Figure 9.3—timeSyncPon frame format

Figure 9.4—tickTime format

6 da

6 sa

2 protocolType

4 fcs

— Transmitter local-time snapshot

10 grandTime — Transmitter grand-time snapshot

10 reserved — Reserved for future extensions to this standard

— Frame check sequence

— Destination MAC address

— Source MAC address

1 function

— Distinguishes AVB frames from others

— Distinguishes timeSync from other AVB frames

1 hopCount — Hop count from the grand master

4 ticksTime

— Precedence for grand-master selection14 precedence

1 version — Distinguishes between timeSync frame versions

1 frameCount — A (sequence number) count of time-sync frames

64 bytes total

4 errorTime — Back-prediction error for grandTime computation

ticks

32 bits

LSBMSB

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 67

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.3 TimeSyncRxPon state machine

9.3.1 Function

The TimeSyncRxPon state machine is responsible for receiving MAC-supplied frames, converting their
media-dependent parameters, and sending normalized MAC-relay frames. The sequencing of this state
machine is specified by Table 9.1; details of the computations are specified by the C-code of Annex F.

9.3.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with MAC frames sent into the relay.
Q_RX_MAC—The queue identifier associated with the received MAC frames.

9.3.3 State machine variables

frame
The contents of a MAC-supplied frame.

port
A data structure containing port-specific information comprising the following:

rxFrame—The last received frame.
rxFrameCount—The value of frameCount within the last received frame.
rxSyncFrame—The value of the previously received timeSync frame.

9.3.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

PonToRelay(pPtr, frame)
Computes the average link-delay, based on neighbor-syntonized timers.
The averaged link-delay value is added to the frame, which is then forwarded over the MAC-relay.

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 68

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.3.5 TimeSyncRxPon state machine table

The TimeSyncRxPon state machine associates PHY-provided sync information with arriving timeSync
frames and forwards adjusted frames to the MAC-relay function, as illustrated in Table 7.2.

Row 9.1-1: Initiate inspection of frames received from the lower-level MAC.
Row 9.1-2: Wait for the next frame to arrive.

Row 9.1-3: The non-timeSync frames are passed through.
Row 9.1-4: Sequential timeSync frames are processed.

9.4 TimeSyncTxPon state machine

9.4.1 Function

The TimeSyncTxPon state machine is responsible for saving time parameters from relayed timedSync
frames and forming timeSync frames for transmission over the attached link.

9.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with frames sent from the relay.
Q_TX_MAC—The queue identifier associated with frames sent to the MAC.

T10ms
A constant the represents a 10 ms value.

Table 9.1—TimeSyncRxPon state machine table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_RX_MAC))
!= NULL

1 — TEST

— 2 ponTimes = PonLocalTimes(pPtr); START

TEST !TimeSyncFrame(frame) 3 Enqueue(Q_MR_HOP, frame); START

— 4 // Summary of TimeSyncRxPon()
rPtr = &relayFrame;
SetRelayFrame(pPtr, rPtr);
lapseTime = ponTimes.ponTime – frame.ticksTime;
rPtr->grandTime = frame.grandTime;
rPtr->errorTime = frame.errorTime;
rPtr->localTime = ponsTimes.localTime –
MultiplyHi(lapseTime, PON_TIME);

rPtr->hopCount = frame.hopCount;
Enqueue(Q_MR_HOP, relayFrame);

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 69

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.4.3 State machine variables

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
port

A data structure containing port-specific information comprising the following:
txSyncFrame—The value of the next to-be-transmitted timeSync frame.
txSeenTime—The currentTime value when the last timeSync frame was received.

tickTime
A shared value representing current time. There is one instance of this synchronized variable for
each port. This 32-bit counter is incremented once very 16 ns.

9.4.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

StateToTimes(pPtr, frame)
Transfers the frame to the MAC, as specified by the C code of Annex F.

RelayToState(pPtr, frame, currentTime)
Copies a high-preference MAC-relay frame to port storage, as specified by the C code of Annex F.
(Low preference MAC-relay frames are simply discarded.)

TimeSyncFrame(frame)
Checks the frame contents to identify timeSync frame.

TRUE—The frame is a timeSync frame.
FALSE—Otherwise.

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.4.5 TimeSyncTxPon state machine table

The TimeSyncTxPon state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSyncPon frames, as illustrated in Table 9.2.

Row 9.2-1: Relayed frames are further checked before being processed.
Row 9.2-2: Transmit periodic timeSync frames.
Row 9.2-3: Wait for the next change-of-state.

Row 9.2-4: Non-timeSync frames are retransmitted in the standard fashion.
Row 9.2-5: Relevant timeSync parameters are saved for the next periodic transmission.
Row 9.2-6: MAC-relay frames from non grand-master stations are discarded.

Row 9.2-7: Discard obsolete timeSync frames.
Row 9.2-8: Form the next timeSync frame and enqueue this frame for immediate transmission.

Table 9.2—TimeSyncTxPon state machine table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_MR_HOP))
!= NULL

1 — SINK

(currentTime – pPtr->txSentTime)
> T10ms

2 pPtr->txLastTime = currentTime; SEND

— 3 currentTime = GetLocalTime(pPtr); START

SINK !TimeSyncFrame(frame) 4 RelayToMac(pPtr, frame); START

RelayToState(pPtr, frame) == TOP 5 pPtr->txTestTimer = currentTime;

— 6 —

SEND pPtr->txFrame.hopCount == HOPS 7 — START

— 8 // Summary of TimeSyncTxPon()
dPtr = &ponFrame;
localTimes = PonLocalTimes(pPtr);
grandTimes = StateToGrand(pPtr, localTime);
SetPonFrame(pPtr, dPtr);
dPtr->precedence = pPtr->txPrecedence;
dPtr->hopCount = pPtr->txHopCount;
dPtr->grandTime = bothTimes.grandTime;
dPtr->errorTime = bothTimes.errorTime;
dPtr->ticksTime = dualTimes.ticksTime;
EnqueueService(Q_S2_REQ, ponFrame);

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 71

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annexes

Annex A

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.1

[B2] IEEE Std 802-2002, IEEE Standards for Local and Metropolitan Area Networks: Overview and
Architecture.

[B3] IEEE Std 801-2001, IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture.

[B4] IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Bridges.

[B5] IEEE Std 1394-1995, High performance serial bus.

[B6] IEEE Std 1588-2002, IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.

[B7] IETF RFC 1305: Network Time Protocol (Version 3) Specification, Implementation and Analysis,
David L. Mills, March 19922

[B8] IETF RFC 2030: Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI, D. Mills,
October 1996.

1IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://standards.ieee.org/).

2IETF publications are available via the World Wide Web at http://www.ietf.org.

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
72 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex B

(informative)

Time-scale conversions

The synchronized value of grandTime (grand-master time) is based on the Precision Time Protocol (PTP).
Time is measured in international seconds since the start of January 1, 1970 Greenwich Mean Time (GMT).
Other representations of time can be readily derived from the values of grandTime and a distributed
leapSeconds value, as specified in Table B.1.

NOTE—The PTP time is commonly used in POSIX algorithms for converting elapsed seconds to the ISO 8601-2000
printed representation of time of day.

Table B.1—Time-scale conversions

Acronym Name
R

ow offset Algorithm

PTP Precision Time protocol 1 0 time = grandTime + offset;

GPS global positioning satellite 2 –315 964 819

TAI ???? 3 ????

UTC Coordinated Universal Time 4 TBD time = grandTime + offset – leapSeconds;

NTP Network Time Protocol 5 +2 208 988 800

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 73

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex C

(informative)

Bridging to IEEE Std 1394

To illustrate the sufficiency and viability of the AVB time-synchronization services, the transformation of
IEEE 1394 packets is illustrated.

C.1 Hybrid network topologies

C.1.1 Supported IEEE 1394 network topologies

This annex focuses on the use of AVB to bridge between IEEE 1394 domains, as illustrated in Figure C.1.
The boundary between domains is illustrated by a dotted line, which passes through a SerialBus adapter
station.

C.1.2 Unsupported IEEE 1394 network topologies

Another approach would be to use IEEE 1394 to bridge between IEEE 802.3 domains, as illustrated in
Figure C.2. While not explicitly prohibited, architectural features of such topologies are beyond the scope of
this working paper.

Figure C.1—IEEE 1394 leaf domains

Figure C.2—IEEE 802.3 leaf domains

IEEE 1394IEEE 1394 IEEE 802.3

IEEE 1394IEEE 802.3 IEEE 802.3

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
74 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

C.1.3 Time-of-day format conversions

The difference between AVB and IEEE 1394 time-of-day formats is expected to require conversions within
the AVB-to-1394 adapter. Although multiplies are involved in such conversions, multiplications by con-
stants are simpler than multiplications by variables. For example, a conversion between AVB and
IEEE 1394 involves no more than two 32-bit additions and one 16-bit addition, as illustrated in Figure C.3.

C.1.4 Grand-master precedence mappings

Compatible formats allow either an IEEE 1394 or IEEE 802.3 stations to become the network’s grand-mas-
ter station. While difference in format are present, each format can be readily mapped to the other, as illus-
trated in Figure C.4:

Figure C.3—Time-of-day format conversions

Figure C.4—Grand-master precedence mapping

seconds cycleOffsetcycleCount

seconds fraction

a
b = (a*125)>>7;

cycles fraction

c
d = (c*3)>>6;

b

d

Notes:
Two 32-bit additions for b:

b = ((a<<7) - (a<<2) + a) >> 7;
One 16-bit additions for d:

d = ((c<<2) + c) >> 6;

MSB LSB

macAddressHisp
MSB LSB

systemID pad

eui64

sp systemID

0

macAddressLo

macAddressHi pad macAddressLo

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 75

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex D

(informative)

Review of possible alternatives

D.1 Clock-synchronization alternatives

NOTE—This tables has not been reviewed for considerable time and is thus believed to be inaccurate.
However, the list is being maintained (until it can be updated) for its usefulness as talking points.

A comparison of the AVB and IEEE 1588 time-synchronization proposals is summarized in Table D.1.

Row 1: The size of a timeSync frame should be no larger than an Ethernet MTU, to minimize overhead.
AVB-SG: The size of a timeSync frame is an Ethernet MTU.
1588: The size of a timeSync frame is (to be provided).

Row 2: Cascaded phase-lock loops (PLLs) can yield undesirable whiplash responses to transients.
AVB-SG: There are no cascaded phase-lock loops.
1588: There are multiple initialization phases (to be provided).

Table D.1—Protocol comparison

Properties

R
ow

Descriptions

state AVB-SG 1588

timeSync MTU <= Ethernet MTU 1 yes

No cascaded PLL whiplash 2 yes

Number of frame types 3 1 > 1

Phaseless initialization sequencing 4 yes no

Topology 5 duplex links general

Grand-master precedence parameters 6 spanning-tree like special

Rogue-frame settling time, per hop 7 10 ms 1 s

Arithmetic complexity numbers 8 64-bit binary 2 x 32-bit binary

negatives 9 2’s complement signed

Master transfer discontinuities rate 10 gradual change

offset limitations 11 duplex-cable match
sampling error

Firmware friendly no delay constraints 12 yes

n-1 cycle sampling 13 yes

Time-of-day value precision offset resolution 14 233 ps

overflow interval 15 136 years

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
76 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 3: There number of frame types should be small, to reduce decoding and processing complexities.
AVB-SG: Only one form of timeSync frame is used.
1588: Multiple forms of timeSync frames are used (to be provided).

Row 4: Multiple initialization phases adds complexity, since miss-synchronized phases must be managed.
AVB-SG: There are no distinct initialization phases.
1588: There are multiple initialization phases (to be provided).

Row 5: Arbitrary interconnect topologies should be supported.
AVB-SG: Topologies are constrained to point-to-point full-duplex cabling.
1588: Supported topologies include broadcast interconnects.

Row 6: Grand-master selection precedence should be software configurable, like spanning-tree parameters.
AVB-SG: Grand-master selection parameters are based on spanning-tree parameter formats.
1588: Grand-master selection parameters are (to be provided).

Row 7: The lifetime of rogue frames should be minimized, to avoid long initialization sequences.
AVB-SG: Rogue frame lifetimes are limited by the 10 ms per-hop update latencies.
1588: Rogue frame lifetimes are limited by (to be provided).

Row 8: The time-of-day formats should be convenient for hardware/firmware processing.
AVB-SG: The time-of-day format is a 64-bit binary number.
1588: The time-of-day format is a (to be provided).

Row 9: The time-of-day negative-number formats should be convenient for hardware/firmware processing.
AVB-SG: The time-of-day format is a 2’s complement binary number.
1588: The time-of-day format is a (to be provided).

Row 10: The rate discontinuities caused by grand-master selection changes should be minimal.
AVB-SG: Smooth rate-change transitions with a 2.5 second time constant is provided.
1588: (To be provided).

Row 11: The time-of-day discontinuities caused by grand-master selection changes should be minimal.
AVB-SG: Maximum time-of-day errors are limited by cable-length asymmetry and time-snapshot

errors.
1588: (To be provided).

Row 12: Firmware friendly designs should not rely on fast response-time processing.
AVB-SG: Response processing time have no significant effect on time-synchronization accuracies.
1588: (To be provided).

Row 13: Firmware friendly designs should not rely on immediate or precomputed snapshot times.
AVB-SG: Snapshot times are never used within the current cycle, but saved for next-cycle transmission.
1588: (To be provided).

Row 14: The fine-grained time-of-day resolution should be small, to facilitate accurate synchronization.
AVB-SG: The 64-bit time-of-day timer resolution is 233 ps, less than expected snapshot accuracies.
1588: (To be provided).

Row 15: The time-of-day extent should be sufficiently large to avoid overflows within one’s lifetime.
AVB-SG: The 64-bit time-of-day timer overflows once every 136 years.
1588: (To be provided).

AVB BRIDGING JggDvj20050416/D0.239
2007-03-20

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 77

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex E

(informative)

Time-of-day format considerations

To better understand the rationale behind the ‘extended binary’ timer format, various possible formats are
described within this annex.

E.1 Possible time-of-day formats

E.1.1 Extended binary timer formats

The extended-binary timer format is used within this working paper and summarized herein. The 64-bit
timer value consist of two components: a 40-bit seconds and 40-bit fraction fields, as illustrated in
Figure 5.1.

The concatenation of 40-bit seconds and 40-bit fraction field specifies an 80-bit time value, as specified by
Equation E.1.

time = seconds + (fraction / 240) (E.1)
Where:

seconds is the most significant component of the time value.
fraction is the less significant component of the time value.

E.1.2 IEEE 1394 timer format

An alternate “1394 timer” format consists of secondCount, cycleCount, and cycleOffset fields, as illustrated
in Figure E.2. For such fields, the 12-bit cycleOffset field is updated at a 24.576MHz rate. The cycleOffset
field goes to zero after 3071 is reached, thus cycling at an 8kHz rate. The 13-bit cycleCount field is
incremented whenever cycleOffset goes to zero. The cycleCount field goes to zero after 7999 is reached, thus
restarting at a 1Hz rate. The remaining 7-bit secondCount field is incremented whenever cycleCount goes to
zero.

Figure 5.1—Global-time subfield format

Figure E.2—IEEE 1394 timer format

seconds fraction

40 bits

LSB

40 bits

MSB

secondCount cycleOffsetcycleCount

13 bits 12 bits7 bits

MSB LSB

JggDvj20050416/D0.239 WHITE PAPER CONTRIBUTION TO
2007-03-20

Contribution from: dvj@alum.mit.edu.
78 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

E.1.3 IEEE 1588 timer format

IEEE Std 1588-2002 timer format consists of seconds and nanoseconds fields components, as illustrated in
Figure E.3. The nanoseconds field must be less than 109; a distinct sign bit indicates whether the time repre-
sents before or after the epoch duration.

E.1.4 EPON timer format

The IEEE 802.3 EPON timer format consists of a 32-bit scaled nanosecond value, as illustrated in
Figure E.4. This clock is logically incremented once each 16 ns interval.

Figure E.3—IEEE 1588 timer format

Figure E.4—EPON timer format

seconds
MSB LSB

nanoSecondss

Legend: s: sign

nanoTicks
MSB LSB

seconds = nanoTicks/62500000

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 79

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Annex F

(informative)

C-code illustrations

This Annex provides code examples that illustrate the behavior of AVB entities. The code in this Annex is purely for informational purposes, and should not be construed
as mandating any particular implementation. In the event of a conflict between the contents of this Annex and another normative portion of this standard, the other
normative portion shall take precedence.

The syntax used for the following code examples conforms to ANSI X3T9-1995.

NOTE—This annex is provided as a placeholder for illustrative C-code. Locating the C code in one loca-
tion (as opposed to distributed throughout the working paper) is intended to simplify its review, extraction,
compilation, and execution by critical reviewers.
Also, placing this code in a distinct Annex allows the code to be conveniently formatted in 132-character
landscape mode. This eliminates the need to truncate variable names and comments, so that the resulting
code can be better understood by the reader.

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 80

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// ***
// 1 1 1 1
// 1 2 3 4 5 6 7 8 9 0 1 2 3
//3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012

// NOTE--The following code is portable with respect to endian ordering,
// but (for clarity and simplicity) assumes availability of 64-bit integers.

#include <assert.h>
#include <stdio.h>

// typedef unsigned char uint8_t; // 1-byte unsigned integer
// typedef unsigned short uint16_t; // 2-byte unsigned integer
// typedef unsigned int uint32_t; // 4-byte unsigned integer
// typedef unsigned long long uint64_t; // 8-byte unsigned integer

// typedef signed char int8_t; // 1-byte signed integer
// typedef signed short int16_t; // 2-byte signed integer
// typedef signed int int32_t; // 4-byte signed integer
// typedef signed long long int64_t; // 8-byte signed integer

// ***
// Revise the following timeSync frame parameters as the actual values become known
// ***

// Unique identifier values
#define AVB_TYPE 0 // The protocolType for AVB.
#define NEIGHBOR 0 // Neighbor multicast address.
#define TIME_SYNC 0 // The timeSync function.
#define VERSION_A 1 // The timeSync version.

// Generic macro definitions
#define ABS(a) ((a) < 0 ? (-a) : (a)) // Minimum value definition
#define BITS(type) (8 * sizeof(type))
#define CLIP_RATE(x, y) ((x) > ONE+(y) ? ONE+(y) : ((x) < ONE-(y) ? ONE-(y) : (x))) // Clip within specified rate
#define CLIP_SIZE(x, y) ((x) > (y) ? (y) : ((x) < (y) ? (y) : (x))) // Clip within specified value
#define COUNT 256 // Number of frameCount values
#define FALSE 0
#define HOPS 255 // Largest hop-count value
#define MASK(bits) (((uint64_t)1 << bits) - 1)
#define MIN(a, b) ((a) > (b) ? (b) : (a)) // Minimum value definition
#define ONE ((uint64_t)1 << 40) // Scaled fraction for 1.0
#define PON_TIME (DivideHi(16 * ((uint64_t)1 << 32), 1000000000))
#define PPM250 ((ONE * 250) / 1000000) // Scaled 250PPM fraction.
#define RADIO_TIME DivideHi(1 << (32 - 9), 1000000000 >> 9) // Ratio radio-ns to localTime
#define T10ms (ONE / 100) // A 10ms error interval
#define TIMEOUT TRUE
#define TOP 0
#define TRUE 1

// Field extract/deposit definitions
#define FieldToSigned(fPtr, field) \
 FrameToValue((uint8_t *)(&(fPtr->field)), sizeof fPtr->field, TRUE) // Convert field to signed

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 81

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#define FieldToUnsigned(fPtr, field) \
 FrameToValue((uint8_t *)(&(fPtr->field)), sizeof fPtr->field, FALSE) // Convert field to unsigned
#define BigToFrame(value, fPtr, field) \
 ValueToFrame(value, (uint8_t *)(&(fPtr->field)), sizeof fPtr->field) // Convert field to unsigned
#define LongToFrame(value, fPtr, field) \
 ValueToFrame(LongToBig(value), (uint8_t *)(&(fPtr->field)), sizeof fPtr->field)

typedef struct
{ // Double-precise integers
 int64_t upper; // Most-significant portion
 uint64_t lower; // Less significant portion
} BigNumber;

typedef uint8_t Boolean;
typedef uint8_t Class;
typedef uint8_t HopCount;
typedef uint8_t Port;
typedef uint16_t Variance;
typedef uint32_t ErrorTime;
typedef uint32_t PonTime;
typedef uint32_t RadioTime;
typedef int64_t LocalTime;
typedef BigNumber GrandTime;
typedef BigNumber Precedence; // Fields {priorities,clockID}
typedef BigNumber Preference; // Fields {precedence,hops,port}

typedef struct
{ // Double-precise integers
 GrandTime grandTime; // Grand-master synchronized
 LocalTime errorTime; // Side-band error values
} GrandTimes;

typedef struct
{ // Double-precise integers
 LocalTime localTime; // Local free-running
 RadioTime radioTime; // Side-band error values
} RadioTimes;

typedef struct
{ // Double-precise integers
 LocalTime localTime; // Local free-running
 PonTime ponTime; // PON media-dependent
} PonTimes;

typedef struct
{
 Precedence precedence;
 HopCount hopCount;
 Port port;
} TimeSyncInfo;

typedef struct
{
 TimeSyncInfo info;

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 82

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 LocalTime timer;
} GrandSyncInfo;

// May be obsoleted
typedef struct // Time-sync frame parameters
{
 uint8_t da[6]; // Destination address
 uint8_t sa[6]; // Source address
 uint8_t protocolType[2]; // Protocol identifier
 uint8_t function[1]; // Identifies timeSync frame
 uint8_t version[1]; // Specific format identifier
 uint8_t precedence[14]; // Grand-master precedence
 uint8_t grandTime[10]; // Grand-master time (for last frame)
 uint8_t errorTime[4]; // Cumulative GM-time errors
 uint8_t sourcePort[1]; // Transmit count (sequence number)
 uint8_t hopCount[1]; // Hop-count from the grand master
 uint8_t localTime[6]; // Transmitted timeSync time
 uint8_t tockTxTime[6]; // Opposite-link transmit time
} TimeSyncRelay;

typedef struct
{
 uint8_t frameCount; // Sequential consistency check
 GrandTime grandTime; // Received grand-master time
} ClockInfoReq;

typedef struct
{
 uint8_t infoCount; // Sequential consistency check
 GrandTime grandTime; // Grand-master time
} ClockInfoRes;

typedef struct
{
 uint8_t frameCount; // Sequential consistency check
 LocalTime localTime; // Station-local time
} DuplexRxInfo;

typedef struct
{
 uint8_t frameCount; // Sequential consistency check
 LocalTime localTime; // Station-local time
} DuplexTxInfo;

typedef struct // Time-sync frame parameters
{
 uint8_t da[6]; // Destination address
 uint8_t sa[6]; // Source address
 uint8_t protocolType[2]; // Protocol identifier
 uint8_t function[1]; // Identifies timeSync frame
 uint8_t version[1]; // Specific format identifier
 uint8_t precedence[14]; // Grand-master precedence
 uint8_t grandTime[10]; // Grand-master time (for last frame)

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 83

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 uint8_t errorTime[4]; // Cumulative GM-time errors
 uint8_t frameCount[1]; // Transmit count (sequence number)
 uint8_t hopCount[1]; // Hop-count from the grand master
 uint8_t localTime[6]; // Transmitted timeSync time
 uint8_t thatTxTime[6]; // Opposite-link transmit time
 uint8_t thatRxTime[6]; // Opposite-link received time
 uint8_t fcs[4]; // CRC integrity check
} TimeSyncDuplex;

typedef struct // Time-sync frame parameters
{
 uint8_t da[6]; // Destination address
 uint8_t sa[6]; // Source address
 uint8_t protocolType[2]; // Protocol identifier
 uint8_t function[1]; // Identifies timeSync frame
 uint8_t version[1]; // Specific format identifier
 uint8_t precedence[14]; // Grand-master precedence
 uint8_t grandTime[10]; // Grand-master time (for last frame)
 uint8_t errorTime[4]; // Cumulative GM-time errors
 uint8_t frameCount[1]; // Transmit count (sequence number)
 uint8_t hopCount[1]; // Hop-count from the grand master
 uint8_t ticksTime[4]; // Transmitted timeSync time
 uint8_t unused[8]; // Opposite-link transmit time
 uint8_t fcs[4]; // CRC integrity check
} TimeSyncPon;

typedef struct
{
 uint32_t ticksTime2; // Received snapshot
 uint32_t ticksTime3; // Transmit snapshot
} RadioInfo1Ind;

typedef struct
{
 uint32_t ticksTime1; // Transmit snapshot
 uint32_t ticksTime4; // Received snapshot
} RadioInfo1Con;

typedef struct
{
 uint32_t ticksTime4; // Received snapshot
 uint32_t roundTrip; // Duration snapshot
 GrandTime levelTime; // Grand-master like
 ErrorTime errorTime; // Grand-master error
 Precedence precedence; // Grand-master error
 HopCount hopCount; // Grand-master error
} RadioInfo2Req;

typedef struct // Port entity state
{
 uint64_t macAddress; // MAC address of the port
 uint8_t portID; // Destinctive port identifier
 BigNumber txPrecedence; // Grand-master preference
 uint8_t txHopCount; // Next hop-count value

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 84

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 LocalTime txTestTimer; // Relay-frame received time
 LocalTime txThisTock; // Relay-frame tock-time
 LocalTime txThatTock; // Relay-frame tock-time
 LocalTime txTockTime; // Clock-master’s tockTime
 LocalTime txPastTime; // Back-interpolation time
 BigNumber txPreference; // Grand-master preference
 LocalTime txGrandRate0; // Recent grandTime rating
 LocalTime txGrandRate1; // Remote grandTime rating
 LocalTime txErrorRate0; // Recent errorTime rating
 LocalTime txErrorRate1; // Remote errotTime rating
 GrandTime txGrandTime0; // Recent grandTime endpoint
 GrandTime txGrandTime1; // Remote grandTime midpoint
 LocalTime txLocalTime0; // Recent localTime endpoint
 LocalTime txLocalTime1; // Remote localTime midpoint
 LocalTime txErrorTime0; // Recent errorTime endpoint
 LocalTime txErrorTime1; // Remote errorTime midpoint
} PortData;

typedef struct // Port entity state
{
 uint64_t macAddress; // MAC address of the port
 uint8_t portID; // Destinctive port identifier
 BigNumber txPrecedence; // Grand-master preference
 uint8_t txHopCount; // Next hop-count value
 LocalTime txTestTimer; // Relay-frame received time
 LocalTime txThisTock; // Relay-frame tock-time
 LocalTime txThatTock; // Relay-frame tock-time
 LocalTime txTockTime; // Clock-master’s tockTime
 LocalTime txPastTime; // Back-interpolation time
 BigNumber txPreference; // Grand-master preference
 LocalTime txGrandRate0; // Recent grandTime rating
 LocalTime txGrandRate1; // Remote grandTime rating
 LocalTime txErrorRate0; // Recent errorTime rating
 LocalTime txErrorRate1; // Remote errotTime rating
 GrandTime txGrandTime0; // Recent grandTime endpoint
 GrandTime txGrandTime1; // Remote grandTime midpoint
 LocalTime txLocalTime0; // Recent localTime endpoint
 LocalTime txLocalTime1; // Remote localTime midpoint
 LocalTime txErrorTime0; // Recent errorTime endpoint
 LocalTime txErrorTime1; // Remote errorTime midpoint

 LocalTime rxSnapShot0; // This frame’s arrival time
 LocalTime rxSnapShot1; // Past frame’s arrival time
 Precedence rxPrecedence; // Station’s precedence
 uint8_t rxFrameCount; // Clock-master frameCount
} PortDataClock;

typedef struct // Port entity state
{
 uint64_t macAddress; // MAC address of the port
 uint8_t portID; // Destinctive port identifier
 BigNumber txPrecedence; // Grand-master preference
 uint8_t txHopCount; // Next hop-count value
 LocalTime txTestTimer; // Relay-frame received time
 LocalTime txThisTock; // Relay-frame tock-time

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 85

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 LocalTime txThatTock; // Relay-frame tock-time
 LocalTime txTockTime; // Clock-master’s tockTime
 LocalTime txPastTime; // Back-interpolation time
 BigNumber txPreference; // Grand-master preference
 LocalTime txGrandRate0; // Recent grandTime rating
 LocalTime txGrandRate1; // Remote grandTime rating
 LocalTime txErrorRate0; // Recent errorTime rating
 LocalTime txErrorRate1; // Remote errotTime rating
 GrandTime txGrandTime0; // Recent grandTime endpoint
 GrandTime txGrandTime1; // Remote grandTime midpoint
 LocalTime txLocalTime0; // Recent localTime endpoint
 LocalTime txLocalTime1; // Remote localTime midpoint
 LocalTime txErrorTime0; // Recent errorTime endpoint
 LocalTime txErrorTime1; // Remote errorTime midpoint

 LocalTime txSnapShot; // Transmit frame snapshot
 uint8_t txFrameCount; // The timeSync frame count.
 uint8_t txSnapCount; // The indication’s frameCount
 uint8_t rxSnapCount; // The indication’s frameCount
 uint8_t rxFrameCount; // The timeSync’s frameCount
 LocalTime rxSnapShot0; // This frame’s arrival time
 LocalTime rxSnapShot1; // Past frame’s arrival time
 LocalTime rxThisTxTime; // Frame transmission time
 LocalTime rxThisRxTime; // Frame reception time
 LocalTime rxThisTime0; // Same as rxSnapShot[n-2]
 LocalTime rxThatTime0; // Same as frame.localTime[n-2]
 LocalTime rxThisTime1; // Same as rxSnapShot[n-1]
 LocalTime rxThatTime1; // Same as frame.localTime[n-1]
 uint64_t rxRated; // Rate difference from neighbor
} PortDataDuplex;

typedef struct // Port entity state
{
 uint64_t macAddress; // MAC address of the port
 uint8_t portID; // Destinctive port identifier
 BigNumber txPrecedence; // Grand-master preference
 uint8_t txHopCount; // Next hop-count value
 LocalTime txTestTimer; // Relay-frame received time
 LocalTime txThisTock; // Relay-frame tock-time
 LocalTime txThatTock; // Relay-frame tock-time
 LocalTime txTockTime; // Clock-master’s tockTime
 LocalTime txPastTime; // Back-interpolation time
 BigNumber txPreference; // Grand-master preference
 LocalTime txGrandRate0; // Recent grandTime rating
 LocalTime txGrandRate1; // Remote grandTime rating
 LocalTime txErrorRate0; // Recent errorTime rating
 LocalTime txErrorRate1; // Remote errotTime rating
 GrandTime txGrandTime0; // Recent grandTime endpoint
 GrandTime txGrandTime1; // Remote grandTime midpoint
 LocalTime txLocalTime0; // Recent localTime endpoint
 LocalTime txLocalTime1; // Remote localTime midpoint
 LocalTime txErrorTime0; // Recent errorTime endpoint
 LocalTime txErrorTime1; // Remote errorTime midpoint

 LocalTime txLocalTime; // Normalized standard time

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 86

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 PonTime txPonTime; // Media-dependent time
} PortDataPon;

typedef struct // Port entity state
{
 uint64_t macAddress; // MAC address of the port
 uint8_t portID; // Destinctive port identifier
 BigNumber txPrecedence; // Grand-master preference
 uint8_t txHopCount; // Next hop-count value
 LocalTime txTestTimer; // Relay-frame received time
 LocalTime txThisTock; // Relay-frame tock-time
 LocalTime txThatTock; // Relay-frame tock-time
 LocalTime txTockTime; // Clock-master’s tockTime
 LocalTime txPastTime; // Back-interpolation time
 BigNumber txPreference; // Grand-master preference
 LocalTime txGrandRate0; // Recent grandTime rating
 LocalTime txGrandRate1; // Remote grandTime rating
 LocalTime txErrorRate0; // Recent errorTime rating
 LocalTime txErrorRate1; // Remote errotTime rating
 GrandTime txGrandTime0; // Recent grandTime endpoint
 GrandTime txGrandTime1; // Remote grandTime midpoint
 LocalTime txLocalTime0; // Recent localTime endpoint
 LocalTime txLocalTime1; // Remote localTime midpoint
 LocalTime txErrorTime0; // Recent errorTime endpoint
 LocalTime txErrorTime1; // Remote errorTime midpoint

 RadioTime txSnapShot1; // Saved ticksTime1
 RadioTime txRoundTrip; // Saved ticksTime4-ticksTime1
 RadioTime rxTurnRound; // Turn-round delay times
 RadioTime txSnapShot4; // Saved ticksTime4
 RadioTime rxRoundTrip; // Saved ticksTime4-ticksTime1
} PortDataRadio;

// Basic interface routines
Boolean TimeSyncRxClockA(PortDataClock *, ClockInfoReq); // Check frame’s validity
TimeSyncRelay TimeSyncRxClockB(PortDataClock *, ClockInfoReq); // Generate MAC-relay frame
ClockInfoRes TimeSyncTxClock(PortDataClock *, uint8_t); // Clock-slave updates

Boolean RelayToState(PortData *, TimeSyncRelay); // Standard interpolation
Boolean PreferenceBetter(GrandSyncInfo *, TimeSyncInfo); // Detects a better preference
void PreferenceTimeout(PortData *pPtr); // Sets precedence to worst

void TimeSyncRxDuplexA(PortDataDuplex *, DuplexRxInfo);
Boolean TimeSyncRxDuplexB(PortDataDuplex *, TimeSyncDuplex);
Boolean TimeSyncRxDuplexC(PortDataDuplex *, TimeSyncDuplex);
void TimeSyncRxDuplexD(PortDataDuplex *, TimeSyncDuplex);
TimeSyncRelay TimeSyncRxDuplexE(PortDataDuplex *, TimeSyncDuplex);
void TimeSyncTxDuplex(PortDataDuplex *, TimeSyncDuplex *);
void SetDuplexFrame(PortData *, TimeSyncDuplex *);

void TimeSyncRxRadio1Indicate(PortDataRadio *, RadioInfo1Ind);
TimeSyncRelay TimeSyncRxRadio2Indicate(PortDataRadio *, RadioInfo2Req);
void TimeSyncTxRadio1Confirm(PortDataRadio *, RadioInfo1Con);
RadioInfo2Req TimeSyncTxRadio2Request(PortDataRadio *);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 87

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

TimeSyncRelay TimeSyncRxPon(PortDataPon *, TimeSyncPon); // For Ethernet-PON
TimeSyncPon TimeSyncTxPon(PortDataPon *); // “
void SetPonFrame(PortData *, TimeSyncPon *); // “

GrandTimes StateToGrand(PortData *, LocalTime); // localTime=>grandTime
void SetRelayFrame(PortData *, TimeSyncRelay *); // Set relay’d timeSync
PonTimes PonLocalTimes(PortDataPon *); // Get localTime/ticksTime
RadioTimes RadioLocalTimes(PortDataRadio *); // Get localTime/ticksTime
LocalTime GetLocalTime(PortData *); // Get localTime

// A minimalist double-width integer library
BigNumber BigAddition(BigNumber, BigNumber);
int BigCompare(BigNumber, BigNumber);
BigNumber BigShift(BigNumber, int8_t);
BigNumber BigSubtract(BigNumber, BigNumber);
int64_t MultiplyHi(uint64_t, int32_t);
int64_t DivideHi(int64_t, int64_t);

// Other routines
Precedence FieldsToPrecedence(uint8_t, uint8_t, uint16_t, uint8_t, uint64_t);
BigNumber FrameToValue(uint8_t *, uint16_t, Boolean);
BigNumber FormPreference(BigNumber, uint8_t, uint8_t);
BigNumber LongToBig(LocalTime);
Port PreferenceToPort(Preference);
HopCount PreferenceToHops(Preference);
void ValueToFrame(BigNumber, uint8_t *, uint16_t);
GrandTime LevelToGrand(GrandTime);
GrandTime GrandToLevel(GrandTime);

// ***
// Standard routines, called by corresponding state machines.
// ***

// Sets common state to allow grandTime values to be back-interpolated
// Arguments:
// gPtr - associated state-maintaining data structure
// rxInfo - MA_SYNC.indication parameters
Boolean
PreferenceBetter(GrandSyncInfo *gPtr, TimeSyncInfo rxInfo)
{
 Preference preferenceNew, preferenceOld;

 assert(gPtr != NULL);
 preferenceNew =
 FormPreference(rxInfo.precedence, rxInfo.hopCount, rxInfo.port);
 preferenceOld =
 FormPreference(gPtr->info.precedence, gPtr->info.hopCount, gPtr->info.port);
 return(BigCompare(preferenceNew,preferenceOld) >= 0);
}

// Sets common state to allow grandTime values to be back-interpolated
// Arguments:

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 88

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// pPtr - associated state-maintaining data structure
// rxFrame - MAC-relay frame contents
Boolean
RelayToState(PortData *pPtr, TimeSyncRelay rxFrame)
{
 TimeSyncRelay *rxPtr;
 Preference sentPreference, bestPreference;
 Precedence precedence;
 GrandTime grandTime;
 LocalTime currentTime, localTime, errorTime, thisDelta0, thisDelta1, myLocalTime;
 LocalTime grandDelta, grandRated, errorRated;
 LocalTime thisTock, thatTock, tockTime;
 uint8_t hopCount, newHops, oldHops, sourcePort;
 Boolean best, none, same;

 assert(pPtr != NULL);
 rxPtr = &rxFrame;

 sourcePort = FieldToUnsigned(rxPtr, sourcePort).lower; // Source-port value
 hopCount = FieldToUnsigned(rxPtr, hopCount).lower; // Hop-count parameter
 precedence = FieldToUnsigned(rxPtr, precedence); // GM precedence value
 grandTime = FieldToSigned(rxPtr, grandTime); // Grand-master time value
 errorTime = FieldToUnsigned(rxPtr, errorTime).lower; // Grand-master error value
 localTime = FieldToSigned(rxPtr, localTime).lower; // Neighbor-local time value
 thatTock = FieldToSigned(rxPtr, tockTxTime).lower; // Neighbor-local time value
 currentTime = GetLocalTime((PortData *)pPtr); // Current localTime value

 sentPreference = FormPreference(precedence, hopCount, sourcePort); // Received port precedence
 bestPreference = pPtr->txPreference; // Previous best precedence
 same = (PreferenceToPort(bestPreference) == sourcePort); // This was preferred port
 best = (BigCompare(sentPreference, bestPreference) <= 0) && (hopCount != HOPS); // This port is preferred
 none = (PreferenceToHops(bestPreference) == HOPS); // Obsolete hop count
 if (!same && !best && !none) // Not-higher preference
 return(!TOP); // updates are ignored

 oldHops = PreferenceToHops(bestPreference); // Previous hopCount value
 pPtr->txPreference = sentPreference; // Update the preference
 newHops = PreferenceToHops(bestPreference); // Updated hopCount value

 pPtr->txTestTimer = myLocalTime; // Timeout reset from now
 if (newHops <= oldHops) // Normal operation yields
 pPtr->txHopCount = newHops + 1; // hop-count from source
 else // Apparent looping forces
 pPtr->txHopCount = MIN(HOPS, newHops + 1 + (HOPS + newHops) / 2); // accelerated aging
 pPtr->txThatTock = thatTock; // Neighbor-local time value
 thisTock = pPtr->txThisTock; // Neighbor-local time value
 pPtr->txTockTime = tockTime = (2 * (thisTock + MIN(thisTock, thatTock))); // Interpolation-rate update
 pPtr->txPastTime = tockTime - (pPtr->txThisTock + pPtr->txThatTock) / 2; // Past interpolation delay

 thisDelta0 = (localTime - pPtr->txLocalTime0);
 thisDelta1 = (localTime - pPtr->txLocalTime1);
 if (thisDelta0 > (tockTime - thisTock) && thisDelta1 > 2 * tockTime) // Minimum sampling interval
 {
 pPtr->txLocalTime1 = pPtr->txLocalTime0; // Saved localTime[n-1]
 pPtr->txGrandTime1 = pPtr->txGrandTime0; // Saved grandTime[n-1]

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 89

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 pPtr->txErrorTime1 = pPtr->txErrorTime0; // Saved errorTime[n-1]
 pPtr->txGrandRate1 = pPtr->txGrandRate0; // Saved grandRate[n-1]
 pPtr->txErrorRate1 = pPtr->txErrorRate0; // Saved errorRate[n-1]

 grandDelta = BigSubtract(grandTime, pPtr->txGrandTime0).lower; // The grandTime advance
 grandRated = DivideHi(grandDelta, thisDelta0); // Baseline grandRate[n]
 pPtr->txGrandRate0 = CLIP_RATE(grandRated, PPM250); // In-bound grandRate[n]
 errorRated = DivideHi(errorTime - pPtr->txErrorTime0, thisDelta0); // Baseline errorRate[n]
 pPtr->txErrorRate0 = errorRated; // In-bound errorRate[n]

 pPtr->txGrandTime0 = grandTime; // Saved grandTime[n]
 pPtr->txLocalTime0 = localTime; // Saved localTime[n]
 pPtr->txErrorTime0 = errorTime; // Saved errorTime[n]
 }
 return(TOP);
}

// Checks for standard clock-master sequence-count consistency
// Arguments:
// pPtr - associated state-maintaining data structure
// infoReq - clock-master inormation with count value
Boolean
TimeSyncRxClockA(PortDataClock *pPtr, ClockInfoReq infoReq)
{
 uint8_t count;

 assert(pPtr != NULL); // Code-correctness check
 pPtr->rxSnapShot1 = pPtr->rxSnapShot0; // Save snapshot delayed
 pPtr->rxSnapShot0 = GetLocalTime((PortData *)pPtr); // Snapshot localTime value
 count = (pPtr->rxFrameCount + 1) % COUNT; // Frame count expectation
 pPtr->rxFrameCount = infoReq.frameCount; // update frameCount value
 return(count != infoReq.frameCount); // Is frameCount consist?
}

// Generates a timeSyncRelay frame, based on clock-master inputs
// Arguments:
// pPtr - associated state-maintaining data structure
// infoReq - clock-master inormation with count value
TimeSyncRelay
TimeSyncRxClockB(PortDataClock *pPtr, ClockInfoReq infoReq)
{
 TimeSyncRelay *txPtr, result;

 assert(pPtr != NULL); // Code-correctness check
 txPtr = &result; // Frame storage preparation

 SetRelayFrame((PortData *)pPtr, txPtr); // Standard relay-frame info
 LongToFrame(0, txPtr, hopCount); // Clock’s GM distance
 BigToFrame(pPtr->rxPrecedence, txPtr, precedence); // Clock’s GM precedence
 BigToFrame(infoReq.grandTime, txPtr, grandTime); // Clock’s GM time
 LongToFrame(0, txPtr, errorTime); // Zero errorTime value
 LongToFrame(pPtr->rxSnapShot0, txPtr, localTime); // Associated localTime
 return(result);
}

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 90

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// Generates a clock-master indication, after being triggered
// Arguments:
// pPtr - associated state-maintaining data structure
// infoCount - clock-master request sequence number
ClockInfoRes
TimeSyncTxClock(PortDataClock *pPtr, uint8_t infoCount)
{
 GrandTimes grandTimes;
 ClockInfoRes result;
 LocalTime currentTime;

 assert(pPtr != NULL); // Code-correctness check
 currentTime = GetLocalTime((PortData *)pPtr); // Snapshot localTime value
 grandTimes = StateToGrand((PortData *)pPtr, currentTime); // Interpolated times
 result.infoCount = infoCount; // Tag from the request
 result.grandTime = // Combine the grandTime
 BigAddition(grandTimes.grandTime, LongToBig(grandTimes.errorTime)); // and errorTime values
 return(result); // Return tagged indication
}

// Restores the precedence level after missing grand-master indications
// Arguments:
// pPtr - associated state-maintaining data structure
void
PreferenceTimeout(PortData *pPtr)
{
 assert(pPtr != NULL); // Code-correctness check
 pPtr->txPreference = FormPreference(pPtr->txPrecedence, 255, 255); // Worst-case precedence
 pPtr->txTestTimer = GetLocalTime(pPtr);
}

// >>>> THIS CODE IS CURRENTLY STUBBED TO SUPPORT COMPILATION <<<<
// Returns the times associated with this station:
// Arguments:
// pPtr - associated state-maintaining data structure
// Results:
// localTime -- normalized 48-bit local-time
LocalTime
GetLocalTime(PortData *pPtr)
{
 LocalTime localTime;

 assert(pPtr != NULL); // Pointer consistency
 localTime = 0; // To-be-customized
 return(localTime); // Returned value
}

// ***
// TimeSync specific library, called by state machines.
// ***

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 91

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// Returns the times associated with this station:
// Arguments:
// pPtr - associated state-maintaining data structure
// localTime - station-local time base for returned values
// Results:
// grandTime - normalized 80-bit grand-master synchronized
// errorTime - normalized 40-bit grand-master compensation
GrandTimes
StateToGrand(PortData *pPtr, LocalTime localTime)
{
 GrandTimes grandTimes;
 LocalTime lapseTime, grandRated, errorRated, localDiff, grandDiff, errorHere;

 assert(pPtr != NULL); // Code-correctness check
 lapseTime = localTime - pPtr->txPastTime; // Back-in-time placement
 if (lapseTime < pPtr->txLocalTime1)
 { // Before pivot; based
 grandRated = pPtr->txGrandRate1; // on remote grandRate
 errorRated = pPtr->txErrorRate1; // and remote errorRate
 } else { // After pivot; based
 grandRated = pPtr->txGrandRate0; // on recent grandRate
 errorRated = pPtr->txErrorRate0; // and recent errorRate
 }

 localDiff = lapseTime - pPtr->txLocalTime1; // Local time after pivot
 grandDiff = pPtr->txPastTime + MultiplyHi(localDiff, grandRated); // Grand time after pivot
 grandTimes.grandTime = BigAddition(pPtr->txGrandTime1, LongToBig(grandDiff)); // Interpolated grandTime
 errorHere = pPtr->txErrorTime1 + MultiplyHi(localDiff, errorRated); // Interpolated errorTime
 grandTimes.errorTime = errorHere + pPtr->txPastTime * (grandRated - ONE); // Back-in-time errors
 return(grandTimes); // Return updated times
}

// Sets the common information associated with MAC-relay frames:
// Arguments:
// pPtr - associated state-maintaining data structure
// txPtr - pointer to associated MAC-relay frame
// Results:
// properly initialized values
void
SetRelayFrame(PortData *pPtr, TimeSyncRelay *txPtr)
{
 LongToFrame(NEIGHBOR, txPtr, da); // Neighbor multicast address
 LongToFrame(pPtr->macAddress, txPtr, sa); // This port’s MAC address
 LongToFrame(AVB_TYPE, txPtr, protocolType); // The AVB protocol
 LongToFrame(TIME_SYNC, txPtr, function); // The timeSync frame in AVB
 LongToFrame(VERSION_A, txPtr, version); // This version number
 LongToFrame(pPtr->portID, txPtr, sourcePort); // Source-port identifier
 LongToFrame(pPtr->txThisTock, txPtr, tockTxTime); // Source sampling rate
}

// ***
// Ethernet-duplex routines, called by corresponding state machines.

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 92

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// ***

// Updates state when a receive-PHY indication is observed:
// Arguments:
// pPtr - associated state-maintaining data structure
// rxInfo - receive-PHY snapshot indication
void
TimeSyncRxDuplexA(PortDataDuplex *pPtr, DuplexRxInfo rxInfo)
{
 assert(pPtr != NULL);
 pPtr->rxSnapShot1 = pPtr->rxSnapShot0;
 pPtr->rxSnapShot0 = rxInfo.localTime;
 pPtr->rxSnapCount = rxInfo.frameCount;
}

// Checks for sequential frameCount consistency errors
// Arguments:
// pPtr - associated state-maintaining data structure
// rxFrame - received frame with frameCount field
Boolean
TimeSyncRxDuplexB(PortDataDuplex *pPtr, TimeSyncDuplex rxFrame)
{
 TimeSyncDuplex *rxPtr;
 uint8_t frameCount, count;

 assert(pPtr != NULL);
 rxPtr = &rxFrame;
 frameCount = FieldToUnsigned(rxPtr, frameCount).lower;
 count = (pPtr->rxFrameCount + 1) % COUNT;
 pPtr->rxFrameCount = frameCount;
 return(count != frameCount);
}

// Determines when periodic neighbor-rate calibrations are required
// Arguments:
// pPtr - associated state-maintaining data structure
// rxFrame - received frame with frameCount field
Boolean
TimeSyncRxDuplexC(PortDataDuplex *pPtr, TimeSyncDuplex rxFrame)
{
 TimeSyncDuplex *rxPtr;
 LocalTime thisTime;
 Boolean recent, remote;

 assert(pPtr != NULL);
 rxPtr = &rxFrame;

 thisTime = pPtr->rxSnapShot1; // Frame arrival time
 recent = (thisTime - pPtr->rxThisTime0) >= (3 * pPtr->txTockTime); // Advanced from recent past
 remote = (thisTime - pPtr->rxThisTime1) >= (8 * pPtr->txTockTime); // Advanced from remote past
 return(recent && remote); // Rate sampling indication
}

// Performs periodic neighbor-rate calibrations.
// Arguments:

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 93

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// pPtr - associated state-maintaining data structure
// rxFrame - received frame with frameCount field
void
TimeSyncRxDuplexD(PortDataDuplex *pPtr, TimeSyncDuplex rxFrame)
{
 TimeSyncDuplex *rxPtr;
 LocalTime thisDelta;
 LocalTime thatTime, thatDelta;

 assert(pPtr != NULL);
 rxPtr = &rxFrame;
 thatTime = FieldToSigned(rxPtr, localTime).lower; // Frame transmission time.

 thisDelta = pPtr->rxSnapShot1 - pPtr->rxThisTime1; // Station’s timer changes
 thatDelta = thatTime - pPtr->rxThatTime1; // Neighbor’s timer changes
 pPtr->rxThisTime1 = pPtr->rxThisTime0; // The local-time snapshot
 pPtr->rxThatTime1 = pPtr->rxThatTime0; // The grand-master snapshot
 pPtr->rxThisTime0 = pPtr->rxSnapShot1; // The local-time snapshot
 pPtr->rxThatTime0 = thatTime; // The grand-master snapshot
 pPtr->rxRated = DivideHi(thatDelta, thisDelta); // Neighbor’s timer rating
}

// Forms MAC-relay frame; grand-master time compensated for cable delay
// Arguments:
// pPtr - associated state-maintaining data structure
// rxFrame - received frame with frameCount field
TimeSyncRelay
TimeSyncRxDuplexE(PortDataDuplex *pPtr, TimeSyncDuplex rxFrame)
{
 TimeSyncDuplex *rxPtr;
 TimeSyncRelay relayFrame, *txPtr;
 GrandTime grandTime;
 LocalTime thisTxTime, thatTxTime, thatRxTime, localTime;
 LocalTime roundTrip, turnRound, cableDelay;
 uint8_t hopCount;

 assert(pPtr != NULL);
 rxPtr = &rxFrame;
 txPtr = &relayFrame;

 hopCount = FieldToUnsigned(rxPtr, hopCount).lower; // Hops from the GM station
 grandTime = FieldToSigned(rxPtr, grandTime); // Grand-master time
 thisTxTime = FieldToSigned(rxPtr, localTime).lower; // Frame transmission time
 thatTxTime = FieldToSigned(rxPtr, thatTxTime).lower; // Opposing transmit time
 thatRxTime = FieldToSigned(rxPtr, thatRxTime).lower; // Opposing received time

 localTime = pPtr->rxSnapShot1; // Frame-arrival time
 roundTrip = (localTime - thatTxTime); // Looped-response delay
 turnRound = (thisTxTime - thatRxTime); // Remote-response delay
 cableDelay = MIN(0, roundTrip - MultiplyHi(turnRound, pPtr->rxRated)); // Computed cable delay
 grandTime = BigAddition(grandTime, LongToBig(cableDelay)); // Delay compensations

 pPtr->rxThisTxTime = thisTxTime; // This link’s sampled values
 pPtr->rxThisRxTime = localTime = pPtr->rxSnapShot1; // go-back on opposing link

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 94

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 SetRelayFrame((PortData *)pPtr, txPtr); // Set basic parameters
 BigToFrame(grandTime, txPtr, grandTime); // Compensated GM time
 LongToFrame(localTime, txPtr, localTime); // Observed arrival time
 LongToFrame(hopCount, txPtr, hopCount); // Hops from grand master
 return(relayFrame);
}

// Updates state when a transmit-PHY indication is observed:
// Arguments:
// pPtr - associated state-maintaining data structure
// txInfo - transmit-PHY snapshot indication
void
TimeSyncTxDuplexA(PortDataDuplex *pPtr, DuplexTxInfo txInfo)
{
 assert(pPtr != NULL);
 pPtr->txSnapShot = txInfo.localTime;
 pPtr->txSnapCount = txInfo.frameCount;
}

// Forms a MAC-level frame for duplex-line transmission
// Arguments:
// pPtr - associated state-maintaining data structure
// Result:
// duplexFrame - MAC frame for duplex-link transmission
TimeSyncDuplex
TimeSyncTxDuplexB(PortDataDuplex *pPtr)
{
 TimeSyncDuplex duplexFrame, *txPtr;
 GrandTimes grandTimes;
 uint8_t frameCount;

 assert(pPtr != NULL); // Code-correctness check
 txPtr = &duplexFrame; // Pointer to results
 grandTimes = StateToGrand((PortData *)pPtr, pPtr->txSnapShot); // Interpolated times
 pPtr->txFrameCount = (frameCount = (pPtr->txSnapCount + 1) % COUNT); // Increment frameCount

 SetDuplexFrame((PortData *)pPtr, txPtr); // Duplex Ethernet frame
 LongToFrame(pPtr->txHopCount, txPtr, hopCount); // The ~GM distance.
 LongToFrame(frameCount, txPtr, frameCount); // Source-port identifier
 BigToFrame(grandTimes.grandTime, txPtr, grandTime); // grandTime at txSnapShot
 LongToFrame(grandTimes.errorTime, txPtr, errorTime); // Next errorTime value
 LongToFrame(pPtr->txSnapShot, txPtr, localTime); // Transmitted frame time
 LongToFrame(pPtr->rxThisTxTime, txPtr, thatTxTime); // Opposing transmit time
 LongToFrame(pPtr->rxThisRxTime, txPtr, thatRxTime); // Opposing received time
 return(duplexFrame);
}

// Sets the common information associated with MAC-relay frames:
// Arguments:
// pPtr - associated state-maintaining data structure
// txPtr - pointer to associated duplex-link frame
// Results:

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 95

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// properly initialized values
void
SetDuplexFrame(PortData *pPtr, TimeSyncDuplex *txPtr)
{
 LongToFrame(NEIGHBOR, txPtr, da); // Neighbor multicast address
 LongToFrame(pPtr->macAddress, txPtr, sa); // This port’s MAC address
 LongToFrame(AVB_TYPE, txPtr, protocolType); // The AVB protocol
 LongToFrame(TIME_SYNC, txPtr, function); // The timeSync frame in AVB
 LongToFrame(VERSION_A, txPtr, version); // This version number
}

// ***
// Wireless 802.11v wireless routines, called by corresponding state machines.
// ***

// Updates state when a MLME_PRESENCE_REQUEST.indication is received.
// Arguments:
// pPtr - associated state-maintaining data structure
// info1Ind - indication parameters
void
TimeSyncRxRadio1Indicate(PortDataRadio *pPtr, RadioInfo1Ind info1Ind)
{
 assert(pPtr != NULL);
 pPtr->rxTurnRound = info1Ind.ticksTime3 - info1Ind.ticksTime2;
}

// Generates MAC-relay frames based on MLME_PRESENCE_RESPONSE.indication parameters
// Arguments:
// pPtr - associated state-maintaining data structure
// info2Req - information supplied by the service interface
// Result - a timedSync frame destined for the MAC relay
TimeSyncRelay
TimeSyncRxRadio2Indicate(PortDataRadio *pPtr, RadioInfo2Req info2Req)
{
 TimeSyncRelay result, *txPtr;
 GrandTime grandTime;
 RadioTimes localTimes;
 LocalTime twice, moved;

 assert(pPtr != NULL);
 txPtr = &result;

 localTimes = RadioLocalTimes(pPtr); // Station local times
 twice = info2Req.roundTrip - pPtr->rxTurnRound; // Cable delay ticks
 moved = localTimes.radioTime - info2Req.ticksTime4; // Elapsed time
 grandTime = BigAddition(LevelToGrand(info2Req.levelTime), // Grand-master time
 LongToBig(MultiplyHi((twice/2) + moved, RADIO_TIME)));

 SetRelayFrame((PortData *)pPtr, txPtr); // Set basic parameters
 BigToFrame(grandTime, txPtr, grandTime); // Passing GM time.
 LongToFrame(localTimes.localTime, txPtr, localTime); // Observed rx-snapshot time.
 return(result);
}

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 96

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// Generates parameters for MLME_PRESENCE_REQUEST.confirm.
// Arguments:
// pPtr - associated state-maintaining data structure
// rxInfo1Req - returned from MLME_PRESENCE_REQUEST.confirm
void
TimeSyncTxRadio1Confirm(PortDataRadio *pPtr, RadioInfo1Con info1Con)
{
 assert(pPtr != NULL);
 pPtr->txSnapShot1 = info1Con.ticksTime1;
 pPtr->txSnapShot4 = info1Con.ticksTime4;
}

// Generates parameters for MLME_PRESENCE_RESPONSE.request.
// Arguments:
// pPtr - associated state-maintaining data structure
// Result:
// time4 - the requester’s concluding time snapshot
// time5 - the observation interval: time4-time1
// radioTime - A re-encoded version of grandTime
RadioInfo2Req
TimeSyncTxRadio2Request(PortDataRadio *pPtr)
{
 RadioInfo2Req result;
 GrandTimes grandTimes;
 RadioTimes localTimes;
 LocalTime localTime;
 RadioTime lapseTime;

 assert(pPtr != NULL); // Code-correctness check
 localTimes = RadioLocalTimes(pPtr);
 lapseTime = localTimes.radioTime - pPtr->txSnapShot4; // Elapsed time
 localTime = localTimes.localTime - MultiplyHi(lapseTime, RADIO_TIME); // Extrapolate localTime
 grandTimes = StateToGrand((PortData *)pPtr, localTime);

 result.ticksTime4 = pPtr->txSnapShot4; // Snapshot time transfer
 result.roundTrip = pPtr->txRoundTrip; // Snapshot diff transfer
 result.levelTime = GrandToLevel(grandTimes.grandTime); // Grand-master radio time
 result.errorTime = grandTimes.errorTime; // Grand-master error time
 result.precedence = pPtr->txPrecedence; // Grand-master error time
 result.hopCount = pPtr->txHopCount; // Grand-master error time
 return(result);
}

// Should return the times associated with this station:
// localTime -- normalized 48-bit local-time
// radioTime -- media-dependent 32-bit time
RadioTimes
RadioLocalTimes(PortDataRadio *pPtr)
{
 RadioTimes localTimes;

 assert(pPtr != NULL);
 localTimes.localTime = localTimes.radioTime = 0;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 97

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 return(localTimes);
}

// ***
// Ethernet-PON routines, called by corresponding state machines.
// ***

// Forms MAC-relay frame; localTime compensated for transmission delay
// Arguments:
// pPtr - associated state-maintaining data structure
// rxFrame - received frame with frameCount field
TimeSyncRelay
TimeSyncRxPon(PortDataPon *pPtr, TimeSyncPon rxFrame)
{
 TimeSyncPon *rxPtr;
 TimeSyncRelay result, *txPtr;
 GrandTime grandTime, errorTime;
 LocalTime localTime, lapseTime;
 PonTimes ponTimes;
 PonTime ponTime;
 HopCount hopCount;

 assert(pPtr != NULL);
 rxPtr = &rxFrame;
 txPtr = &result;
 result = *((TimeSyncRelay *)&rxFrame);

 ponTimes = PonLocalTimes(pPtr); // Station local times
 grandTime = FieldToSigned(rxPtr, grandTime); // Grand-master time
 errorTime = FieldToSigned(rxPtr, errorTime); // Error in grand-master time
 ponTime = FieldToSigned(rxPtr, ticksTime).lower; // Frame transmission time
 hopCount = FieldToUnsigned(rxPtr, hopCount).lower; // Distance to grand-master
 lapseTime = ponTimes.ponTime - ponTime; // Passed-time compensation
 localTime = ponTimes.localTime - MultiplyHi(lapseTime, PON_TIME); // Passed-time compensation

 SetRelayFrame((PortData *)pPtr, txPtr); // Set basic parameters
 BigToFrame(grandTime, txPtr, grandTime); // Passing GM time
 BigToFrame(errorTime, txPtr, errorTime); // Passing GM error
 LongToFrame(localTime, txPtr, localTime); // Observed rx-snapshot time
 LongToFrame(hopCount, txPtr, hopCount); // Distance to grand-master
 return(result);
}

// Forms a MAC-level frame for Ethernet-PON transmission
// Arguments:
// pPtr - associated state-maintaining data structure
// Result:
// ponFrame - MAC frame for Ethernet-PON transmission
TimeSyncPon
TimeSyncTxPon(PortDataPon *pPtr)
{

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 98

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 TimeSyncPon *txPtr, ponFrame;
 GrandTimes grandTimes;
 PonTimes localTimes;

 assert(pPtr != NULL && txPtr != NULL); // Code-correctness check
 txPtr = &ponFrame;
 localTimes = PonLocalTimes(pPtr); // Get localTime values
 grandTimes = StateToGrand((PortData *)pPtr, localTimes.localTime); // Get grandTime values

 SetPonFrame((PortData *)pPtr, txPtr); // Base EthernetPon frame
 LongToFrame(pPtr->txHopCount, txPtr, hopCount); // The GM distance.
 BigToFrame(grandTimes.grandTime, txPtr, grandTime); // grandTime at txSnapShot
 LongToFrame(grandTimes.errorTime, txPtr, errorTime); // Next errorTime value
 LongToFrame(localTimes.ponTime, txPtr, ticksTime); // Transmitted frame time
 return(ponFrame);
}

// Sets the common information associated with Ethernet-PON frames:
// Arguments:
// pPtr - associated state-maintaining data structure
// txPtr - pointer to associated Ethernet-PON frame
// Results:
// properly initialized values
void
SetPonFrame(PortData *pPtr, TimeSyncPon *txPtr)
{
 LongToFrame(NEIGHBOR, txPtr, da); // Neighbor multicast address
 LongToFrame(pPtr->macAddress, txPtr, sa); // This port’s MAC address
 LongToFrame(AVB_TYPE, txPtr, protocolType); // The AVB protocol
 LongToFrame(TIME_SYNC, txPtr, function); // The timeSync frame in AVB
 LongToFrame(VERSION_A, txPtr, version); // This version number
}

// Should return the times associated with this station:
// localTime -- normalized 48-bit local-time
// ticksTime -- media-dependent 32-bit time
PonTimes
PonLocalTimes(PortDataPon *pPtr)
{
 PonTimes localTimes;

 assert(pPtr != NULL);
 localTimes.localTime = localTimes.ponTime = 0;
 return(localTimes);
}

// ***
// Alignment and endian-order independent frame-extraction routines.
// ***

// Extracts & sign-extends a specified field to a 16-byte result.

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 99

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// fieldPtr - the starting address for the source field
// length - the length of the source field
// sign - differentiates between unsigned and signed fields:
// 0 - an unsigned field
// 1 - a signed field
BigNumber // Extracts field of frame,
FrameToValue(uint8_t *fieldPtr, uint16_t length, Boolean sign) // as signed or unsigned.
{
 BigNumber result; // The 128-bit signed result.
 uint8_t *cPtr;
 int i;

 cPtr = fieldPtr; // Start from first byte
 if (sign && (int8_t)(cPtr[0]) < 0) // Check for sign extension
 result.upper = result.lower = (int64_t)-1; // 1’s extended if negative
 else // otherwise,
 result.upper = result.lower = 0; // 0’s extended.

 for (i = length - 1; i >= 0; i -= 1, cPtr += 1) // Step through bytes
 if (length >= 8)
 result.upper |= *cPtr << (8 * (i % 8)); // First bytes into upper
 else
 result.lower |= *cPtr << (8 * (i % 8)); // Final byes into lower
 return(result); // Return BigNumber result
}

// Copies the less-significant portion of a 16-byte argument to a specified field location.
// value - a 16-byte value, consisting of upper and lower components
// fieldPtr - the starting address for the copied field
// length - the length of the copied field
void // Place fields into frame,
ValueToFrame(BigNumber value, uint8_t *fieldPtr, uint16_t length) // signed properties ignored.
{
 int i;
 uint8_t *cPtr;

 assert(fieldPtr != NULL);
 cPtr = fieldPtr; // First byte location
 for (i = length - 1; i >= 0; i -= 1, cPtr += 1) // Step through the bytes
 if (length >= 8)
 *cPtr = value.upper >> (8 * (i % 8)); // First bytes from upper
 else // as well as the
 *cPtr = value.lower >> (8 * (i % 8)); // final bytes from lower.
}

// ***
// Supporting library-like routines.
// ***

// Converts a seconds:nanoseconds value to seconds.fraction scaled integer
// Arguments:

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 100

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// pPtr - associated state-maintaining data structure
// value - formatted seconds:nanoseconds grand-master time
// Results:
// grandTime - formatted seconds.fraction scaled integer
GrandTime
LevelToGrand(GrandTime value)
{
 GrandTime seconds, grandTime;
 LocalTime lessor, partial;

 lessor = value.lower & (uint64_t)0XFFFFFFFF;
 partial = DivideHi(MIN(1000000000, lessor), 1000000000);
 seconds = BigShift(BigShift(value, 32), -40);
 grandTime = BigAddition(seconds, LongToBig(partial));
 return(grandTime);
}

// Converts a seconds.fraction scaled integer to seconds:nanoseconds value
// Arguments:
// pPtr - associated state-maintaining data structure
// value - Formatted seconds.fraction grand-master time
// Results:
// grandTime - Formatted seconds:nanoseconds grand-master time
GrandTime
GrandToLevel(GrandTime value)
{
 GrandTime seconds, result;
 LocalTime lessor, partial;

 lessor = value.lower & (((uint64_t)1 << 48) - 1);
 partial = MultiplyHi(lessor, 1000000000);
 seconds = BigShift(BigShift(value, 40), -32);
 result = BigAddition(seconds, LongToBig(partial));
 return(result);
}

// Extracts the hopCount field from within the 16-byte preference:
// preference - a 16-byte preference value, consisting of upper and lower components
// result - the 8-bit hopCount-field value
HopCount
PreferenceToHops(BigNumber preference)
{
 HopCount result;

 result = (preference.lower >> BITS(Port)) & MASK(BITS(HopCount));
 return(result);
}

// Extracts the port field from within the 16-byte preference:
// preference - a 16-byte preference value, consisting of upper and lower components
// result - the 8-bit port-field value
Port

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 101

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

PreferenceToPort(Precedence preference)
{
 Port result;

 result = (preference.lower & MASK(BITS(Port)));
 return(result);
}

// Concatensated subfields into a larger precedence field
// Arguments:
// priority1 - user-assigned more-significant priority field
// class - characteristic of the clock
// variance - characteristic of the clock quality
// priority2 - user-assigne less-significant priority field
// clockID - 64-bit EUI-64 (or near equivalent) field
// Result:
// precedence - the concatenated arguments
Precedence
FieldsToPrecedence(uint8_t priority1, Class class, Variance variance, uint8_t priority2, uint64_t clockID)
{
 BigNumber result;
 uint32_t fields;

 fields = (priority1 & MASK(4));
 fields <<= BITS(class);
 fields |= class & MASK(BITS(class));
 fields <<= BITS(variance);
 fields |= variance & MASK(BITS(variance));
 fields <<= 4;
 fields |= priority2 & MASK(4);
 result.upper = fields;
 result.lower = clockID;
 return(result);
}

// Converts between integer precisions:
// number - a signed 64-bit integer
// result - a signed 128-bit integer,
// consisting of upper and lower parts
BigNumber
LongToBig(int64_t number)
{
 BigNumber result;

 result.lower = number; // LSBs are the same
 result.upper = 0; // Zero sign-extended
 if (number < 0) // Negative numbers are
 result.upper -= 1; // ones sign-extended
 return(result); // Returned 128-bit result
}

// Forms an 16-byte precedence from smaller components:

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 102

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// precedence - a 14-byte grand-master weighting (lowest is best)
// hopCount - the distance from the grand-master, in station-to-station hops
// port - the port that sourced the preference value
BigNumber
FormPreference(BigNumber precedence, HopCount hopCount, Port port)
{
 BigNumber result;

 result = BigShift(precedence, -8 * (int)(sizeof(HopCount) + sizeof(Port))); // Left-shift precedence
 result.lower |= (hopCount << (8 * sizeof(Port))) | port; // Merge in hopCount&port
 return(result); // Return the result
}

// Forms a 16-byte arithmetic sum of two values:
// a - A 16-byte argument, with upper and lower components.
// b - A 16-byte argument, with upper and lower components.
// result - A 16-byte summation: a+b.
BigNumber
BigAddition(BigNumber a, BigNumber b)
{
 BigNumber result;
 uint32_t sum, carry;

 result.lower = sum = a.lower + b.lower; // Addition of the LSBs
 carry = (sum < a.lower) ? 1 : 0; // Determine the carry.
 result.upper += a.upper + b.upper + carry; // Addition of the MSBs
 return(result);
}

// Forms a 16-byte arithmetic difference of two values:
// a - A 16-byte argument, with upper and lower components.
// b - A 16-byte argument, with upper and lower components.
// result - A 16-byte difference: a-b.
BigNumber
BigSubtract(BigNumber a, BigNumber b)
{
 BigNumber result;
 uint32_t sum, borrow;

 result.upper = sum = a.lower - b.lower; // Addition of the LSBs
 borrow = (sum > a.lower) ? 1 : 0; // Determine the borrow.
 result.upper += a.upper + b.upper - borrow; // Addition of the MSBs
 return(result);
}

// Forms a 16-byte arithmetic difference of two values:
// a - A 16-byte argument, with upper and lower components.
// b - A 16-byte argument, with upper and lower components.
// result - The result of a signed arithmetic comparison:
// 1 - Corresponds to: a > b
// 0 - Corresponds to: a == b
// -1 - Corresponds to: a < b

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 103

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

int
BigCompare(BigNumber a, BigNumber b)
{

 if (a.upper != b.upper) // More significant compare
 return(a.upper > b.upper ? 1 : -1);
 if (a.lower != b.lower) // Less significant compare
 return(a.lower > b.lower ? 1 : -1);
 return(0); // Comparison returns equal
}

// Right shifts the 16-byte arguments by a shift-specified amount:
// a - A 16-byte argument, with upper and lower components.
// b - A signed shift amount.
// result - The shifted/sign-extended result: a >> b.
BigNumber
BigShift(BigNumber value, int8_t shift)
{
 BigNumber result;
 int8_t rightShift, leftShift;

 if (shift == 0)
 return(value);
 if (shift > 0)
 {
 rightShift = shift;
 if (rightShift >= 64)
 {
 result.lower = (value.upper >> (rightShift % 64));
 result.upper = (value.upper > 0 ? 0 : -1);
 } else {
 result.lower = (value.upper << (64 - rightShift)) | (value.lower >> rightShift);
 result.upper = (value.upper >> rightShift);
 }
 } else {
 leftShift = shift;
 if (leftShift >= 64)
 {
 result.upper = value.lower << (leftShift % 64);
 result.lower = 0;
 } else {
 result.upper = (value.upper << leftShift) | (value.lower >> (64 - leftShift));
 result.lower = (value.lower << leftShift);
 }
 }
 return(result);
}

// Multiplies a signed integer by a signed scaled-integer,
// returning a scaled-integer product:
// a - A 64-bit argument.
// b - A 64-bit argument.
// result - The multiplied value: (a * b) >> 40.

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 104

JggDvj20050416/D0.239, 2007-03-20 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

int64_t
MultiplyHi(uint64_t value1, int32_t value2)
{
 int64_t upper, lower;

 upper = (value1 >> 40) * value2; // Add the upper
 lower = ((value1 & (uint64_t)0XFFFFFF) * value2) >> 40; // to the lower
 return(upper + lower); // for the result.
}

// Divides a signed integer by a signed scaled-integer,
// returning a scaled-integer result:
// a - A 64-bit argument, the numerator.
// b - A 64-bit argument, the denominator.
// result - The divided value: (a / b) << 40.
int64_t // x = (a << 32)/b, for
DivideHi(int64_t a, int64_t b) // for b < 2**48
{
 int64_t sum, rem;
 Boolean flip;

 flip = ((a ^ b) < 0); // Ensure positive args
 a = (a < 0) ? -a : a; // for all possible
 b = (b < 0) ? -b : b; // argument values.

 sum = a / b; // The normal divide
 rem = (a % b) << 16; // Prepare the remainder
 sum = (sum << 16) + rem / b; // Scaled by 2**16
 rem = (rem % b) << 16; // Prepare the remainder
 sum = (sum << 16) + rem / b; // Scaled by 2**32
 rem = (rem % b) << 8; // Prepare the remainder
 sum = (sum << 8) + rem / b; // Scaled by 2**40
 return(flip ? -sum : sum); // Correctly signed result
}

