
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

JggDvj20050416
2007-08-12

(August 12, 2007)

DVJ Perspective on:
Timing and synchronization for
time-sensitive applications in bridges
local area networks

Draft 0.726
Contributors:
See page xx.

Abstract: This working paper provides background and introduces possible higher level concepts
for the development of Audio/Video bridges (AVB).
Keywords: audio, visual, bridge, Ethernet, time-sensitive

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
2 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of
the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers repre-
senting varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Insti-
tute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness
in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of
the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or
that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied
“AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, mar-
ket, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed
at the time a standard is approved and issued is subject to change brought about through developments in the state of the
art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five
years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is rea-
sonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users
are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to spe-
cific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action
to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to
ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the
members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpre-
tation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity
of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a
license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those
patents that are brought to its attention.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Editors’ Foreword

Comments on this draft are encouraged. PLEASE NOTE: All issues related to IEEE standards presen-
tation style, formatting, spelling, etc. should be addressed, as their presence can often obfuscate
relevant technical details.

By fixing these errors in early drafts, readers can devote their valuable time and energy to comments that
materially affect either the technical content of the document or the clarity of that technical content.
Comments should not simply state what is wrong, but also what might be done to fix the problem.

Information on 802.1 activities, working papers, and email distribution lists etc. can be found on the 802.1
Website:

http://ieee802.org/1/

Use of the email distribution list is not presently restricted to 802.1 members, and the working group has had
a policy of considering ballot comments from all who are interested and willing to contribute to the devel-
opment of the draft. Individuals not attending meetings have helped to identify sources of misunderstanding
and ambiguity in past projects. Non-members are advised that the email lists exist primarily to allow the
members of the working group to develop standards, and are not a general forum.

Comments on this document may be sent to the 802.1 email reflector, to the editors, or to the Chairs of the
802.1 Working Group and Interworking Task Group.

This draft was prepared by:

David V James
JGG
3180 South Court
Palo Alto, CA 94306
+1.650.494.0926 (Tel)
+1.650.954.6906 (Mobile)
Email: dvj@alum.mit.edu

Chairs of the 802.1 Working Group and Audio/Video Bridging Task Group:.

Michael Johas Teener
Chair, 802.1 Audio/Video Bridging Task
Broadcom Corporation
3151 Zanker Road
San Jose, CA
95134-1933
USA
+1 408 922 7542 (Tel)
+1 831 247 9666 (Mobile)
Email:mikejt@broadcom.com

Tony Jeffree
Group Chair, 802.1 Working Group
11A Poplar Grove
Sale
Cheshire
M33 3AX
UK
+44 161 973 4278 (Tel)
+44 161 973 6534 (Fax)
Email: tony@jeffree.co.uk

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
4 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Introduction to IEEE Std 802.1AS™

(This introduction is not part of P802.1AS, IEEE Standard for Local and metropolitan area networks—
Timing and synchronization for time-sensitive applications in bridged local area networks.)

This standard specifies the protocol and procedures used to ensure that the synchronization requirements are
met for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. The design
is based on concepts developed within the IEEE Std 1588, and is applicable in the context of IEEE Std
802.1D and IEEE Std 802.1Q.

Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as UTC or
TAI) is not part of this standard but is not precluded.

Version history

Version Date Edits by Comments

0.082 2005-04-28 DVJ Updates based on 2005Apr27 meeting discussions

0.085 2005-05-11 DVJ – Updated list-of-contributors, page numbering, editorial fixes.

0.088 2005-06-03 DVJ – Application latency scenarios clarified.

0.090 2005-06-06 DVJ – Misc. editorials in bursting and bunching annex.

0.092 2005-06-10 DVJ – Extensive cleanup of Clause 5 subscription protocols.

0.121 2005-06-24 DVJ – Extensive cleanup of clock-synchronization protocols.

0.127 2005-07-04 DVJ – Pacing descriptions greatly enhanced.

0.200 2007-01-23 DVJ Removal of non time-sync related information, initial layering proposal.

0.207 2007-02-01 DVJ Updates based on feedback from Monterey 802.1 meeting.
– Common entity terminology; Ethernet type code expanded.

0.216 2007-02-17 DVJ Updates based on feedback from Chuck Harrison:
– linkDelay based only on syntonization to one’s neighbor.
– Time adjustments based on observed grandMaster rate differences.

0.224 2007-03-03 DVJ Updates for whiplash free PLL cascading.

0.230 2007-03-05 DVJ Major changes:
– simplified back-interpolation
– first iteration on an Ethernet-PON interface
– client-level clock-master and clock-slave interfaces defined

0.243 2007-04-20 DVJ – Revised GrandSync entity illustrations
– General cleanup

0.708 2007-05-30 DVJ – Simulation results provided within an annex
– Extensive code revisions for simplicity & clarity.
– Interpolation better described.

0.724 2007-08-11 DVJ Clause 5 updates for clarity.
Clause 6 updates include initialize-phase processing.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Formats

In many cases, readers may elect to provide contributions in the form of exact text replacements and/or
additions. To simplify document maintenance, contributors are requested to use the standard formats and
provide checklist reviews before submission. Relevant URLs are listed below:

General: http://grouper.ieee.org/groups/msc/WordProcessors.html
Templates: http://grouper.ieee.org/groups/msc/TemplateTools/FrameMaker/
Checklist: http://grouper.ieee.org/groups/msc/TemplateTools/Checks2004Oct18.pdf

TBDs

Further definitions are needed in the following areas:

a) Should low-rate leapSeconds occupy space in timeSync frames, if this information rarely changes?

b) What other (than leapSeconds) low-rate information should be transferred between stations?

c) When the grandmaster changes, how should the new grandmaster affect change:

1) Transition immediately to the rate of its reference clock.
2) Transition slowly (perhaps 1ppm/s) between previous and reference clock rates.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
6 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Contents

List of figures... 9

List of tables... 11

1. Overview... 13

1.1 Scope ... 13
1.2 Purpose .. 13
1.3 Introduction ... 13

2. References... 15

3. Terms, definitions, and notation ... 16

3.1 Conformance levels ... 16
3.2 Terms and definitions .. 16
3.3 State machines ... 17
3.4 Arithmetic and logical operators ... 19
3.5 Numerical representation... 19
3.6 Field notations ... 20
3.7 Bit numbering and ordering... 21
3.8 Byte sequential formats ... 22
3.9 Ordering of multibyte fields .. 22

3.10 MAC address formats.. 23
3.11 Informative notes... 24
3.12 Conventions for C code used in state machines .. 24

4. Abbreviations and acronyms .. 25

5. Architecture overview .. 27

5.1 Application scenarios .. 27
5.2 Design methodology.. 28
5.3 Network topologies ... 29
5.4 Information parameters ... 30
5.5 Grandmaster selection ... 31
5.6 Synchronized time distribution.. 34
5.7 Comparison to IEEE Std 1588 .. 39

6. GrandSync operation .. 43

6.1 Overview ... 43
6.2 Service interface primitives... 44
6.3 GrandSync state machine .. 49

7. ClockMaster state machines ... 52

7.1 Overview ... 52
7.2 ClockMaster service interfaces.. 53
7.3 ClockMaster state machine.. 54

8. ClockSlave state machines ... 56

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.1 Overview ... 56
8.2 ClockSlave service interfaces.. 57
8.3 ClockSlave state machine.. 59

9. Ethernet full duplex (EFDX) state machines.. 62

9.1 Overview ... 62
9.2 efdxClockSync frame format .. 64
9.3 EFDX TimeSync service interfaces .. 65
9.4 TimeSyncRxEfdx state machine ... 66
9.5 TimeSyncTxEfdx state machine.. 71

10. Wireless state machines.. 75

11. Ethernet passive optical network (EPON) state machines ... 76

11.1 Overview ... 76
11.2 timeSyncEpon frame format.. 78
11.3 TimeSyncRxEpon service interface primitives ... 79
11.4 TimeSyncRxEpon state machine... 81
11.5 TimeSyncTxEpon state machine... 84
11.6 TimeSyncTxEpon service interface primitives ... 84
11.7 ClockSlave state machine.. 85

Annex A (informative) Bibliography .. 89

Annex B (informative) Time-scale conversions ... 90

B.1 Overview ... 90
B.2 TAI and UTC... 90
B.3 NTP and GPS .. 91
B.4 Time-scale conversions ... 92
B.5 Time zones and GMT.. 93

Annex C (informative) Reclocked ClockSync requirements.. 94

C.1 Cascaded clock considerations .. 94
C.2 Sampling offset/rate conversion .. 95

Annex D (informative) Simulation results (preliminary).. 98

D.1 Simulation environment .. 98
D.2 Initialization transients .. 99
D.3 Steady-state interpolation errors.. 100
D.4 Steady-state extrapolation errors ... 101

Annex E (informative) Bridging to IEEE Std 1394.. 102

E.1 Hybrid network topologies .. 102

Annex F (informative) Time-of-day format considerations ... 104

F.1 Possible time-of-day formats... 104

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

List of figures

Figure 1.1—Topology and connectivity .. 14

Figure 3.1—Bit numbering and ordering .. 21

Figure 3.2—Byte sequential field format illustrations .. 22

Figure 3.3—Multibyte field illustrations ... 22

Figure 3.4—Illustration of fairness-frame structure .. 23

Figure 3.5—MAC address format ... 23

Figure 3.6—48-bit MAC address format... 24

Figure 5.1—Garage jam session.. 27

Figure 5.2—Possible looping topology ... 28

Figure 5.3—Synchronized-system topologies ... 29

Figure 5.4—GrandSync service-interface components... 30

Figure 5.5—interval and flags parameters... 31

Figure 5.6—Clock-time synchronization flows .. 34

Figure 5.7—Intermediate-bridge responsibilities.. 36

Figure 5.8—CLOCK_SLAVE link-delay compensation .. 37

Figure 5.9—CLOCK_MASTER time-sample interpolation ... 38

Figure 5.10—Common snapshot hardware ... 39

Figure 5.11—1588 grandmaster precedence ... 40

Figure 5.12—grandTime formats .. 40

Figure 5.13—Frame sequence comparison ... 41

Figure 6.1—GrandSync interface model... 43

Figure 6.2—GrandSync service-interface components... 44

Figure 6.3—version subfield format.. 46

Figure 6.4—clockID as derived from a 48-bit MAC address.. 46

Figure 6.5—interval subfields ... 46

Figure 6.6—flags parameters... 47

Figure 6.7—grandTime subfields .. 47

Figure 6.8—extraTime format ... 48

Figure 6.9—localTime format ... 48

Figure 7.1—ClockMaster interface model .. 52

Figure 8.1—ClockSlave interface model .. 56

Figure 9.1—EFDX-link interface model... 62

Figure 9.2—efdxClockSync frame format .. 64

Figure 11.1—EPON topology ... 76

Figure 11.2—EPON interface model .. 77

Figure 11.3—Format of EPON-dependent times .. 77

Figure 11.4—timeSyncEpon frame format ... 78

Figure 11.5—tickTime format ... 78

Figure C.1—Cascading causes sync-interval bunching .. 94

Figure C.2—Reclocking eliminates sync-interval bunching ... 94

Figure 3.3—Reclocking localizes sync-interval properties... 95

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
10 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 3.4—Extrapolation for grandTime... 95

Figure C.5—Extrapolation for grandTime .. 96

Figure C.6—Interpolation for grandTimeA ... 96

Figure C.7—Interpolation of extraTimeD ... 97

Figure D.1—Time-synchronization flows ... 98

Figure D.2—Startup transients with 8 stations .. 99

Figure D.3—Startup transients with 64 stations .. 99

Figure D.4—Time interpolation with 8 stations .. 100

Figure D.5—Time interpolation with 64 stations .. 100

Figure D.6—Time extrapolation with 8 stations ... 101

Figure D.7—Time extrapolation with 64 stations ... 101

Figure E.1—IEEE 1394 leaf domains ... 102

Figure E.2—IEEE 802.3 leaf domains .. 102

Figure E.3—Time-of-day format conversions... 103

Figure E.4—Grandmaster precedence mapping.. 103

Figure F.1—Global-time subfield format .. 104

Figure F.2—IEEE 1394 timer format .. 104

Figure F.3—IEEE 1588 timer format .. 105

Figure F.4—EPON timer format ... 105

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

List of tables

Table 3.1—State table notation example... 18

Table 3.2—Special symbols and operators.. 19

Table 3.3—Names of fields and sub-fields ... 20

Table 3.4—wrap field values ... 21

Table 6.1—GrandSync state table ... 51

Table 7.1—ClockMaster state machine table .. 55

Table 8.1—ClockSlave state table... 61

Table 9.1—Clock-synchronization intervals ... 63

Table 9.2—TimeSyncRxEfdx state machine table.. 69

Table 9.3—TimeSyncTxEfdx state machine table .. 73

Table 11.1—TimeSyncRxEpon state machine table ... 83

Table 11.2—TimeSyncTxEpon state machine table ... 87

Table B.1—Time-scale parameters ... 90

Table B.2—Time-scale conversions.. 92

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
12 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

DVJ Perspective on: Timing and
synchronization for time-sensitive
applications in bridges local area
networks

1. Overview

1.1 Scope

This draft specifies the protocol and procedures used to ensure that the synchronization requirements are met
for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. It specifies
the use of IEEE 1588 specifications where applicable in the context of IEEE Std 802.1D and IEEE Std
802.1Q. Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as
UTC or TAI) is not part of this standard but is not precluded.

1.2 Purpose

This draft enables stations attached to bridged LANs to meet the respective jitter, wander, and time
synchronization requirements for time-sensitive applications. This includes applications that involve
multiple streams delivered to multiple endpoints. To facilitate the widespread use of bridged LANs for these
applications, synchronization information is one of the components needed at each network element where
time-sensitive application data are mapped or demapped or a time sensitive function is performed. This
standard leverages the work of the IEEE 1588 WG by developing the additional specifications needed to
address these requirements.

1.3 Introduction

1.3.1 Background

Ethernet has successfully propagated from the data center to the home, becoming the wired home computer
interconnect of choice. However, insufficient support of real-time services has limited Ethernet’s success as
a consumer audio-video interconnects, where IEEE Std 1394 Serial Bus and Universal Serial Bus (USB)
have dominated the marketplace. Success in this arena requires solutions to multiple topics:

a) Discovery. A controller discovers the proper devices and related streamID/bandwidth parameters to
allow the listener to subscribe to the desired talker-sourced stream.

b) Subscription. The controller commands the listener to establish a path from the talker.
Subscription may pass or fail, based on availability of routing-table and link-bandwidth resources.

c) Synchronization. The distributed clocks in talkers and listeners are accurately synchronized.
Synchronized clocks avoid cycle slips and playback-phase distortions.

d) Pacing. The transmitted classA traffic is paced to avoid other classA traffic disruptions.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
14 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

This draft covers the “Synchronization” component, assuming solutions for the other topics will be devel-
oped within other drafts or forums.

1.3.2 Interoperability

AVB time synchronization interoperates with existing Ethernet, but the scope of time-synchronization is
limited to the AVB cloud, as illustrated in Figure 1.1; less-precise time-synchronization services are
available everywhere else. The scope of the AVB cloud is limited by a non-AVB capable bridge or a
half-duplex link, neither of which can support AVB services.

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

1.3.3 Document structure

The clauses and annexes of this working paper are listed below.

— Clause 1: Overview
— Clause 2: References
— Clause 3: Terms, definitions, and notation
— Clause 4: Abbreviations and acronyms
— Clause 5: Architecture overview
— Clause 6: GrandSync operation
— Clause 7: ClockMaster state machines
— Clause 9: Ethernet full duplex (EFDX) state machines
— Clause 10: Wireless state machines
— Clause 11: Ethernet passive optical network (EPON) state machines
— Annex A: Bibliography
— Annex B: Time-scale conversions
— Annex C: Reclocked ClockSync requirements
— Annex D: Simulation results (preliminary)
— Annex E: Bridging to IEEE Std 1394
— Annex F: Time-of-day format considerations
— Annex G: C-code illustrations

Figure 1.1—Topology and connectivity

AVB
bridge

AVB
bridge

AVB
device

AVB
device

AVB
device

AVB
device

AVB
bridgeEthernet

bridge

Peer device is
not AVB capable

Ethernet
hub

device

AVB
device

AVB
device

Half-duplex link
can’t do AVBdevice

device

AVB “cloud”

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2. References

The following documents contain provisions that, through reference in this working paper, constitute provi-
sions of this working paper. All the standards listed are normative references. Informative references are
given in Annex A. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this working paper are encouraged to investigate the possibility
of applying the most recent editions of the standards indicated below.

ANSI/ISO 9899-1990, Programming Language-C.1,2

IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access Control
(MAC) Bridges.

1Replaces ANSI X3.159-1989
2ISO documents are available from ISO Central Secretariat, 1 Rue de Varembe, Case Postale 56, CH-1211, Geneve 20, Switzer-
land/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42 Street, 13th Floor, New York, NY
10036-8002, USA

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
16 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3. Terms, definitions, and notation

3.1 Conformance levels

Several key words are used to differentiate between different levels of requirements and options, as
described in this subclause.

3.1.1 may: Indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”).

3.1.2 shall: Indicates mandatory requirements to be strictly followed in order to conform to the standard and
from which no deviation is permitted (“shall” means “is required to”).

3.1.3 should: An indication that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“should”
means “is recommended to”).

3.2 Terms and definitions

For the purposes of this working paper, the following terms and definitions apply. The Authoritative
Dictionary of IEEE Standards Terms [B2] should be referenced for terms not defined in the clause.

3.2.1 bridge: A functional unit interconnecting two or more networks at the data link layer of the OSI
reference model.

3.2.2 clock master: A bridge or end station that provides the link clock reference.

3.2.3 clock slave: A bridge or end station that tracks the link clock reference provided by the clock master.

3.2.4 cyclic redundancy check (CRC): A specific type of frame check sequence computed using a
generator polynomial.

3.2.5 grandmaster: Refers to the station that is selected to provide the network time reference.

3.2.6 link: A unidirectional channel connecting adjacent stations (half of a span).

3.2.7 listener: A sink of a stream, such as a television or acoustic speaker.

3.2.8 local area network (LAN): A communications network designed for a small geographic area,
typically not exceeding a few kilometers in extent, and characterized by moderate to high data transmission
rates, low delay, and low bit error rates.

3.2.9 MAC client: The layer entity that invokes the MAC service interface.

3.2.10 medium (plural: media): The material on which information signals are carried; e.g., optical fiber,
coaxial cable, and twisted-wire pairs.

3.2.11 medium access control (MAC) sublayer: The portion of the data link layer that controls and
mediates the access to the network medium. In this working paper, the MAC sublayer comprises the MAC
datapath sublayer and the MAC control sublayer.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.2.12 network: A set of communicating stations and the media and equipment providing connectivity
among the stations.

3.2.13 plug-and-play: The requirement that a station perform classA transfers without operator intervention
(except for any intervention needed for connection to the cable).

3.2.14 protocol implementation conformance statement (PICS): A statement of which capabilities and
options have been implemented for a given Open Systems Interconnection (OSI) protocol.

3.2.15 span: A bidirectional channel connecting adjacent stations (two links).

3.2.16 station: A device attached to a network for the purpose of transmitting and receiving information on
that network.

3.2.17 topology: The arrangement of links and stations forming a network, together with information on
station attributes.

3.2.18 transmit (transmission): The action of a station placing a frame on the medium.

3.2.19 unicast: The act of sending a frame addressed to a single station.

3.3 State machines

3.3.1 State machine behavior

The operation of a protocol can be described by subdividing the protocol into a number of interrelated
functions. The operation of the functions can be described by state machines. Each state machine represents
the domain of a function and consists of a group of connected, mutually exclusive states. Only one state of a
function is active at any given time. A transition from one state to another is assumed to take place in zero
time (i.e., no time period is associated with the execution of a state), based on some condition of the inputs to
the state machine.

The state machines contain the authoritative statement of the functions they depict. When apparent conflicts
between descriptive text and state machines arise, the order of precedence shall be formal state tables first,
followed by the descriptive text, over any explanatory figures. This does not override, however, any explicit
description in the text that has no parallel in the state tables.

The models presented by state machines are intended as the primary specifications of the functions to be
provided. It is important to distinguish, however, between a model and a real implementation. The models
are optimized for simplicity and clarity of presentation, while any realistic implementation might place
heavier emphasis on efficiency and suitability to a particular implementation technology. It is the functional
behavior of any unit that has to match the standard, not its internal structure. The internal details of the
model are useful only to the extent that they specify the external behavior clearly and precisely.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
18 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.3.2 State table notation

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

State machines may be represented in tabular form. The table is organized into two columns: a left hand side
representing all of the possible states of the state machine and all of the possible conditions that cause transi-
tions out of each state, and the right hand side giving all of the permissible next states of the state machine as
well as all of the actions to be performed in the various states, as illustrated in Table 3.1. The syntax of the
expressions follows standard C notation (see 3.12). No time period is associated with the transition from one
state to the next.

Row 3.1-1: Do nothing if the size of the queued MAC control frame is larger than the PTQ space.
Row 3.1-2: Do nothing in the absence of MAC control transmission credits.
Row 3.1-3: Otherwise, transmit a MAC control frame.

Row 3.1-4: When the transmission completes, start over from the initial state (i.e., START).
Row 3.1-5: Until the transmission completes, remain in this state.

Each combination of current state, next state, and transition condition linking the two is assigned to a
different row of the table. Each row of the table, read left to right, provides: the name of the current state; a
condition causing a transition out of the current state; an action to perform (if the condition is satisfied); and,
finally, the next state to which the state machine transitions, but only if the condition is satisfied. The symbol
“—” signifies the default condition (i.e., operative when no other condition is active) when placed in the
condition column, and signifies that no action is to be performed when placed in the action column.
Conditions are evaluated in order, top to bottom, and the first condition that evaluates to a result of TRUE is
used to determine the transition to the next state. If no condition evaluates to a result of TRUE, then the state
machine remains in the current state. The starting or initialization state of a state machine is always labeled
“START” in the table (though it need not be the first state in the table). Every state table has such a labeled
state.

NOTE—The following state machine notation was used within 802.17, due to the exactness of C-code
conditions and the simplicity of updating table entries (as opposed to 2-dimensional graphics).
Early state table descriptions can be converted (if necessary) into other formats before publication.

Table 3.1—State table notation example

Current

R
ow

Next

state condition action state

START sizeOfMacControl > spaceInQueue 1 — START

passM == 0 2

— 3 TransmitFromControlQueue(); FINAL

FINAL SelectedTransferCompletes() 4 — START

— 5 — FINAL

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

3.4 Arithmetic and logical operators

In addition to commonly accepted notation for mathematical operators, Table 3.2 summarizes the symbols
used to represent arithmetic and logical (boolean) operations. Note that the syntax of operators follows
standard C notation (see 3.12).

3.5 Numerical representation

Decimal, hexadecimal, and binary numbers are used within this working paper. For clarity, decimal numbers
are generally used to represent counts, hexadecimal numbers are used to represent addresses, and binary
numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their usual 0, 1, 2, … format. Hexadecimal numbers are represented by
a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16, except in C-code
contexts, where they are written as 0x123EF2 etc. Binary numbers are represented by a string of one or
more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be represented
as “1A16” or “110102”.

Table 3.2—Special symbols and operators

Printed character Meaning

&& Boolean AND

|| Boolean OR

! Boolean NOT (negation)

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

 = Assignment operator

// Comment delimiter

NOTE—The following notation was taken from 802.17, where it was found to have benefits:
– The subscript notation is consistent with common mathematical/logic equations.
– The subscript notation can be used consistently for all possible radix values.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
20 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

MAC addresses and OUI/EUI values are represented as strings of 8-bit hexadecimal numbers separated by
hyphens and without a subscript, as for example “01-80-C2-00-00-15” or “AA-55-11”.

3.6 Field notations

3.6.1 Use of italics

All field names or variable names (such as level or myMacAddress), and sub-fields within variables (such as
thisState.level) are italicized within text, figures and tables, to avoid confusion between such names and
similarly spelled words without special meanings. A variable or field name that is used in a subclause
heading or a figure or table caption is also italicized. Variable or field names are not italicized within C code,
however, since their special meaning is implied by their context. Names used as nouns (e.g., subclassA0) are
also not italicized.

3.6.2 Field conventions

This working paper describes fields within packets or included in state-machine state. To avoid confusion
with English names, such fields have an italics font, as illustrated in Table 3.3.

Run-together names (e.g., thisState) are used for fields because of their compactness when compared to
equivalent underscore-separated names (e.g., this_state). The use of multiword names with spaces (e.g.,
“This State”) is avoided, to avoid confusion between commonly used capitalized key words and the
capitalized word used at the start of each sentence.

A sub-field of a field is referenced by suffixing the field name with the sub-field name, separated by a
period. For example, thisState.level refers to the sub-field level of the field thisState. This notation can be
continued in order to represent sub-fields of sub-fields (e.g., thisState.level.next is interpreted to mean the
sub-field next of the sub-field level of the field thisState).

Two special field names are defined for use throughout this working paper. The name frame is used to
denote the data structure comprising the complete MAC sublayer PDU. Any valid element of the MAC
sublayer PDU, can be referenced using the notation frame.xx (where xx denotes the specific element); thus,
for instance, frame.serviceDataUnit is used to indicate the serviceDataUnit element of a frame.

Unless specifically specified otherwise, reserved fields are reserved for the purpose of allowing extended
features to be defined in future revisions of this working paper. For devices conforming to this version of
this working paper, nonzero reserved fields are not generated; values within reserved fields (whether zero or
nonzero) are to be ignored.

Table 3.3—Names of fields and sub-fields

Name Description

newCRC Field within a register or frame

thisState.level Sub-field within field thisState

thatState.rateC[n].c Sub-field within array element rateC[n]

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.6.3 Field value conventions

This working paper describes values of fields. For clarity, names can be associated with each of these
defined values, as illustrated in Table 3.4. A symbolic name, consisting of upper case letters with underscore
separators, allows other portions of this working paper to reference the value by its symbolic name, rather
than a numerical value.

Unless otherwise specified, reserved values allow extended features to be defined in future revisions of this
working paper. Devices conforming to this version of this working paper do not generate nonzero reserved
values, and process reserved fields as though their values were zero.

A field value of TRUE shall always be interpreted as being equivalent to a numeric value of 1 (one), unless
otherwise indicated. A field value of FALSE shall always be interpreted as being equivalent to a numeric
value of 0 (zero), unless otherwise indicated.

3.7 Bit numbering and ordering

Data transfer sequences normally involve one or more cycles, where the number of bytes transmitted in each
cycle depends on the number of byte lanes within the interconnecting link. Data byte sequences are shown in
figures using the conventions illustrated by Figure 3.1, which represents a link with four byte lanes. For
multi-byte objects, the first (left-most) data byte is the most significant, and the last (right-most) data byte is
the least significant.

Figures are drawn such that the counting order of data bytes is from left to right within each cycle, and from
top to bottom between cycles. For consistency, bits and bytes are numbered in the same fashion.

NOTE—The transmission ordering of data bits and data bytes is not necessarily the same as their counting order; the
translation between the counting order and the transmission order is specified by the appropriate reconciliation sublayer.

Table 3.4—wrap field values

Value Name Description

0 STANDARD Standard processing selected

1 SPECIAL Special processing selected

2,3 — Reserved

Figure 3.1—Bit numbering and ordering

data[n+0] data[n+1] data[n+2] data[n+3]

data[n+4] data[n+5] data[n+6] data[n+7]

bit
0

bit
31

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
22 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.8 Byte sequential formats

Figure 3.2 provides an illustrative example of the conventions to be used for drawing frame formats and
other byte sequential representations. These representations are drawn as fields (of arbitrary size) ordered
along a vertical axis, with numbers along the left sides of the fields indicating the field sizes in bytes. Fields
are drawn contiguously such that the transmission order across fields is from top to bottom. The example
shows that field1, field2, and field3 are 1-, 1- and 6-byte fields, respectively, transmitted in order starting
with the field1 field first. As illustrated on the right hand side of Figure 3.2, a multi-byte field represents a
sequence of ordered bytes, where the first through last bytes correspond to the most significant through least
significant portions of the multi-byte field, and the MSB of each byte is drawn to be on the left hand side.

NOTE—Only the left-hand diagram in Figure 3.2 is required for representation of byte-sequential formats. The
right-hand diagram is provided in this description for explanatory purposes only, for illustrating how a multi-byte field
within a byte sequential representation is expected to be ordered. The tag “Transmission order” and the associated
arrows are not required to be replicated in the figures.

3.9 Ordering of multibyte fields

In many cases, bit fields within byte or multibyte objects are expanded in a horizontal fashion, as illustrated
in the right side of Figure 3.3. The fields within these objects are illustrated as follows: left-to-right is the
byte transmission order; the left-through-right bits are the most significant through least significant bits
respectively.

Figure 3.2—Byte sequential field format illustrations

Figure 3.3—Multibyte field illustrations

field1
field2

field3

field4

field5

field6

field7

field8

byte[5]

1
1

6

6

2

2

n

4

byte[3]

byte[4]

byte[1]

byte[2]

byte[0]

Transmission
order

byte[4] byte[5]

byte[0] byte[1] byte[2] byte[3]

byte[0]

byte[1]

byte[2]

byte[3]

byte[4]

byte[5] twoByteField

MSB LSB

fourByteField

LSBMSB

byte representation

field representation

byte representation

field representation

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 23

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The first fourByteField can be illustrated as a single entity or a 4-byte multibyte entity. Similarly, the second
twoByteField can be illustrated as a single entity or a 2-byte multibyte entity.

To minimize potential for confusion, four equivalent methods for illustrating frame contents are illustrated in
Figure 3.4. Binary, hex, and decimal values are always shown with a left-to-right significance order,
regardless of their bit-transmission order.

3.10 MAC address formats

The format of MAC address fields within frames is illustrated in Figure 3.5.

3.10.1 oui: A 24-bit organizationally unique identifier (OUI) field supplied by the IEEE/RAC for the
purpose of identifying the organization supplying the (unique within the organization, for this specific
context) 24-bit dependentID. (For clarity, the locallyAdministered and groupAddress bits are illustrated by
the shaded bit locations.)

3.10.2 dependentID: An 24-bit field supplied by the oui-specified organization. The concatenation of the
oui and dependentID provide a unique (within this context) identifier.

Figure 3.4—Illustration of fairness-frame structure

Figure 3.5—MAC address format

a) Sequential-byte format

1 subType

6 sa

2 protocolType

1 hopcount

6 da

(…)

b) Field names

subType

da_lo

sa_lo

protocolType hopCount

da_hi

sa_hi

c) Hexadecimal values

0116

45 6716

48 76 54 3216

FA CE16 0316

AC DE 48 2316

AC DE16

d) Binary values

0000 00012

0100 0101 0110 01112

0100 1000 0111 0110 0101 0100 0011 00102

1111 1010 1100 11102 0000 00112

1010 1100 1101 1110 0100 1000 0010 00112

1010 1100 1101 11102

MSB LSB

oui

6

dependentID

gl

Legend:
l : locallyAdministered
 (called the ‘U/L address bit’ or ‘universally or locally administered bit in IEEE 802)

g : groupAddress
(called the ‘I/G address bit’ or ‘individual/group bit’ in IEEE 802)

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
24 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

To reduce the likelihood of error, the mapping of OUI values to the oui/dependentID fields are illustrated in
Figure 3.6. For the purposes of illustration, specific OUI and dependentID example values have been
assumed. The two shaded bits correspond to the locallyAdministered and groupAddress bit positions illus-
trated in Figure 3.5.

3.11 Informative notes

Informative notes are used in this working paper to provide guidance to implementers and also to supply
useful background material. Such notes never contain normative information, and implementers are not
required to adhere to any of their provisions. An example of such a note follows.

NOTE—This is an example of an informative note.

3.12 Conventions for C code used in state machines

Many of the state machines contained in this working paper utilize C code functions, operators, expressions
and structures for the description of their functionality. Conventions for such C code can be found in
Annex G.

Figure 3.6—48-bit MAC address format

MSB LSB

AC166 2316 4516 6716

OUI value: AC-DE-48
Organization assigned extension: 23-45-67

DE16 4816

byte transmission order

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4. Abbreviations and acronyms

This working paper contains the following abbreviations and acronyms:

AP access point

AV audio/video

AVB audio/video bridging

AVB network audio/video bridged network

BER bit error ratio

BMC best master clock

BMCA best master clock algorithm

CRC cyclic redundancy check

EFDX Ethernet full duplex

EPON Ethernet passive optical network

FIFO first in first out

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ISO International Organization for Standardization

ITU International Telecommunication Union

LAN local area network

LSB least significant bit

MAC medium access control

MAN metropolitan area network

MSB most significant bit

OSI open systems interconnect

PDU protocol data unit

PHY physical layer

PLL phase-locked loop

PPM parts per million

PTP Precision Time Protocol

R11V radio 802.11v

RFC request for comment

RPR resilient packet ring

TS time-synchronization

VOIP voice over internet protocol

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
26 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5. Architecture overview

5.1 Application scenarios

5.1.1 Garage jam session

As an illustrative example, consider AVB usage for a garage jam session, as illustrated in Figure 5.1. The
audio inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges,
mixed within an audio console, return through two bridges, and return to the ear through headphones.

Using Ethernet within such systems has multiple challenges: low-latency and tight time-synchronization.
Tight time synchronization is necessary to avoid cycle slips when passing through multiple processing
components and (ultimately) to avoid under-run/over-run at the final D/A converter’s FIFO. The challenge
of low-latency transfers is being addressed in other forums and is outside the scope of this draft.

Figure 5.1—Garage jam session

t0 = 1 ms
A/D conversion

delay

t7 = 2 ms
processing

delay

t12 = 6 ms
(air delay for
6’ distance)

t3 = 1 ms
processing

delay

t11 = 1 ms
D/A conversion

delay

t10 = T

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
28 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.1.2 Looping topologies

Bridged Ethernet networks currently have no loops, but bridging extensions are contemplating looping
topologies. The time-synchronization protocols assume that looping physical topologies could be present, as
illustrated by the dotted-line connection in Figure 5.2, but logical loops would be eliminated by invoking the
existing IEEE 802.1D rapid-spanning tree protocols.

Grandmaster-selection, time-synchronization, and link-delay calibration information across the (illustrated
as solid lines) active spans. Only link-delay calibration information is assumed to flow across the (illustrated
as dotted lines) inactive spans; knowledge of these delays reduces clock-discontinuities in the event of
spanning-tree topology changes.

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

5.2 Design methodology

5.2.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.

b) All clocks are accurate, typically to within ±100PPM.

c) Details of the best time-synchronization protocols are physical-layer dependent.

5.2.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.

b) Inexpensive. For consumer AVB devices, the costs of synchronized timers are minimal.
(GPS, atomic clocks, or 1 PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol is independent of the networking technology:

Figure 5.2—Possible looping topology

AVB
bridge

AVB
bridge

AVB
device

AVB
device

AVB
device

AVB
device

AVB
bridgeEthernet

bridge

Peer device is
not AVB capable

Ethernet
hub

device

AVB
device

AVB
device

Half-duplex link
can’t do AVBdevice

device

AVB “cloud”

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1) Transmission intervals can be independently specified and optimized, on a per-link basis.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

5.2.3 Strategies

Strategies used to meet these objectives include the following:

a) Precision is achieved by calibrating and adjusting grandTime clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:

1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Firmware friendly. Clock offset and rate adjustments can be performed by low-rate firmware;

analog PLLs are unnecessary within bridges (although necessary within some applications).
3) Frequent. Frequent ~100 Hz interchanges eliminates needs for expensive/precise clocks.

5.3 Network topologies

Clock synchronization involves streaming of timing information from a grandmaster clock to one or more
slave clocks. The synchronization protocols assume a spanning-tree topology, but function correctly on
cyclical physical topologies, if spanning-tree protocols (802.1D) have activated only a non-cyclical subset of
the physical topology.

The grandmaster station (GM) provides a time reference to locally attached clock-slave station (S), as
illustrated in Figure 5.3a. Bridges synchronize their clock-master (M) ports to their clock-slave (S) port, via
internal communications. These clock-master (M) ports typically connect to another bridge’s clock-slave (S)
port, or to an attached end-station clock-slave station (ES).

In concept, network-wide clock-synchronization protocol starts with the selection of the reference-clock
station, called a grandmaster station (oftentimes abbreviated as grandmaster). Every AVB-capable station is
grandmaster capable, but only one is selected to become the grandmaster station within each network grand-
master selection involves the transmission of ClockSync messages between grandmaster capable stations.

Figure 5.3—Synchronized-system topologies

a) Agents along the synchronization path

Legend:
GM grandmaster S slave port

M master port ES end-station port
primary path secondary path

ES

ES

ES

ES

ES M

M

M

S
GM

M M MS

P

M

M

S

b) Bridge processing

MAC

PHY

LLC
TS

PHY

TS

MAC relay

GrandSync

LLC

MAC

(central selection)
S

ca
nn

er

rx
pr

ec
ed

en
ce

Bump

D
et

ec
tio

n

Reject

st
at

e

per-port selection

rx tx

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
30 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

In the presence of redundant loops, a bridge port can also be placed in a passive (P) state, wherein it
monitors ClockSync messages but does not synchronize its clock to its associated clock-master port.

After grandmaster selection, time-reference information flows from this selected grandmaster station to
attached clock-slave stations. Thus, time-synchronization involve two subservices, as follows:

a) Selection. Topologies are pruned into spanning tree with the grandmaster at the root (see 5.5).

b) Distribution. Synchronized time is distributed through the spanning tree from the root (see 5.6).

5.4 Information parameters

Clock-synchronization information includes clock-selection parameters (for selecting the grandmaster) and
clock-synchronization parameters (for synchronizing between clock-master and clock-slave ports), as
illustrated in Figure 5.4. A portion of the clock-synchronization parameters are media-independent and pass
across the bridge-internal service interface; the remainder are link-media dependent and used for calibration
of clock-master to clock-slave port delays.

NOTE—Depending on the media specification, the clock-selection and clock-synchronization parameters could be a
single ClockSync packet (as currently assumed) or transmitted in distinct frames. The optimal partitioning into frames
types (hopefully, no more than two) is an outstanding topic of discussion.

The concatenation of priority and clockID values forms a precedence value for the selection of the preferred
grandmaster candidate. The concatenation of hops, interval, flags, and utcOffset values provide additional
information to the clock-slave devices.

The {grandTime,extraTime,localTime} triad percolates from the grand-master to the clock-slave stations,
with adjustments along the way, to provide clock-slave stations with estimates of the grandmaster’s clock
time. The grandTime represents a station’s estimate of the grandmaster’s clock sampled at that stations’s
localTime instant. The extraTime value represents a cumulative deviation error that (for the purposes of
accuracy and responsiveness) is maintained separately from the grandTime value.

The remaining media-dependent parameters allow a bridge’s receive-port to calibrate and compensate for
delays introduced by the receive link of the span connecting its neighbor. For full-duplex Ethernet, these
include thatTxTime and thatRxTime (snapshots taken on opposing-link frames), and thisTxTime (a
snapshot taken on the neighbor’s transmission). Different values are applicable to alternative media types.

Figure 5.4—GrandSync service-interface components

precedence

seconds fraction grandTime

localTime

hops

secs fraction

clockIDpriority

extraTimesubfraction

controlinterval utcOffset

thisTxTimesecs fraction

thatTxTimesecs fraction

thatRxTimesecs fraction

media-independent service interface
media-dependent delay-calibration

clock-selection

clock-synchronization

flags

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.5 Grandmaster selection

Intermediate bridge entities are responsible for providing standard/centralized precedence-selection and
media-specific/per-port rejection entities, as illustrated in Figure 5.3b. The central GrandSync prece-
dence-selection entity is responsible for selecting and echoing only the best ClockSync messages. The
per-port rejection entity is responsible for discarding (unnecessary) reverse-flow ClockSync messages.

As part of the grandmaster selection process, ClockSync messages are generated by clock-master capable
stations; the ClockSync messages transport clock-precedence values (see Figure 5.5) to other stations. Only
ClockSync messages with the best observed clock-precedence value are forwarded to neighbor stations,
allowing the overall best-precedence value to be ultimately selected and known by all. The station with that
best precedence value is called the grandmaster.

The grandmaster precedence is set to be the concatenation of priority and clockID fields. The value of each
station’s priority field can be set by the application, for the purposes of biasing the grandmaster precedence
in an application-specific manner. The clockID field is a globally unique number assigned to each station.

The hops field is incremented by each bridge and thus represents the distance from the grandmaster. The
following interval and flags fields consist of multiple components, as illustrated in Figure 5.5.

The interval field specifies the source-station’s nominal interval between ClockSync frames, and is used for
timeout purposes. For compactness, its value is encoded as simple floating point value, as summarized
below (see 6.2.1.5).

value = base << shift;

The flags field (in conjunction with the utcOffset field) supports the management of leap-second updates and
timeouts. The two-bit value of utcChange specifies whether the utcOffset value should be unchanged,
incremented, or decremented at the stroke of midnight (see 6.2.1.6).

Figure 5.5—interval and flags parameters

MSB LSB

utcChangereservedshift base

interval flags

running disruption

– –

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
32 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.5.1 Central ClockSync-message processing

The central/standard GrandSync entity (see Figure 5.3b) is responsible for processing ClockSync PDUs
provided by attached ports, as summarized in Equation 5.1. If the ClockSync message precedence equals or
exceeds the previously saved sync.precedence value: sync.precedence is updated with the
ClockSync-message precedence, the ClockSync-message timeout is cleared, and the ClockSync message is
echoed to all bridge ports. A timeout clears the sync.precedence history in the absence of expected (normally
periodic) ClockSync messages.

// Performed by the GrandSync entity (5.1)
// Compare(x,y) operates on multiple-precision arguments x and y
// The returned integer result is:

1 if x-y > 0
0 if x-y == 0

-1 if x-y < 0
while (FOREVER) { // Check constantly

clockSync = Dequeue(GS_RX); // Get ClockSync message
if (clockSync != NULL) { // if one is available

gsprecedence = Gsprecedence(clockSync); // Form precedence value
if (Compare(gsprecedence,sync.precedence) <= 0) { // The best precedence

sync.precedence = gsprecedence; // is observed and saved
Enqueue(GS_TX, clockSync); // Echoed the PDU to others
sync.lastTime = currentTime; // Restart the timeout
sync.timeout = GsTimeout(clockSync.interval); // Form precedence value

}
}
if (currentTime >= sync.lastTime + sync.timeout) // Inactivity timeout;

grandprecedence = ONES; // clear saved precedence
}

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 33

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.5.2 Per-port received ClockSync-message processing

The per-port/media-dependent TS.rx entity (see Figure 5.3b) is responsible for processing rxClockSync
PDUs provided by attached ports, as summarized in Equation 5.2. If the rxClockSync-PDU precedence
equals or exceeds the previously saved port.precedence value: port.precedence is updated with the
rxClockSync-PDU precedence and the ClockSync-message timeout is cleared. Regardless, the (media
dependent) rxClockSync-PDU is converted to a generic clockSync-PDU and sent to the central GrandSync
entity. A timeout clears the port.precedence history in the absence of expected (normally periodic)
ClockSync messages.

// Performed by the TS.receive entity (5.2)
while (FOREVER) { // Check constantly

clockSync = Dequeue(ES_RX); // Get a ClockSync
if (clockSync != NULL) { // if one is available

rxprecedence = Rxprecedence(clockSync); // Form precedence value
if (Compare(rxprecedence, port.precedence) < 0) { // The best precedence

port.precedence = rxprecedence; // is observed and saved
port.lastTime = currentTime; // Restart the timeout

}
Enqueue(GS_RX, EsToGs(rxClockSync)); // Send PDU to GrandSync

}
if (currentTime >= port.lastTime + rxTimeout) // Inactivity timeout;

port.precedence = ONES; // clear saved precedence
}

5.5.3 Per-port transmit ClockSync-message processing

The per-port TS.rx entity (see Figure 5.3b) is responsible for setting the port state and selectively forwarding
clockSync PDUs provided by the GrandSync entity, as summarized in Equation 5.3. If port.precedence
compares favorably to the clockSync-PDU (indicating this is the best-precedence port), the port.state is set
to CLOCK_SLAVE and ClockSync messages are discard. Otherwise, port.state (and its associated behaviors)
are dependent on comparisons between port and to-be-transmitted PDU precedences.

// Performed by the TS.transmit entity (5.3)
while (FOREVER) { // Check constantly

clockSync = Dequeue(GS_TX); // Get received ClockSync
if (clockSync != NULL) { // if one is available

if (clockSync.hops == HOP_LIMIT) return; // Ignore aged frames
g0Precedence = Gsprecedence(clockSync); // Form precedence value
gsClockSync.hops += 1; // Increment hop count
g1Precedence = Gsprecedence(clockSync); // Form precedence value
if (Compare(port.precedence, g0Precedence) <= 0) // Rx precedence is best;

port.state = CLOCK_SLAVE, return; // Rx ClockSync and time
switch (Compare(g1Precedence, port.precedence)) { // Tx precedence compare
case -1:

port.state = CLOCK_PASSIVE, return; // Rx ClockSync, ignore time
case 1:

port.state = CLOCK_MASTER, break; // Tx ClockSync and time
case 0:

port.state = CLOCK_IDLED, break; // Tx ClockSync, block time
}
Enqueue(ES_TX, GsToEs(clockSync)); // Transmit the ClockSync

}
}

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
34 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.6 Synchronized time distribution

5.6.1 Clock-time synchronization flows

As background for understanding, consider the flow of clock-time synchronization information within a
simple/stable three-bridge topology, as illustrated in Figure 5.6. The clock-time information flows from the
selected application-level ClockSource entity (located on the grandmaster station), through intermediate
bridges (when present), and terminates at application-level ClockTarget entities.

The clock-master station (containing the ClockSource entity) and the clock-slave station (containing the
ClockTarget entity) are illustrated as multipurpose bridges; either could also be end stations (not illustrated).

Time synchronization yields distributed but closely-matched grandTime values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs) but application-level phase locked loops are expected to filter high-frequency jitter from the supplied
grandTime values.

Maintaining an accurate time reference relies on the presence of accurate time-stamp hardware capabilities
in or near the media-dependent PHY. A bypass path (illustrated as hashed PHY-to-TS lines within
Figure 5.6) allows the time-stamp information to be affiliated with the arriving ClockSync-frame informa-
tion, before the PDU is processed by the time-synchronization (TS) entity above the MAC. A similar bypass
path is also required at the transmitter, so that an accurate time-stamp of a transmitted frame can be placed
into the next-transmitted ClockSync frame.

This grandmaster station comprises client-level ClockTarget as well as ClockSource entities. The
ClockTarget entity allows the application-level clock to be synchronized to the network clock, whenever
another station becomes the grandmaster station. (The ClockSource entity on the grandmaster station
provides the network-synchronized clock-time reference.)

Figure 5.6—Clock-time synchronization flows

application
lower-levels

MAC

PHY

TS

PHY

LAN

TS

MAC relay

ClockSlaveGrandSync

MAC

PHY

LLC
TS

PHY

TS

MAC relay

MAC

PHY

LAN

LLC
TS

MAC

PHY

MAC relay

ClockSlaveGrandSync

ClockTarget

GrandSync

ClockSource ClockTarget

LLC LLC

MAC

LLC
TS

grandmaster station Intermediate bridge Slave station

ClockMaster

MAC

LLC

span1 span2

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.6.2 Steps in the grandTime flow

Processing steps along the path of the time-synchronization flow of Figure 5.6 include the following:

a) The ClockSource’s time-reference parameters are converted into a standard format, supplemented
with additional parameters (such as the station-local arrival time), packaged into a PDU, and sent to
the GrandSync entity.

b) The GrandSync entity echoes the time-synchronization information from (what it determines to be)
the preferred port. Information from lower-precedence ports is continuously monitored to detect
precedence changes (typically due to attach or detach of clock-master capable stations).
Clock-time information in PDUs from lower-precedence ports is ignored.

c) Clock-time parameters within the echoed PDUs are saved in transmit-port time-value array. When
the next ClockSync frame is transmitted, the transmission time is computed based on these array
values. The computed transmission time is queued for inclusion in the following ClockSync trans-
mission.

d) The ClockSync frame travels over span1 to the intermediate bridge, incurring a media-dependent
transmission delay and arriving at (station-local) time rxTime.

e) The (station-local) frame-arrival snapshot value, rxTime, is compensated by subtracting the
estimated transmission delay to create an rcTime value, where:

rcTime=rxTime-delay0, where delay0 is an estimate of span delay.
The grandTime value is extracted from the arriving frame; the {grandTime,rcTime} time-pair
values are encapsulated within a PDU; that PDU is sent to the GrandSync entity.

f) The GrandSync entity echoes the ClockSync PDU provided by the preferred port, as in step (c).

g) Time parameters within the echoed PDUs are saved and eventually transmitted, as in step (d).

h) The ClockSync frame travels over span2 to the final bridge, incurring a media-dependent
transmission delay and arriving at (station-local) time rxTime.

i) The (station-local) frame-arrival snapshot value, rxTime, is compensated by subtracting the
estimated transmission delay to created an rcTime value, as in step (d).
The {grandTime,extraTime,rcTime} affiliations are placed in a PDU and sent to the GrandSync.

j) The GrandSync entity echoes the ClockSync PDU from the preferred port, as in step (c).

k) The GrandSync’s time-reference parameters are converted from the standard PDU format,
unnecessary parameters are discarded, and grandTime is communicated to the GrandSync entity.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
36 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.6.3 Intermediate bridge entities

Entities within the intermediate bridge (see Figure 5.6) are responsible for performing three distinct (and
largely decoupled) functions, as illustrated in Figure 5.7. A port in the CLOCK_SLAVE state is responsible for
compensating for link-transmission delays between this station and its neighbor, as described in 5.6.4. The
GrandSync entity is responsible for selecting the ClockSync PDUs from the grandmaster station; only thus
selected PDUs are forwarded to transmitter ports.

Ports in the CLOCK_MASTER state are responsible for revising the GrandSync-supplied ClockSync PDUs to
supply the appropriate media-dependent service-interface parameters and/or frames. Since the transmission
times and rates may differ from those on the clock-slave port, the CLOCK_MASTER-state port is responsible
for interpolating/extrapolating between previously received time samples to generate parameters
corresponding to the recently observed transmit-snapshot, as described in 5.6.4

The concept of a residence time is based on a simplistic assumption that ClockSync frames are received,
pass through the station, and are then transmitted on the other port. However, the phase and/or frequency of
receive and transmit ClockSync frames may differ. A more general model of value resampling (see 5.6.5) is
therefore assumed within this document.

Figure 5.7—Intermediate-bridge responsibilities

MAC

PHY

LLC
TS

PHY

TS

MAC relay

GrandSync

LLC

MAC

a) Link-delay compensation

b) grandmaster selection

c) Residence time compensation

state == CLOCK_MASTERstate == CLOCK_SLAVE

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.6.4 CLOCK_SLAVE link-delay compensation

When a ClockSync frame is received at a CLOCK_SLAVE-state port, a snapshot of the local localTime is
saved. This snapshot time is compensated by the measured link delay. Although these time-delay adjust-
ments are media-dependent, the concepts described within this subclause are applicable to most
transmission media.

Processing of the rxTime snapshot to account for link-transmission delays involves the subtraction of a
precomputed link delay value, as illustrated in Figure 5.8a. In parallel with this subtraction, the received
grandTime value is extracted from the received ClockSync frame. The grandTime and rcTime (the
delay-compensated txTime) values provide an accurate time-affiliation pair that is packaged into the PDU
and sent to the GrandSync entity.

Link delays can be accurately precomputed if the delays are constant, accurate time-snapshot values are
present, and the clocks are stable. The computations are based on time-stamp measurements performed on
distinct ClockSync[p] and following ClockSync[q] frame transmissions, as illustrated in Figure 5.8b.

These computations are based on the free-running station-local timers, illustrated as thisTime and thatTime.
For stability and accuracy, computations use time differences measured with respect to the local timers;
constant offset or frequency errors between local and neighbor timers thus have no effect on the accuracy of
the computations.

To improve accuracy, a ratio of local-to-neighbor clock-intervals is precomputed over N (perhaps 16) frame
transmissions, as specified in Equation 5.4. For hardware accuracy and simplicity, the t2 transmission-time
snapshot are held and transmitted in the following frame. Thus, the t2 snapshot for ClockSync[n] is
transmitted within the following ClockSync[n+1] frame.

#define N 16 // A typical value (5.4)
ratio = (t3[n+N]–t3[n]) / (t2[n+N]–t2[n]); // Neighbor’s rate ratio

For symmetry and accounting simplicity, the t0 transmission-time snapshot is also held and transmitted in
the following frame. Affiliated {t0,t1} pairs are then returned in following ClockSync[q] frame transmis-
sions. The process is symmetric and thus allows either station to (otherwise independently) compute the
average link transmission delay, as specified in Equation 5.5.

delay = ((t3[q]–t0[p]) – rateRatio*(t2[q]-t1[p]))/2; // Average link delay (5.5)

Figure 5.8—CLOCK_SLAVE link-delay compensation

Extract

receive-port
compensation

a) Receive-time compensation

MAC

PHY

LLC
TS

PHY

TS

MAC relay

GrandSync

LLC

MAC

rxTime

delay

rcTimegrandTime

{grandTime,rcTime}

CLOCK_MASTERCLOCK_SLAVE

rx

b) Delay measurements

this
station

that
station

t0 (thatTxTime)

(thatRxTime) t1

(thisTxTime) t2

t3 (thisRxTime)

increasing time

ClockSync[p]

ClockSync[q]

thisTimethatTime

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
38 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.6.5 CLOCK_MASTER time-sample interpolation

A port in the CLOCK_MASTER state receives the {grandTime,extraTime,rcTime} triads that are echoed by the
GrandSync entity. Since these (oftentimes) cannot be transmitted immediately, the received time-triads are
saved in a times[] array, for access after the next ClockSync frame transmission, as illustrated in Figure 5.9a.

NOTE—The distribution of distinct times[] storage entities is an architectural model; implementations could emulate the
specified behavior by providing access to shared storage and intermediate results.

During the next ClockSync frame transmission, a txTime snapshot is produced. The Resample logic operates
on the times[] array values to compute the {grandTime1,extraTime1,txTime} time-triad that is placed within
the following ClockSync frame transmission, based on interpolation and averaging strategies illustrated in
Figure 5.9b. Within Figure 5.9b, rc and tx are abbreviations for rcTime and txTime values, respectively.

To avoid traditional whiplash and gain-peaking problems associated with cascaded PLLs, an interpolation
(as opposed to extrapolation) strategy yields distinct grandTime1 and extraTime1 values. These two times
are forwarded independently but are recombined at the ClockTarget entity, so that a single time can be
passed to the higher-level application.

In concept, the computation of grandTime1 involves computing tbTime= txTime-backTime, using tbTime to
generate grandTime0 by interpolating between previously saved times[] values, and then generating
grandTime1 by extrapolating grandTime0 forward to time txTime (assuming a constant grandTime slope of
one). The value of extraTimeB is set to the difference between an extrapolated value (based on saved times[]
values) and the computed grandTime1 value.

Computation of the extraTime1 involves computing extraTimeA, the average of previously saved extraTime
values within the times[] array. The sum of extraTimeA (upstream station’s contributions) and extraTimeB
(this station’s contribution) yields the extraTime1 value, as summarized in Equation 5.6.

#define N 4 // Typical value (5.6)
rateRatio= // Relative rates

(grandTime[n] - grandTime[n-N]) / (rcTime[n] - rcTime[n-N]); // GM’s rate ratio
for (extraTimeA= i= 0; i < N; i += 1) // Use samples to

extraTimeA += extraTime[n-i]/N; // find an average
extraTimeB = backTime * (rateRatio - 1.0); // Contributed value
grandTime1 = rc[n] + (txTime - rc[n]) * rateRatio - extraTimeB; // Tx grandTime value
extraTime1 = extraTimeA/N + extraTimeB; // Tx extraTime value

Figure 5.9—CLOCK_MASTER time-sample interpolation

a) Per-port resampler components

MAC

PHY

LLC
TS

PHY

TS

MAC relay

GrandSync

LLC

MAC

txTime

Resample

times[K]

{grandTime1,extraTime1,txTime}

{grandTime,extraTime,rcTime}

b) Interpolation of saved times[] values

gr
an

dT
im

e
ex

tr
aT

im
e

localTime

extraTimeB

rc[n]rc[n-1]rc[n-2]rc[n-3] tx[k]

backTime

slope=1

grandTime1

averaged

extraTimeA

grandTime0

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.7 Comparison to IEEE Std 1588

5.7.1 Distinction summary

Advantageous properties of this protocol that distinguish it from other protocols (including portions of
IEEE Std 1588) include the following:

a) Synchronization between grandmaster and local clocks occurs at each station:

1) All bridges have a lightly filtered synchronized image of the grandmaster time.
2) End-point stations have a heavily filtered synchronized image of the grandmaster time.

b) Time is uniformly represented as scaled integers: seconds and fractions-of-a-second.

c) Locally media-dependent synchronized networks don’t require extra time-snapshot hardware.

d) Error magnitudes are sublinear with hop distances; PLL-whiplash and O(n2) errors are avoided.

e) Multicast (one-to-many) services are not required; only adjacent-neighbor addressing is required.

f) A relatively frequent 100 Hz (as compared to 1 Hz) update frequency is assumed:

1) This rate can be readily implemented (in today’s technology) for minimal cost.
2) The more-frequent rate improves accuracy and reduces transient-recovery delays.
3) The more-frequent rate reduces transient-recovery delays.

g) Only one frame type simplifies the protocols and reduces transient-recovery times. Specifically:

1) Cable delay computations, based on local clocks, are unaffected by grandTime transients.
2) Rogue frames are quickly scrubbed (2.6 seconds maximum, for 256 stations).
3) Drift-induced errors are greatly reduced.

5.7.2 Common snapshot hardware

For precise clock tracking, both IEEE 802.1as and IEEE 1588 working groups have assumed the presence of
accurate timestamp hardware at their receive and transmit PHY ports. Through cooperative efforts, IEEE
802.1as and IEEE 1588 working groups have worked to ensure the same hardware can be used to support
both designs, as illustrated in Figure 5.10a.

In IEEE p1588, the timestamp hardware decodes the protocolID and a selected bit in the following version
field, as illustrated in Figure 5.10b (requirements on this bit are specified in 6.2.1.3). Because only one
time-stamped frame type (and its transmission rate) is specified, the use of special tags with a matching
frame-sequence placement is unnecessary.

Figure 5.10—Common snapshot hardware

a) Receive-port timestamp HW model

decode

ClockSync or
1588 sync frames

tags

timeStamp

localTime

MAC

PHY

TS

PDUsideband

b) Common 1588/EFDX frame placement

da

sa

protocolID

version

fcs

function

tags

…

…

34-45

bit=0

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
40 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.7.3 1588 grandmaster precedence

Within 1588, the grandmaster precedence is based on the concatenation of multiple fields, including
clock-master identifiers, as illustrated in Figure 5.11. The gray-shaded values are not supported in this
document.

The clockClass, clockAccuracy, and offsetScaledLogVariance values are sparsely-encoded and
application-dependent and thus not supported in this document. Similar functionality can be achieved by
higher-level conventions that specify the partitioning/assignment of distinct 16-bit priority values.

The sourceIdentifier, portNumber, and rxPort values are unnecessary in the presence of a spanning-tree
protocol and therefore are not supported within this document.

5.7.4 grandTime formats

Within this document, grandTime is represented as a scaled integer seconds value, consisting of 40-bit
signed integer (approximately 1,000 generations) and a precise binary fraction, as illustrated in the top of
Figure 5.12. All times are located in adjacent bytes, allowing their values to be readily extracted by
bridge-resident firmware. All times are represented as binary integers, so no (expensive/imprecise)
conversions are necessary before adding and/or multiplying these values.

Within 1588, (perceived) legacy compatibility requirements led to an interesting collection of formats, as
illustrated in the bottom of Figure 5.12. The originTimestamp has two unused bits in its center, which wastes
accuracy and complicates the processing of special-case values. The correctionField further complicates
processing requirements, due to its delayed availability and unique overflow-to-seconds behaviors.

Figure 5.11—1588 grandmaster precedence

Figure 5.12—grandTime formats

clockID

priority1

–

clockClass
stepsRemoved

–

clockAccuracy

– –

priority2

sourceIdentifier

offsetScaledLogVariance

rxPortMSB LSB–

precedence resolver

precedence

sourcePortIdentity

portNumber

seconds fraction

This proposal

seconds nanoseconds?

Current 1588

~34,800 years

~8,900,000 years

~1 picosecond

~16 femptosecond

~1 nanosecond

scaledNanoseconds

GrandSync frame
fraction

grandTime

extraTime

correctionField

originTimstamp

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 41

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.7.5 Frame sequence comparison

Within this document, all functional are encapsulated into a single slightly-greater-than-minimal frame,
slightly greater than the minimal frame size. Each station emits these frames at their link-dependent interval,
as illustrated in Figure 5.13.

Within 1588, a variety of function/direction specific frames are transmitted. For an asymmetric-active span,
this involves nine separate frame transmissions (as opposed to two), as illustrated in Figure 5.13b. For a
symmetric-inactive span, this involves six separate frame transmissions, as illustrated in Figure 5.13c. For
this illustration, we assume that both master and slave stations desire to calibrate link delays, to minimize
topology-change transients.

Figure 5.13—Frame sequence comparison

a) Document proposal

ClockSync[p]

ClockSync[q]

master slave

increasing time

ClockSync[p+1]

ClockSync[q+1]

de
lta

B

de
lta

B

b) 1588 asymmetric-active

increasing time

master slave

Announce

(?flooding?)

Sync

Follow_Up

Delay_Req

Delay_Req

Delay_Resp

⇒delay

select

Pdelay_Req

Pdelay_Resp

Pdelay_Resp_Follow_Up

⇐delay

c) 1588 symmetric-inactive

increasing time

master slave

⇒delay

Pdelay_Req

Pdelay_Resp

Pdelay_Resp_Follow_Up

⇐delay

Pdelay_Req

Pdelay_Resp

Pdelay_Resp_Follow_Up

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
42 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
43 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6. GrandSync operation

6.1 Overview

6.1.1 GrandSync behavior

This clause specifies the state machines that specify GrandSync-entity processing. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the primitives and formal procedures and the
interfaces in any particular implementation.

The GrandSync entity is responsible for monitoring time-sync PDUs via the CLOCK_SYNC.indication service
primitive, selectively echoing a subset of these PDUs via the CLOCK_SYNC.response service primitive, as
follows:

a) When a preferred time-sync related CLOCK_SYNC.indication arrives:

1) The grandmaster precedence and port-timeout parameters are saved.
2) CLOCK_SYNC.indication parameters are echoed in CLOCK_SYNC.response parameters.
3) The arrival time is recorded, for the purpose of monitoring port timeouts.

b) Arriving non-preferred CLOCK_SYNC.indications are discarded.
The intent is to echo only PDUs from the currently selected grandmaster port.

c) If the preferred-port timeout is exceeded, the preferred-port parameters are reset.
The intent is to restart grandmaster selection based on the remaining candidate ports.

6.1.2 GrandSync interface model

The time-synchronization service model assumes the presence of one or more time-synchronized AVB ports
communicating with a MAC relay, as illustrated in Figure 6.1. All components are assumed to have access
to a common free-running (not adjustable) localTime value.

A received MAC frame is associated with link-dependent timing information, processed within the
TimeSync (TS) state machine, and passed to the GrandSync protocol entity. The GrandSync state machine
(illustrated with a darker boundary) is responsible for saving precedence parameters from observed
CLOCK_SYNC.indication PDUs and generating CLOCK_SYNC.response PDUs for delivery to other ports.

Figure 6.1—GrandSync interface model

802.n MAC

PHY

LAN

ISS

LLC

TS

802.n MAC

PHY

LAN

ISS

MS
LLC

TS

MS

MAC relay

~localTime~

GrandSync
CLOCK_SYNC.indication

CLOCK_SYNC.response

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The ClockSync information exchanged with the GrandSync entity includes {priority,clockID} grandmas-
ter-precedence, {hops,interval,flags,utcOffset} control, and {grandTime,extraTime,localTime} clock-syn-
chronization information, as illustrated in Figure 6.2. A clock-slave end-point can filter the sum of
grandTime and extraTime values, thereby yielding a more accurate image of the globally synchronized
grandTime value.

6.2 Service interface primitives

6.2.1 CLOCK_SYNC.indication

6.2.1.1 Function

Provides the GrandSync protocol entity with clock-synchronization parameters derived from PDUs sent
from attached media-dependent ports. The information is sufficient to identify a single clock-slave port
(typically the closest-to-grandmaster port) and to disseminate grandmaster supplied clock-synchronization
information to other ports.

6.2.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

CLOCK_SYNC.indication {
destination_address, // Destination address
source_address, // Optional
priority, // Forwarding priority
service_data_unit, // Delivered content
{ // Contents of the service_data_unit

protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between ClockSync and other AVB frames
version, // Distinguishes between ClockSync frame versions
priority, // Precedence for grandmaster selection
clockID, // Precedence for grandmaster selection
hops, // Distance from the grandmaster station
interval, // Nominal ClockSync transmission interval
flags, // Control flags
utcOffset, // Difference between UTC and TAI timescales
grandTime, // Global-time snapshot (1-cycle delayed)
extraTime, // Accumulated grandTime error
localTime // Local-time snapshot (1-cycle delayed)

}
}

Figure 6.2—GrandSync service-interface components

precedence

seconds fraction grandTime

localTime

hops

secs fraction

clockIDpriority

extraTimesubfraction

controlinterval utcOffset
selection parameters

synchronization parameters

flags

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
45 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

NOTE—The grandTime field has a range of approximately 36,000 years, far exceeding expected equipment life-spans.
The localTime and linkTime fields have a range of 256 seconds, far exceeding the expected ClockSync frame
transmission interval. These fields have a 1 pico-second resolution, more precise than the expected hardware snapshot
capabilities. Future time-field extensions are therefore unlikely to be necessary in the future.

The parameters of the CLOCK_SYNC.indication are described as follows:

6.2.1.2.1 destination_address: A 48-bit field that allows the frame to be conveniently stripped by its
downstream neighbor. The destination_address field contains an otherwise-reserved group 48-bit MAC
address (TBD).

6.2.1.2.2 source_address: A 48-bit field that specifies the local station sending the frame. The
source_address field contains an individual 48-bit MAC address (see 3.10), as specified in 9.2 of IEEE Std
802-2001.

6.2.1.2.3 priority: Specifies the (802.3) priority associated with content delivery.

6.2.1.2.4 serviceDataUnit: A multi-byte field that provides information content.

For GrandSync-entity time-sync interchanges, the serviceDataUnit consists of the following subfields:

6.2.1.2.5 protocolType: A 16-bit field contained within the payload that identifies the format and function of
the following fields.

6.2.1.2.6 function: An 8-bit field that distinguishes the ClockSync frame from other AVB frame type.

6.2.1.2.7 version: An 8-bit field that identifies the version number associated with of the following fields.
TBD—A more exact definition of version is needed.

6.2.1.2.8 priority: A 16-bit field that can be configured by the user and overrides the remaining
precedence-group field value.

6.2.1.2.9 clockID: A 64-bit globally-unique field that ensures a unique precedence value for each potential
grandmaster, should the priority field have the same value (see 6.2.1.4).

6.2.1.2.10 hops: A 16-bit field that represents the number of hops from the grandmaster.

6.2.1.2.11 interval: An 8-bit pseudo floating-point field that specifies the nominal interval between
ClockSync frame transmissions (see 6.2.1.5).

6.2.1.2.12 flags: An 8-bit field that warns/triggers changes to the end-station utcOffset value.

6.2.1.2.13 utcOffset: A 16-bit field that represents the current leap-seconds value.

NOTE—Due to the reduced-value and non-time-sensitive nature of the utcOffset field, perhaps this could be considered
to be a value that is updated through infrequent TLV-like updates.

6.2.1.2.14 grandTime: An 80-bit field that specifies a grandmaster synchronized time (see 6.2.1.6).

6.2.1.2.15 extraTime: A 32-bit field that specifies the cumulative grandmaster synchronized-time error.
(Propagating extraTime and grandTime separately eliminates whiplash associated with cascaded PLLs.)

6.2.1.2.16 localTime: A 48-bit field that specifies the local free-running time within this station, when the
previous ClockSync frame was received (see 6.2.1.9).

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 46

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.2.1.3 Version format

For compatibility with existing 1588 time-snapshot, a single bit within the version field is constrained to be
zero, as illustrated in Figure 6.3. The remaining versionHi and versionLo fields shall have the values of 0
and 1 respectively.

6.2.1.4 clockID subfields

The 64-bit clockID field is a unique identifier. For stations that have a uniquely assigned 48-bit macAddress,
the 64-bit clockID field is derived from the 48-bit MAC address, as illustrated in Figure 6.4.

6.2.1.4.1 oui: A 24-bit field assigned by the IEEE/RAC (see 3.10.1).

6.2.1.4.2 extension: A 16-bit field assigned to encapsulated EUI-48 values.

6.2.1.4.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see 3.10.2).

6.2.1.5 interval subfields

The interval field specifies the source-station’s nominal interval between ClockSync frames, and is used for
timeout purposes. The interval field consists of two subfields, as illustrated in Figure 6.5.

The two subfields specify the interval duration as a simple floating-point like value:
value = (shift >= 0) ? (base << shift) : (base >> -shift);

Figure 6.3—version subfield format

Figure 6.4—clockID as derived from a 48-bit MAC address

Figure 6.5—interval subfields

LSB

8 bits

MSB

0versionHi versionLo

MSB LSB

FFFE16

oui ouiDependent

oui ouiDependentextension

48-bit MAC address

64-bit clockID

MSB LSB
baseshift

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
47 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.2.1.6 flags format

The flags field consists of multiple fields that support the warnings of change indications, as illustrated in
Figure 6.6.

The running bit shall be set to 1 when a the receiver has been initialized (cable-length parameters are OK).
Otherwise, the running bit shall be 0.

The disruption bit shall be set to 1 when a disruption in distribution of the grandTime value is sensed, due to
a discontinuity in the grandTime source or the selection of the grandTime source. Otherwise, the disruption
bit shall be 0.

The two-bit difference between utcChange and utcOffset, diff=(utcChange-utcOffset)%4, specifies the
utcOffset properties, as follows:

Value Property
0 Known and stable
1 Increment at midnight UTC
2 Decrement at midnight UTC
3 Unknown

The utcOffset field represents the grand-master’s vision of the difference between UTC (wall clock) time
and TAI (continuous) times.

NOTE—When the value of utcOffset is decremented, the event of “midnight” can occur twice, one second apart. The
specified/idempotent utcChange encoding (that specifies the changed value, not the change amount), eliminates
undesirable effects that might otherwise occur due to such “double-clocking” events.

NOTE—To ensure correctness, an exact equation (not simply an English statement) should be provided to ensure
proper/consistent updating of UTC time.

6.2.1.7 grandTime subfields

The grandTime (time-of-day) field within a frame are based on seconds and fractions-of-second values,
consistent with IETF specified NTP[B7] and SNTP[B8] protocols, as illustrated in Figure 6.7.

The 40-bit signed seconds field that specifies time in seconds. The 40-bit unsigned fraction field that speci-
fies a time offset within each second, in units of 2-40 second. The concatenation of these fields specifies a
80-bit grandTime value, as specified by Equation 6.1.

grandTime = seconds + (fraction / 240) (6.1)

Figure 6.6—flags parameters

Figure 6.7—grandTime subfields

MSB LSB
utcChangereserved disruptionrunning

seconds fraction

40 bits

LSB

40 bits

MSB

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 48

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.2.1.8 extraTime

The error-time values within a frame are based on a selected portion of a fractions-of-second value, as
illustrated in Figure 6.8. The 40-bit signed fraction field specifies the time offset within a second, in units of
2-40 second.

6.2.1.9 localTime format

The localTime value within a frame is based on seconds and fractions-of-second field values, as illustrated in
Figure 6.9. The 48-bit fraction field specifies the time offset within the second, in units of 2-48 second.

6.2.1.10 When generated

The CLOCK_SYNC.indication service primitive is generated when new grandmaster selection or clock
distribution information is available. Such information could change the selection of the grandmaster or
could provide a more-recent {grandTime, localTime} affiliation necessary for maintaining accurate
grandmaster synchronized time references.

6.2.1.11 Effect of receipt

Receipt of the service primitive by the GrandSync entity triggers an update of the grandmaster selection
information. If the grandmaster selection determines the source-port to be the preferred port, its provided
{grandTime,localTime} time affiliation is also echoed to the attached entities, via invocation of the
CLOCK_SYNC.response service primitive.

6.2.2 CLOCK_SYNC.response

6.2.2.1 Function

Communicates GrandSync protocol-entity supplied information to attached media-dependent ports. The
information is sufficient for attached ports to update/propagate grandmaster clock-synchronization
parameters.

6.2.2.2 Semantics of the service primitive

The semantics of the primitives are as specified for CLOCK_SYNC.indication (see 6.2.1).

6.2.2.3 When generated

Generated by the GrandSync entity upon receipt of a time-sync related CLOCK_SYNC.indication from a
preferred (by grandmaster selection protocol) source port.

Figure 6.8—extraTime format

Figure 6.9—localTime format

subFraction

32 bits

LSBMSB

seconds fraction

48 bits

LSB

8 bits

MSB

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
49 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.2.2.4 Effect of receipt

Receipt of the service primitive by a ClockSlave or TS entity updates entity storage. This storage update
allows the destination-port to provide accurate {grandTime,extraTime,localTime} affiliations during later
time-sync information transmissions.

6.3 GrandSync state machine

6.3.1 Function

The GrandSync state machine is responsible for observing CLOCK_SYNC.indication parameters, selecting
PDUs with preferred time-sync content, and echoing this content in following CLOCK_SYNC.response
parameters.

6.3.2 State machine definitions

6.3.2.1 AVB identifiers: Assigned constants used to specify AVB frame parameters.

6.3.2.1.1 AVB_FUNCTION: The function code that corresponds to a time-sync frame.
value—TBD.

6.3.2.1.2 AVB_MCAST: The multicast destination address corresponding to the adjacent neighbor.
value—TBD.

6.3.2.1.3 AVB_TYPE: The protocolType corresponding that uniquely identifies time-sync SDUs.
value—TBD.

6.3.2.1.4 AVB_VERSION: The number that uniquely identifies this version of time-sync SDUs.
value—TBD.

6.3.2.2 MAX_HOPS: A constant that specifies the largest possible hops value.
value—65536

6.3.2.3 NULL: A constant that (by design) cannot be confused with a valid value.

6.3.2.4 ONES: A large constant wherein all binary bits of the numerical representation are set to one.

6.3.2.5 Q_GS_RX: The queue identifier associated with PDUs sent to the GrandSync.

6.3.2.6 Q_GS_TX: The queue identifier associated with PDUs sent from the GrandSync.

6.3.3 State machine variables

6.3.3.1 ePtr: A pointer to entity-dependent storage, where that storage comprises the following:
lastTime—Time of the last best-precedence update, used for timeout purposes.
priority, clockID—

Copies of like-named fields within the last-received best-precedence GrandSync PDU.

6.3.3.2 localTime: A shared value representing current time within each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.
fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.

6.3.3.3 new, old: Local variables consisting of concatenated precedence, hops, and port parameters.

6.3.3.4 rsPtr: A pointer to the service-data-unit portion of rxInfo storage.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 50

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.3.3.5 rxInfo: Parameters associated with an CLOCK_SYNC.indication (see 6.2.1.2), comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
protocolType, function, version, priority, clockID,
hops, interval, flags, utcOffset, grandTime, extraTime,

6.3.3.6 rxPtr: A pointer to the rxInfo storage.

6.3.3.7 tsPtr: A pointer to the service-data-unit portion of txInfo storage.

6.3.3.8 txInfo: Parameters associated with an CLOCK_SYNC.response (see 6.2.1.2), comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
protocolType, function, version, priority, clockID, hops,
interval, flags, utcOffset, grandTime, extraTime,

6.3.3.9 txPtr: A pointer to the txInfo storage.

6.3.4 State machine routines

6.3.4.1 ClockSyncSdu(info): Checks the frame contents to identify CLOCK_SYNC.indication frames.
TRUE—The frame is a ClockSync frame.
FALSE—Otherwise.

6.3.4.2 Dequeue(queue): Returns the next available frame from the specified queue.
info—The next available parameters.
NULL—No parameters available.

6.3.4.3 Enqueue(queue, info): Places the info parameters at the tail of the specified queue on all ports.

6.3.4.4 Expand(interval): Expands the 1-byte encoded interval argument into a scaled seconds value.

6.3.4.5 Precedence(priority, clockID):
Forms a 10-byte precedence by concatenating:

priority (2 bytes)
clockID (8 bytes)

6.3.4.6 StationTime(ePtr): Returns the value of the station’s shared local timer, encoded as follows:
seconds—A 2-byte unsigned value representing seconds.
fraction—A 6-byte unsigned value representing portions of a second, in units of 2-48 second.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
51 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.3.5 GrandSync state table

The GrandSync state machine includes a media-dependent timeout, which effectively restarts the grandmas-
ter selection process in the absence of received ClockSync frames, as specified by Table 6.1.

Row 6.1-1: Available indication parameters are processed.
Row 6.1-2: The absence of indications forces a timeout, after a entity-dependent delay
Row 6.1-3: Wait for changes of conditions.

Row 6.1-4: Still-active time-sync PDUs are processed further, based on grandmaster precedences.
The test and last precedence values consist of {priority,clockID} components.
Row 6.1-5: Other PDUs and over-aged indications are discarded.

Row 6.1-6: Reset the timeout timer; broadcast saved parameters to all ports (including the source).
Row 6.1-7: Lower precedence indications are ignored.

Table 6.1—GrandSync state table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_GS_RX))
!= NULL

1 — TEST

(localTime – ePtr->timer)
> 4 * ePtr->interval

2 ePtr->lastTime = localTime;
ePtr->priority = ONES;
ePtr->clockID = ONES;

START

— 3 localTime = StationTime();

TEST ClockSyncSdu(rsPtr) 4 test = Precedence(rsPtr->priority, rsPtr->clockID);
last = Precedence(ePtr->priority, ePtr->clockID);

SERVE

— 5 — START

SERVE test <= last 6 ePtr->lastTime = localTime;
ePtr->interval = Expand(rsPtr->interval);
ePtr->priority = rsPtr->priority;
ePtr->clockID = rsPtr->clockID;
ePtr->hops = rsPtr->hops;
*txPtr = *rxPtr;
txPtr->destination_address = AVB_MCAST;
txPtr->source_address = MacAddress(ePtr);
tsPtr->protocolType = AVB_TYPE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;
Enqueue(Q_GS_TX, txPtr);

START

— 7 —

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 52

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7. ClockMaster state machines

7.1 Overview

7.1.1 ClockMaster behaviors

This clause specifies the state machines that specify ClockMaster entity processing. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the primitives and formal procedures and the
interfaces in any particular implementation.

The ClockMaster entity is responsible for forwarding the grandmaster time supplied by the ClockSource via
the CLOCK_MASTER.request service primitive, as follows:

a) A count value (that is incremented in sequential CLOCK_MASTER.request PDUs) is checked.

b) The grandmaster time parameter within the CLOCK_SYNC.response[n+1] PDU is associated with
the CLOCK_SYNC.response[n] PDU arrival time.

c) The CLOCK_SYNC.response parameters are supplemented to form a CLOCK_SYNC.response PDU,
which is then passed to the GrandSync entity.

7.1.2 ClockMaster interface model

The time-synchronization service model assumes the presence of one or more grandmaster capable entities
communicating with the GrandSync state machine, as illustrated on the left side of Figure 7.1. Most
grandmaster capable ports are expected to also provide clock-slave functionality, so that any non-selected
grandmaster-capable station can synchronize to the selected grandmaster station.

The clock-master ClockMaster state machine (illustrated with an italics name and darker boundary) is
responsible for monitoring its port’s CLOCK_MASTER.request PDUs and sending CLOCK_SYNC.indication
PDUs. The sequencing of this state machine is specified by Table 7.1.

Figure 7.1—ClockMaster interface model

802.n MAC

PHY

LAN

ISS

LLC

TS

802.n MAC

PHY

LAN

ISS

MS
LLC

TS

MS

MAC relay

ClockMaster ClockSlaveGrandSync

ClockSource

CLOCK_MASTER.request

~localTime~

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
53 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The time-synchronization service model assumes the presence of one or more clock-slave capable time-sync
entities communicating with a GrandSync protocol entity, as illustrated on the top-side of Figure 7.1. A
non-talker clock-slave capable entity is not required to be grandmaster capable.

7.2 ClockMaster service interfaces

7.2.1 Shared service interfaces

The ClockMaster entity is coupled to the bridge ports TS entities via the defined time-sync related
CLOCK_SYNC.indication service interface (see 6.2.1).

7.2.2 CLOCK_SOURCE.request service interface

7.2.2.1 Function

Provides the ClockMaster entity with clock-synchronization parameters derived from the reference clock.
The information is sufficient to provide the ClockMaster with accurate {grandTime,localTime} associations.

7.2.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

CLOCK_MASTER.request {
interval, // Nominal ClockSync transmission interval
flags, // Control flags
utcOffset, // Difference between UTC and TAI timescales
grandTime, // Global-time snapshot

}

The parameters of the CLOCK_MASTER.request service-interface primitive are described as follows:

7.2.2.2.1 interval: An 8-bit pseudo floating-point field that specifies the nominal interval between
ClockSync frame transmissions (see 6.2.1.5).

7.2.2.2.2 flags: An 8-bit field that warns/triggers changes to the end-station utcOffset value.

7.2.2.2.3 utcOffset: A 16-bit field that represents the current difference between UTC and TAI time scales
(leap-seconds).

7.2.2.2.4 grandTime: An 80-bit field that specifies the ClockSource provided grandmaster time when the
CLOCK_MASTER.request interface was invoked (see 6.2.1.7).

7.2.2.3 When generated

The CLOCK_MASTER.request service primitive is invoked by a client-resident ClockSource entity. The intent
is to provide the ClockMaster with continuous/accurate updates from a ClockSource-resident clock
reference.

7.2.2.4 Effect of receipt

Upon receipt by the ClockMaster entity, the encapsulated grandTime value is supplemented and affiliated
with a localTime snapshot; the resulting {grandTime,extraTime,localTime} affiliation is passed to the
GrandSync entity for redistribution to other ClockSlave and TS entities.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 54

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3 ClockMaster state machine

7.3.1 State machine definitions

7.3.1.1 AVB identifiers: Assigned constants used to specify AVB frame parameters (see 6.3.2).
AVB_FUNCTION, AVB_MCAST, AVB_TYPE, AVB_VERSION

7.3.1.2 NULL: A constant value that (by design) cannot be confused with a valid value.

7.3.1.3 Q_CM_RX: The queue identifier associated with PDUs sent to the ClockMaster.

7.3.1.4 Q_GS_RX: The queue identifier associated with PDUs sent to the GrandSync.

7.3.2 State machine variables

7.3.2.1 localTime: See 6.3.3.

7.3.2.2 sxPtr: A pointer to the service-data-unit portion of the received PDU storage.

7.3.2.3 tsPtr: A pointer to the service-data-unit portion of txInfo storage.

7.3.2.4 txInfo: Storage for to-be-transmitted CLOCK_SYNC.response parameters (see 6.2.2.2), comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
protocolType, function,version, priority, clockID, hops,
grandTime, extraTime, localTime, interval, flags, utcOffset

7.3.2.5 txPtr: A pointer to txInfo storage.

7.3.3 State machine routines

7.3.3.1 Dequeue(queue): See 6.3.4

7.3.3.2 Enqueue(queue, info): See 6.3.4

7.3.3.3 StationTime(entity): See 6.3.4

7.3.3.4 ClockSyncSdu(info): See 6.3.4.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
55 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.4 ClockMaster state table

The ClockMaster state table encapsulates clock-provided sync information into a ClockSync PDU, as
illustrated in Table 7.1.

Row 7.1-1: Supplement and retransmit on CLOCK_MASTER.request PDU arrival.
Row 7.1-2: Wait for the next change of state.

Table 7.1—ClockMaster state machine table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_CM_RX))
!= NULL

1 txPtr->destination_address = AVB_MCAST;
txPtr->source_address = MacAddress(ePtr);
tsPtr->prototolType = AVB_TYPE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;
tsPtr->priority = ePtr->priority;
tsPtr->clockID = ePtr->clockID;
tsPtr->hops = 0;
tsPtr->grandTime = sxPtr->grandTime;
tsPtr->extraTime = 0;
tsPtr->localTime = localTime;
tsPtr->interval = sxPtr->interval;
tsPtr->flags = sxPtr->flags;
tsPtr->utcOffset = sxPtr->utcOffset;
Enqueue(Q_GS_RX, txInfo);

START

— 2 localTime = StationTime(ePtr);

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 56

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8. ClockSlave state machines

8.1 Overview

8.1.1 ClockSlave behaviors

This clause specifies the state machines that specify ClockSlave entity processing. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the primitives and formal procedures and the
interfaces in any particular implementation.

The ClockSlave entity is responsible for extracting the grandmaster time from CLOCK_SYNC.indications and
supplying the current value to the ClockTarget entity through the CLOCK_SLAVE service interfaces, as
follows:

a) Grandmaster time samples are extracted from GrandSync-supplied CLOCK_SYNC.response PDUs,
and saved for computing grandmaster times in following CLOCK_SLAVE.indication PDUs.

b) When triggered by a CLOCK_SLAVE.request indication, a CLOCK_SLAVE.indication PDU is
delivered to the ClockTarget state machine. That returned CLOCK_SLAVE.indication PDU supplies
the grandmaster time associated with the CLOCK_SLAVE.request invocation time.

8.1.2 ClockSlave interface model

The time-synchronization service model assumes the presence of one or more clock-slave capable time-sync
entities communicating with a GrandSync protocol entity, as illustrated on the top-right side of Figure 7.1. A
non-talker clock-slave capable entity is not required to be grandmaster capable.

The ClockSlave state machine (illustrated with an italics name and darker boundary) is responsible for
saving time parameters from echoed CLOCK_SYNC.response frames and servicing CLOCK_MASTER.request
PDUs supplied by the associated clock-slave interface. The sequencing of this state machine is specified by
Table 8.1.

Figure 8.1—ClockSlave interface model

802.n MAC

PHY

LAN

ISS

LLC

TS

802.n MAC

PHY

LAN

ISS

MS
LLC

TS

MS

MAC relay

ClockSlaveGrandSync

ClockTarget

~localTime~

CLOCK_SLAVE.request

CLOCK_SLAVE.response

CLOCK_SERVE.request

CLOCK_SERVE.indication

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
57 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.2 ClockSlave service interfaces

8.2.1 Shared service interfaces

The ClockSlave entity is coupled to the GrandSync entity, via the defined CLOCK_SYNC.response service
interface (see 6.2.2).

8.2.2 CLOCK_SLAVE.request service interface

8.2.2.1 Function

Triggers the ClockSlave entity to provide the current grandTime value.

8.2.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

CLOCK_SLAVE.request { // The invocation has no parameters
}

8.2.2.3 When generated

The CLOCK_SLAVE.request service primitive is invoked by a client-resident ClockTarget entity. The intent is
to trigger the ClockSlave’s invocation of a following CLOCK_SLAVE.response primitive, thus providing the
ClockTarget entity with a recent grandTime value.

8.2.2.4 Effect of receipt

Upon receipt by a ClockSlave entity, a copy of the current grandTime value is returned.

8.2.3 CLOCK_SLAVE.response service interface

8.2.3.1 Function

Provides the ClockTarget entity with current grandTime value derived from the reference clock.

8.2.3.2 Semantics of the service primitive

The semantics of the primitives are as follows:

CLOCK_SLAVE.response {
interval, // Nominal ClockSync transmission interval
flags, // Control flags
utcOffset, // Difference between UTC and TAI timescales
grandTime // The grandmaster time, when the indication is sent.

}

The parameters of the CLOCK_SLAVE.response service-interface primitive are described as follows:

8.2.3.2.1 grandTime: An 80-bit field that specifies the grandmaster synchronized time within the
ClockSlave entity, when the previous CLOCK_SLAVE.request service-interface was invoked.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.2.3.3 When generated

The invocation of the CLOCK_SLAVE.response service primitive is invoked by the receipt of a ClockTarget
supplied CLOCK_SLAVE.request PDU. The intent is to provide the ClockTarget entity with a current
grandTime value.

8.2.3.4 Effect of receipt

Upon receipt by a ClockTarget entity, the {grandTime,localTime} affiliation is expected to be saved and
(along with previously saved copies) used to adjust the rate of the grandmaster synchronized
ClockTarget-resident clock.

8.2.4 CLOCK_SERVE.request service interface

NOTE—The details of the CLOCK_SERVE interface are highly preliminary and subject to change.

8.2.4.1 Function

Triggers the ClockSlave entity to provide the current grandTime value.

8.2.4.2 Semantics of the service primitive

The semantics of the primitives are as follows:

CLOCK_SERVE.request {
interval // Interval between returned indications

}

8.2.4.3 When generated

The CLOCK_SERVE.request service primitive is invoked by a client-resident ClockTarget entity. The intent is
to trigger the ClockSlave’s invocation of a following CLOCK_SERVE.indication primitive, thus providing the
ClockTarget entity with periodic samples of the current grandTime value.

8.2.4.4 Effect of receipt

Upon receipt by a ClockSlave entity, a copy of the current grandTime value is returned.

8.2.5 CLOCK_SERVE.indication service interface

8.2.5.1 Function

Provides the ClockTarget entity with periodic grandTime samples derived from the reference clock.

8.2.5.2 Semantics of the service primitive

The semantics of the primitives are as follows:

CLOCK_SERVE.indication {
interval, // Nominal ClockSync transmission interval
flags, // Control flags
utcOffset, // Difference between UTC and TAI timescales
grandTime // The grandmaster time, when the indication is sent.

}

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
59 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The parameters of the CLOCK_SLAVE.indication service-interface primitive are described as follows:

8.2.5.2.1 grandTime: An 80-bit field that specifies the grandmaster synchronized time within the
ClockSlave entity, when the previous CLOCK_SLAVE.request service-interface was invoked.

8.2.5.3 When generated

The invocation of the CLOCK_SLAVE.indication service primitive is invoked by the receipt of a ClockTarget
supplied CLOCK_SLAVE.request PDU. The intent is to provide the ClockTarget entity with a current
grandTime value.

8.2.5.4 Effect of receipt

Upon receipt by a ClockTarget entity, the {grandTime,localTime} affiliation is expected to be saved and
(along with previously saved copies) used to adjust the rate of the grandmaster synchronized
ClockTarget-resident clock.

8.3 ClockSlave state machine

8.3.1 Function

To provide time…TBD.

8.3.2 State machine definitions

8.3.2.1 NULL: A constant that (by design) cannot be confused with a valid value.

8.3.2.2 Q_CS_IND: The queue identifier associated with periodic PDUs sent from the ClockSlave.

8.3.2.3 Q_CS_REQ: The queue identifier associated with PDUs sent to the ClockSlave.

8.3.2.4 Q_CS_RES: The queue identifier associated with per-request PDUs sent from the ClockSlave.

8.3.2.5 Q_GS_TX: The queue identifier associated with PDUs sent from the GrandSync.

8.3.3 State machine variables

8.3.3.1 ePtr: A pointer to entity-dependent information, including the following:
rxSaved—A copy of the GrandSync supplied MA_DATAUNIT.request value.
interval—The expected service rate of CLOCK_SLAVE.request services.
baseTimer—Recently saved time events, each consisting of the following:

index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range]—Recently saved time events, each consisting of the following:

grandTime—A previously sampled grandmaster synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
localTime—The station-local time affiliated with the sampled grandTime value.

8.3.3.2 cxInfo: A contents of a higher-level supplied time-synchronization request, including the following:
frameCount—A value that increments on each CLOCK_MASTER.request PDU transfer.

8.3.3.3 nextTime: Storage representing grandTime and extraTime values returned from call to NextTimed().

8.3.3.4 rsPtr: A pointer to the service-data-unit portion of rxInfo.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.3.3.5 rxInfo: A contents of a GrandSync supplied CLOCK_SYNC.response (see 6.2.2), including:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
protocolType, function, version, priority, clockID,
hops, interval, flags, utcOffset, hops, grandTime, extraTime, localTime

8.3.3.6 rxPtr: A pointer to rxInfo.

8.3.3.7 rxInterval: The synchronization interval of this station’s GrandSync-selected clock-slave port.

8.3.3.8 localTime: See 6.3.3.

8.3.3.9 ssPtr: A pointer to the service-data-unit portion of the ePtr->rxSaved storage

8.3.3.10 sxPtr: A pointer to the ePtr->rxSaved storage

8.3.3.11 timePtr: A pointer to the ePtr->timed[] array storage

8.3.3.12 txInfo: A contents of a ClockSlave supplied CLOCK_SLAVE.indication (see 6.2.2), comprising:
frameCount—The saved value of the like named field from the previous CLOCK_SLAVE.request PDU.
grandTime—The grandmaster synchronized time sampled during the CLOCK_SLAVE.request transfer.

8.3.3.13 txPtr: A pointer to txInfo storage.

8.3.3.14 txInterval: The synchronization interval of this ClockSlave entity.

8.3.4 State machine routines

8.3.4.1 Dequeue(queue): See 6.3.4.

8.3.4.2 Enqueue(queue, info): See 6.3.4.

8.3.4.3 NextSaved(btPtr, rateInterval, grandTime, extraTime, thisRxTime):
Saves grandTime, extraTime values associated with a snapshot taken at thisRxTime, with the saved values
spanning a rateInterval specified interval.

8.3.4.4 NextTimed(btPtr, localTime, backInterval):
Returns grandTime and extraTime values associated with a snapshot taken at localTime, back-interpolated
by a backInterval time, based on previous received-time information saved in the btPtr referenced data
structure.

8.3.4.5 StationTime(entity): See 6.3.4.

8.3.4.6 ClockSyncSdu(info): See 7.3.3.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
61 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.3.5 ClockSlave state table

The ClockSlave state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received ClockSync frames, as illustrated in Table 8.1.

Row 8.1-1: The received CLOCK_SYNC.response parameters are dequeued for checking.
Row 8.1-2: A clock-slave request generates an affiliated information-providing indication.
The affiliated indication has the sequence-count information provided by the request.
The delivered end-point grandTime value is the sum of delivered grandTime and extraTime values.
The requested content is queued for delivery to the higher-level client.
Row 8.1-3: Wait for the next change-of-conditions.

Row 8.1-4: Validated GrandSync entity requests are accepted; its time parameters are saved.
The back-interpolation time is estimated from the interval times of the source and clock slave.
(This back-interpolation time is used by NextTimed(), which provides transmission-time estimates.)
Row 8.1-5: Wait for the next change-of-conditions.

Table 8.1—ClockSlave state table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_GS_TX))
!= NULL

1 — TEST

((cxInfo =
Dequeue(Q_CS_RX)) != NULL

2 rxInterval = ssPtr->interval;
txInterval = ePtr->interval;
backInterval = (3 * rxInterval + txInterval) / 2;
nextTimes =
NextTimed(btPtr, localTime, backInterval);

txPtr->count = cxInfo.count;
txPtr->grandTime =
nextTimes.grandTime + nextTimes.extraTime;

Enqueue(Q_CS_IND, txInfo);

START

— 3 localTime = StationTime(ePtr);

TEST ClockSyncSdu(rsPtr) 4 *sxPtr = *rxPtr;
NextSaved(btPtr, rateInterval, rsPtr->grandTime;

rsPtr->extraTime, rsPtr->localTime);

START

— 5 —

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 62

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9. Ethernet full duplex (EFDX) state machines

9.1 Overview

This clause specifies the state machines that support 802.3 Ethernet full duplex (EFDX) bridges. The
operations are described in an abstract way and do not imply any particular implementations or any exposed
interfaces. There is not necessarily a one-to-one correspondence between the formal specification and the
interfaces in any particular implementation.

9.1.1 EFDX link indications

The duplex-link TimeSyncRxEfdx state machines are provided with snapshots of ClockSync-frame recep-
tion and transmission times, as illustrated by the ports within Figure 9.1. These link-dependent indications
can be different for bridge ports attached to alternative media.

9.1.2 Link-delay compensation

Synchronization accuracies are affected by the transmission delays associated with transmissions over links
between bridges. To compensate for these transmission delays, the receive port is responsible for
compensating {grandTime,extraTime,localTime} affiliations by the (assumed to be constant)
frame-transmission delay.

Figure 9.1—EFDX-link interface model

TimeSyncRxEfdx TimeSyncTxEfdx

802.3 MAC

PHY

LAN

ISS

LLC

TS

802.3 MAC

PHY

LAN

ISS

MS
LLC

TS

MS

CLOCK_SYNC.indication
CLOCK_SYNC.response

MAC relay

~localTime~

GrandSync

rxSync txSync

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
63 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.1.3 Clock-synchronization intervals

Receive timestamp hardware is assumed to affiliate a thisRxTime (a localTime snapshot, sampled on frame
receipt) with an incoming frame, before that frame is passed to the receive-TS entity. In a similar fashion,
transmit timestamp hardware is assumed to save a thisTxTime value in the transmit-TS entity, after each
frame transmission.

The details of services interfaces that support these timestamp activities are under discussion and therefore
not included in this draft. Until these discussions converge, the protocols simply assume the availability of
the thisRxTime and thisTxTime values, without specifying how these values are updated.

9.1.4 Clock-synchronization intervals

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional frame
transmissions can cancel the cable-delay effects.

Clock synchronization involves the processing of periodic events. Multiple time periods are involved, as
listed in Table 9.1. The clock-period events trigger the update of free-running timer values; the period affects
the timer-synchronization accuracy and is therefore constrained to be small.

The send-period events trigger the interchange of ClockSync frames between adjacent stations. While a
smaller period (1 ms or 100 µs) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

Table 9.1—Clock-synchronization intervals

Name Time Description

clock-period < 50 ns Resolution of timer-register value updates

send-period 10 ms Time between sending of periodic ClockSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.2 efdxClockSync frame format

9.2.1 efdxClockSync fields

EFDX clock-synchronization (efdxClockSync) frames facilitate the synchronization of neighboring
clock-master and clock-slave stations. The frame, which is normally sent at 10ms intervals, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in Figure 9.2. The
gray boxes represent physical layer encapsulation fields that are common across Ethernet frames.

NOTE— Existing 1588 time-snapshot hardware captures the values between byte-offset 34 and 45 (inclusive). The
location of the frameCount field (byte-offset 44) has been adjusted to ensure this field can be similarly captured for the
purpose of unambiguously associating ClockSync-packet snapshots (that bypass the MAC) and ClockSync-packet
contents (that pass through the MAC).

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocolType, 8-bit function,
8-bit version, 2-byte priority, 8-byte clockID, 2-byte hops, 1-byte priority, 1-byte flags, 2-byte utcOffset,
80-bit grandTime, and 32-bit extraTime field are specified in 6.2.1.2.

9.2.1.1 frameCount: An 8-bit field that is incremented by one between successive ClockSync frame
transmission.

9.2.1.2 thisTxTime: A 48-bit field that specifies the local free-running time within the neighbor station,
when the previous ClockSync frame was transmitted on the incoming link (see 6.2.1.9).

Figure 9.2—efdxClockSync frame format

6 da

6 sa

2 protocolType

4 fcs

— Received link’s frame transmit time (1 cycle delayed)

10 grandTime — Transmitter grand-time snapshot (1 cycle delayed)

6 thatRxTime — Opposing link’s frame received time

— Frame check sequence

— Destination MAC address

— Source MAC address

1 function

— Distinguishes AVB frames from others

— Distinguishes ClockSync from other AVB frames

2 hops — Hop count from the grandmaster

6 thisTxTime

— Identify of grandmaster station8 clockID

1 version — Distinguishes between ClockSync frame versions

1 frameCount — A (sequence number) count of time-sync frames

6 thatTxTime — Opposing link’s frame transmit time

68 bytes total

4 extraTime — Back-prediction error for grandTime computation

2 utcOffset — Leap seconds value

1 period — Specifies the ClockSync transmission interval

1 reserved —Reserved for future definitions

2 priority — Priority for grandmaster selection

1 flags — Warnings of impending state changes

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
65 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.2.1.3 thatTxTime: A 48-bit field that specifies the local free-running time within the source station, when
the previous ClockSync frame was transmitted on the opposing link (see 6.2.1.9).

9.2.1.4 thatRxTime: A 48-bit field that specifies the local free-running time within the target station, when
the previous ClockSync frame was received on the opposing link (see 6.2.1.9).

9.2.1.5 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

9.3 EFDX TimeSync service interfaces

9.3.1 Shared service interfaces

The per-port EFDX per-port interfaces are between the TS and frame-generation entities.

9.3.2 ES_UNITDATA .request service interface

9.3.2.1 Function

Provides the TS entity with grandmaster-selection and clock-synchronization parameters derived from a
received ClockSync frame.

9.3.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

ES_UNITDATA.indication {
destination_address, // Destination address
source_address, // Optional
priority, // Forwarding priority
this_rx_time, // A localTime snapshot, sampled on frame arrival
service_data_unit, // Delivered content
{ // Contents of the service_data_unit

protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between ClockSync and other AVB frames
version, // Distinguishes between ClockSync frame versions
priority, // Precedence for grandmaster selection
clockID, // Precedence for grandmaster selection
hops, // Distance from the grandmaster station
interval, // Nominal ClockSync transmission interval
flags, // Control flags
utcOffset, // Difference between UTC and TAI timescales
grandTime, // Global-time snapshot (1-cycle delayed)
extraTime, // Accumulated grandTime error
thisTxTime, // Opposing link’s frame transmit time
thatRxTime, // Opposing link’s frame received time
thatTxTime // Received link’s frame transmit time (1-cycle delayed)

}
}

The parameters of the ES_UNITDATA.indication are described as follows:

The 48-bit destination_address, 48-bit source_address, and 8-bit priority fields are specified in 6.2.1.2.

The 48-bit this_rx_time field is a copy of the localTime value, sampled upon frame arrival.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 66

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The service_data_unit consists of subfields; for content exchanged with the GrandTime protocol entity,
these fields include the following.

The 16-bit protocolType, 8-bit function, 8-bit version, 2-byte priority, 8-byte clockID, 2-byte hops, 1-byte
interval, 1-byte flags, 2-byte utcOffset, 10-byte grandTime, and 4-byte extraTime fields are specified in
6.2.1.2.

The 6-byte thisTxTime, 6-byte thatRxTime, and 6-byte thatTxTime fields are specified in 9.2.1.

9.3.2.3 When generated

The ES_UNITDATA.indication service primitive is invoked by the receipt for a ClockSync frame.

9.3.2.4 Effect of receipt

Upon receipt by the TimeSync entity, the media-dependent fields (thisTxTime, this_rx_time, thatTxTime and
thatRxTime) are utilized to compute the link delay associated with the attached span. These are then stripped
from the PDU and replaced by a localTime value, providing the GrandSync entity with the link-delay
compensated {grandTime,extraTime,localTime} triad necessary for performing clock-clock synchronization
at other ports.

9.3.3 ES_UNITDATA.response service interface

9.3.3.1 Function

Provides the per-port transmit entity with grand-master selection and clock-synchronization parameters
derived from the GrandSync-echoed ClockSync PDU.

9.3.3.2 Semantics of the service primitive

The semantics of the ES_UNITDATA.response and the ES_UNITDATA.indications are the same (see 9.3.2.2).

9.3.3.3 When generated

The ES_UNITDATA.response service primitive is periodically invoked by the per-port TimeSync entity for the
purpose of transmitting a ClockSync frame to the adjacent station.

9.3.3.4 Effect of receipt

Upon receipt by the port-transmit entity, the contents are encapsulated into a GrandSync frame that is sent to
the neighbor station.

9.4 TimeSyncRxEfdx state machine

9.4.1 Function

The TimeSyncRxEfdx state machine is responsible for monitoring its port’s received MAC-supplied frames
and sending GrandSync PDUs. The sequencing of this state machine is specified by Table 9.2; details of the
computations are specified by the C-code of Annex G.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
67 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.4.2 State machine definitions

9.4.2.1 DC_DELAY: The default cable-length value, used before length-calibration completes.
value—10 ns (corresponds to an approximate 2 meter cable length)

9.4.2.2 MAX_HOPS: See 6.3.2.2.

9.4.2.3 MOD_FRAME: A constant representing the number of possible frame.frameCount values.
value—256.

9.4.2.4 MOD_RATE: A constant representing the number of possible time-array values.
default value—16.

9.4.2.5 NULL: A constant that (by design) cannot be confused with a valid value.

9.4.2.6 Q_ES_RX: The queue identifier associated with the received MAC frames.

9.4.2.7 Q_GS_RX: The queue identifier associated with MAC frames sent into GrandSync.

9.4.2.8 RX_PHASE: The number of received initialization phases.
value—2

9.4.3 State machine variables

9.4.3.1 cableDelay: Values (possibly scaled integers) representing cable-delay times.

9.4.3.2 count: A transient value representing the expected value of the next rxInfo.frameCount value.

9.4.3.3 cxInfo: A contents of a lower-level supplied time-synchronization poke indication, including:
frameCount—The value of the like-named field within the last ClockSync packet arrival.
localTime—The value of localTime associated with the last ClockSync packet arrival.

9.4.3.4 cxPtr: A pointer to cxInfo storage.

9.4.3.5 ePtr: A pointer to a data structure that contains port-specific information comprising:
next—A storage-array index for the next saved value.
last—A storage-array index for the last saved value.
frameCount—The value of frameCount within the last received frame.
times[N]—An array of time groups, where each array elements consists of:

rxTime—The receive time associated with received time-sync frames.
txTime—The transmit time associated with received time-sync frames.

9.4.3.6 localTime: See 6.3.3.

9.4.3.7 ratio0, ratio: Variables representing the ratio of this station’s timer to this port’s neighbor timer.

9.4.3.8 roundTrip: The time between transmit-to-neighbor and receive-from-neighbor events.

9.4.3.9 rsPtr: A pointer to the service-data-unit portion of rxInfo storage.

9.4.3.10 rxInfo: Storage for received time-sync PDUs, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
protocolType, function, version, frameCount, priority, clockID,
hops, interval, flags, utcOffset, grandTime, extraTime, localTime, thatTxTime, thatRxTime

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 68

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.4.3.11 rxPtr: A pointer to the rxInfo storage.

9.4.3.12 timePtrA, timePtrB: Pointers to the next and last times[] array locations.

9.4.3.13 timeRxA, timeRxB, timeRxA, timeRxB: Intermediate receive/transmit time variables.

9.4.3.14 tsPtr: A pointer to service-data-unit portion of txInfo storage.

9.4.3.15 turnRound: The time between receive-at-neighbor and transmit-from-neighbor events.

9.4.3.16 txInfo: Storage for information sent to the GrandSync entity, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
protocolType, function, version, priority, clockID,
hops, interval, flags, utcOffset, grandTime, extraTime, localTime

9.4.3.17 txPtr: A pointer to txInfo storage.

9.4.4 State machine routines

9.4.4.1 ClipRatio(ratio, deviation): Clips the ratio value to within 1.0+deviation and 1.0–deviation.

9.4.4.2 Dequeue(queue): See 6.3.4.

9.4.4.3 Enqueue(queue, info): See 6.3.4.

9.4.4.4 Min(x, y): Returns the minimum of x and y values.

9.4.4.5 StationTime(entity): See 7.3.3.

9.4.4.6 ClockSyncSdu(info): See 6.3.4.

9.4.5 TimeSyncRxEfdx state machine table

The TimeSyncRxEfdx state machine processes efdxClockSync PDUs and forwards revised ClockSync
PDUs to the GrandSync entity, as illustrated in Table 9.2.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
69 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Table 9.2—TimeSyncRxEfdx state machine table

Current

R
ow

Next

state condition action state

START — 1 ePtr->phase = 0 FIRST

FIRST (rxInfo=Dequeue(Q_ES_RX))
!= NULL

2 count = (ePtr->frameCount + 1) % MOD_FRAME;
ePtr->frameCount = rxPtr->frameCount;

NEXT

— 3 localTime = StationTime(ePtr); FIRST

NEXT !ClockSyncSdu(rsPtr) 4 Enqueue(Q_ES_TX, rxPtr); FIRST

count != rxPtr->frameCount 5 —

rxPtr->hops >= MAX_HOPS 6 —

ePtr->phase < RX_PHASE 7 ePtr->next = ePtr->past = 0; SWAP

— 8 —

SWAP — 9 thisRxTime = ePtr->thisRxTime0;
ePtr->thisRxTime0 = rxPtr->thisRxTime;
timePtrA = &(ePtr->times[ePtr->next]);
timePtrB = &(ePtr->times[ePtr->last]);
timeRxB = timePtrB->txTime;
timeRxB = timePtrB->rxTime;
timePtrA->rxTime = timeRxA = thisRxTime;
timePtrA->txTime = timeTxA = rsPtr->thisTxTime;

COMP

COMP ePtr->phase == RX_PHASE
&& rsPtr->flags.running != 0

10 ratio0 = (timeTxA – timeTxB) / (timeRxA – timeRxB);
ratio = ClipRatio(ratio0, 200PPM);
roundTrip = thisRxTime – rsPtr->thatTxTime;
turnRound = rsPtr->thisTxTime – rsPtr->thatRxTime;
delay = Min(0, roundTrip – (turnRound * ratio));

SEND

— 11 cableDelay = DC_DELAY;

SEND — 12 txPtr->destination_address=rxPtr->destination_address;
txPtr->source_address = rxPtr->source_address;
tsPtr->protocolType = rsPtr->protocolType;
tsPtr->function = rsPtr->function;
tsPtr->version = rsPtr->version;
tsPtr->grandTime = rsPtr->grandTime;
tsPtr->extraTime = rsPtr->extraTime;
tsPtr->localTime = thisRxTime – delay;
tsPtr->hops = rsPtr->hops;
tsPtr->interval = ePtr->interval;
tsPtr->flags = ePtr->flags;
Enqueue(Q_GS_RX, txPtr);

POST

POST ePtr->phase < RX_PHASE 13 ePtr->phase += 1; FIRST

— 14 ePtr->next = (ePtr->next + 1) % MOD_RATE; PAST

PAST ePtr->next==ePtr->last 15 ePtr->past = (ePtr->past + 1) % MOD_RATE; FIRST

— 16 —

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 9.2-1: Initialization clears the running phase to zero, allowing bad data to be ignored.
Row 9.2-2: Initiate inspection of frames received from the lower-level MAC.
Row 9.2-3: Update times while waiting for the next change-of-state.

Row 9.2-4: The non-ClockSync frames are passed through.
Row 9.2-5: Over-aged ClockSync frames are discarded.
Row 9.2-6: Non-sequential ClockSync frames are ignored.
Row 9.2-7: If not-yet initialized, clear circular buffer index values to zero.
Row 9.2-8: Otherwise, use the current circular buffer index values.

Row 9.2-9: Fetch and store circular-buffer sampled-time values.

Row 9.2-10: After initialization, the cable delay is computed in the normal fashion.
Row 9.2-11: Before initialization, the cable delay is simply estimated.

Row 9.2-12: Generate a GrandSync PDU, from saved and current information.

Row 9.2-13: Update the initialization phase (by counting received frames).
Row 9.2-14: Update the circular buffer data-saved index.
Row 9.2-15: When full, update the circular buffer data-fetch index.
Row 9.2-15: Otherwise, no index values are updated.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
71 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.5 TimeSyncTxEfdx state machine

9.5.1 Function

The TimeSyncTxEfdx state machine is responsible for saving time parameters from GrandSync-echoed
ClockSync PDUs and forming efdxClockSync PDUs for transmission through the MAC and over the
attached link.

9.5.2 State machine definitions

9.5.2.1 MAX_HOPS: See 6.3.2.2.

9.5.2.2 NULL: A constant that (by design) cannot be confused with a valid value.

9.5.2.3 Q_ES_TX: The queue identifier associated with frames sent to the MAC.

9.5.2.4 Q_GS_TX: The queue identifier associated with frames sent from the GrandSync.

9.5.2.5 T10ms: A constant the represents a 10 ms value.

9.5.3 State machine variables

9.5.3.1 backInterval: A variable that represents the back-interpolation interval for transmit-time affiliations.

9.5.3.2 dPtr: A pointer this port’s associated TimeSyncRxEfdx-entity storage.

9.5.3.3 ePtr: A pointer to a data structure that contains port-specific information comprising:
destination_address, source_address, protocolID, function, version, hops—

Copies of like-named fields from the GrandSync provided ClockSync PDU.
baseTimer—Recently saved time events, each consisting of the following:

index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range]—Recently saved time events, each consisting of the following:

grandTime—A previously sampled grandmaster synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
localTime—The station-local time affiliated with the sampled grandTime value.

frameCount—A consistency-check identifier that is incremented on each transmission.
lastTime—The last transmit time, saved for timeout purposes.
rxSaved—A copy of the last received GrandSync parameters.
interval—The expected interval between successive time-sync transmissions.
thisTxTime—The localTime value associated with the last transmission.

9.5.3.4 localTime: See 6.3.3.

9.5.3.5 rxInfo: Storage for received GrandSync PDUs, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
protocolType, function, version, hops, clockID,
interval, flags, utcOffset, grandTime, extraTime, localTime

9.5.3.6 rsPtr: A pointer to service-data-unit portion of rxInfo storage.

9.5.3.7 rxPtr: A pointer to the rxInfo storage.

9.5.3.8 rxInterval: Represents the sync-interval associated with this station’s clock-slave port.

9.5.3.9 tsPtr: A pointer to service-data-unit portion of txInfo storage.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 72

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.5.3.10 txInfo: Storage for to-be-transmitted time-sync PDUs, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
protocolType, function, version, hops, clockID,
interval, flags, utcOffset, grandTime, extraTime, thisTxTime,
thatRxTime, thatTxTime

9.5.3.11 txPtr: A pointer to txInfo storage.

9.5.3.12 txInterval: A variable that represents the sync-interval associated with this clock-master port.

9.5.4 State machine routines

9.5.4.1 Dequeue(queue): See 6.3.4.

9.5.4.2 Enqueue(queue, info): See 6.3.4.

9.5.4.3 Enqueue(interval): Expand the compacted interval value to a scaled binary-integer seconds format.

9.5.4.4 NextSaved(btPtr, rateInterval, grandTime, extaTime, thisRxTime): See 8.3.4.

9.5.4.5 NextTimed(btPtr, localTime, backInterval): See 8.3.4.

9.5.4.6 StationTime(entity): See 7.3.3.

9.5.4.7 ClockSyncSdu(info): See 6.3.4.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
73 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

9.5.5 TimeSyncTxEfdx state machine table

The TimeSyncTxEfdx state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received ClockSync frames, as illustrated in Table 9.3.

Table 9.3—TimeSyncTxEfdx state machine table

Current

R
ow

Next

state condition action state

START (localTime–ePtr->lastTime)
> T10ms

1 ePtr->lastTime = localTime; SEND

(rxInfo=Dequeue(Q_GS_TX))
!= NULL

2 — SINK

— 3 time = StationTime(ePtr);
rxInterval = Expand(ssPtr->interval);
txInterval = ePtr->interval;
backInterval = (3 * rxInterval + txInterval) / 2;
rateInterval = backInterval + (3 * txInterval) / 2;

START

SINK ClockSyncSdu(rsPtr) 4 ePtr->destination_address=rxPtr->destination_address;
ePtr->source_address = rxPtr->source_address;
ePtr->protocolID = rsPtr->protocolID;
ePtr->function = rsPtr->function;
ePtr->version = rsPtr->version;
ePtr->clockID = rsPtr->clockID;
ePtr->hops = rsPtr->hops;
ePtr->flags = rsPtr->flags;
ePtr->utcOffset = rsPtr->utcOffset;
NextSaved(btPtr, rateInterval, rsPtr->grandTime,
rsPtr->extraTime,rsPtr->localTime);

START

— 5 Enqueue(Q_ES_TX, rxPtr);

SEND sPtr->hops>=MAX_HOPS 6 — START

— 7 dPtr = PortPair(ePtr);
running = (dPtr->phase == RX_PHASE);
timed = NextTimed(btPtr, time, backInterval);
ePtr->txFrameCount += 1;
txPtr->destination_address=ePtr->destination_address;
txPtr->source_address = ePtr->source_address;
tsPtr->protocolID = ePtr->protocolID;
tsPtr->function = ePtr->function;
tsPtr->version = ePtr->version;
tsPtr->clockID = ePtr->clockID;
tsPtr->hops = (ePtr->hops+1);
tsPtr->flags = ePtr->flags;
tsPtr->flags.running = running;
tsPtr->flags.disruption |= !running;
tsPtr->utcOffset = ePtr->utcOffset;
tsPtr->frameCount= (ePtr->frameCount%COUNT);
tsPtr->grandTime = timed.grandTime;
tsPtr->extraTime = timed.extraTime;
tsPtr->thisTxTime = time;
tsPtr->thatTxTime = dPtr->thisTxTime;
tsPtr->thatRxTime = dPtr->thisRxTime;
Enqueue(Q_ES_TX, txPtr);

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 74

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 9.3-1: Transmit periodic ClockSync frames.
Row 9.3-3: Update values while waiting for the next change-of-state.

Row 9.3-4: The ClockSync PDUs are checked further.
Row 9.3-5: The non-ClockSync PDUs are passed through.

Row 9.3-6: Overly aged ClockSync frames are discarded.
Row 9.3-7: Active ClockSync frames are cable-delay compensated and passed through.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
75 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10. Wireless state machines

EDITOR DVJ NOTE—This clause is has not tracked recent modifications/improvements to 802.1as edited by Kevin
Stanton. The reviewer is referred to the most-recent revision of 802.1as, with the cautionary note that the GrandSync
service interface considerations are quite different and subject to change as the document content is harmonized.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 76

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11. Ethernet passive optical network (EPON) state machines

NOTE—This clause is based on indirect knowledge of the Ethernet-PON (EPON) specifications, as interpreted by the
author, and have not been reviewed by the 802.1 or 802.3 WGs. The intent was to provide a forum for evaluation of the
GrandSync interfaces, while also triggering discussion of EPON design details. As such, the contents are highly
preliminary and subject to change.

11.1 Overview

This clause specifies the state machines that support Ethernet passive optical network (EPON) based
bridges. The operations are described in an abstract way and do not imply any particular implementations or
any exposed interfaces. There is not necessarily a one-to-one correspondence between the formal specifica-
tion and the interfaces in any particular implementation.

A (simplified) EPON topology consists of a single optical line terminal (OLT) attached to multiple optical
network units (ONUs), as illustrated in Figure 11.1.

Time calibration (see 802.3, 64.2.1.1) involves operations performed at the transmission and reception of an
OLT-to-ONU request (illustrated at points (a) and (b)), as well as operations performed at the transmission
and reception of ONU-to-OLT response (illustrated at points (d) and (e)).

Both the OLT and the ONU have 32-bit counters that increment every 16 ns. At critical times, the current
value of these counters is saved in a timestamp register and/or frame location, as listed below. When com-
pleted with each OLU, the central OLT is aware of link delays associated with each of the attached ONUs.

a) OLT request transmit; the frame timestamp is set:
frame.timestamp = olt.counter

b) OLU request receipt; the local counter is set:
olu.counter = timestamp

c) The olu.counter continues to increments every 16 ns period.

d) OLU response transmit; frame timestamp is set:
frame.timeStamp = olu.counter

e) OLT response receipt; round-trip and per-link delays are then computed at the OLT, as follows:
roundTripTime = olt.counter – frame.timeStamp
linkDelay = roundTripTime / 2

The time-synchronization (TS) client uses this RTT for the link-delay compensation purposes.

Figure 11.1—EPON topology

optical line terminal (OLT)

ONU[N-1]

… …

optical network units (ONU)

(a)

(b)

(e)

(d)

ONU[0] ONU[1] ONU[N-2](c)ONU[k]

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
77 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.1.1 Link-dependent indications

The TimeSyncEpon state machines have knowledge of network-local synchronized ticksTime timers. With
this knowledge, the TimeSyncEpon state machines can operated on frames received from the LLC, as
illustrated in Figure 11.2. Link-dependent indications could be required for bridge ports attached to
alternative media (not illustrated).

The ticksTime values are represented as timers that are incremented once every 16 ns interval, as illustrated
on the left side of Figure 11.3. Each synchronized local timer is roughly equivalent to a 6-bit sec (seconds)
field and a 26-bit fraction (fractions of second) field timer, as illustrated on the right side of Figure 11.3.

The EPON MAC is supplied with frame transmit/receive snapshots, but these are transparent-to and
not-used-by the clock-synchronization state machine. Instead, these are used to synchronize the ticksTime
values in associated MACs and the TimeSyncEpon state machines have access to these synchronized
ticksTime values.

Figure 11.2—EPON interface model

Figure 11.3—Format of EPON-dependent times

EPON MAC

PHY

LAN

ISS

LLC

TS

EPON MAC

PHY

LAN

ISS

MS
LLC

TS

MS

CLOCK_SYNC.indication
CLOCK_SYNC.response

MAC relay

~localTime~

GrandSync

~ticksTime~

TimeSyncRxEpon TimeSyncTxEpo

ticksTime

nanoseconds16

(approximate equivalent)

sec fraction

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 78

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.2 timeSyncEpon frame format

The timeSyncEpon frames facilitate the synchronization of neighboring clock-master and clock-slave sta-
tions. The frame, which is normally sent at 10 ms intervals, includes time-snapshot information and the
identity of the network’s clock master, as illustrated in Figure 11.4. The gray boxes represent physical layer
encapsulation fields that are common across Ethernet frames.

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocolType, 8-bit function,
8-bit version, 2-byte priority, 8-byte clockID, 2-byte hops, 1-byte priority, 1-byte flags, 2-byte utcOffset,
80-bit grandTime, and 32-bit extraTime field are specified in 6.2.1.2.

11.2.1 ticksTime: A value representing local time in units of a 16 ns timer ticks, as illustrated in Figure 11.5.

Figure 11.4—timeSyncEpon frame format

Figure 11.5—tickTime format

6 da

6 sa

2 protocolType

4 fcs

8 reserved — Reserved for future extensions to this standard

— Frame check sequence

— Destination MAC address

— Source MAC address

— Distinguishes AVB frames from others

64 bytes total

— Transmitter local-time snapshot (1 cycle delayed)

10 grandTime — Transmitter grand-time snapshot (1 cycle delayed)

1 function — Distinguishes ClockSync from other AVB frames

2 hops — Hop count from the grandmaster

4 ticksTime

— Identify of grandmaster station8 clockID

1 version — Distinguishes between ClockSync frame versions

4 extraTime — Back-prediction error for grandTime computation

2 utcOffset — Leap seconds value

1 period — Specifies the ClockSync transmission interval

2 reserved —Reserved for future definitions

2 priority — Priority for grandmaster selection

1 flags — Warnings of impending state changes

ticks

32 bits

LSBMSB

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
79 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.3 TimeSyncRxEpon service interface primitives

11.3.1 ES_UNITDATA.indication

11.3.1.1 Function

Provides the TimeSyncRxEpon entity with clock-synchronization parameters derived from arriving
time-sync frames.

11.3.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

ES_UNITDATA.indication {
destination_address, // Destination address
source_address, // Optional
priority, // Forwarding priority
service_data_unit, // Delivered content
{ // Contents of the service_data_unit

protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between ClockSync and other AVB frames
version, // Distinguishes between ClockSync frame versions
priority, // Precedence for grandmaster selection
clockID, // Precedence for grandmaster selection
hops, // Distance from the grandmaster station
interval, // Nominal ClockSync transmission interval
flags, // Control flags
utcOffset, // Difference between UTC and TAI timescales
grandTime, // Global-time snapshot (1-cycle delayed)
extraTime, // Accumulated grandTime error
ticksTime // Local-time snapshot (1-cycle delayed)

}
}

The parameters of the ES_UNITDATA.indication are described as follows:

The 48-bit destination_address, 48-bit source_address, and 8-bit priority field are specified in 6.2.1.2.

The service_data_unit consists of subfields; for content exchanged with the GrandTime protocol entity,
these fields include the following.

The 16-bit protocolType, 8-bit function, 8-bit version, 2-byte priority, 8-byte clockID, 2-byte hops, 1-byte
interval, 1-byte flags, 2-byte utcOffset, 10-byte grandTime, and 4-byte extraTime fields are specified in
6.2.1.2.

11.3.1.2.1 ticksTime: A 32-bit field that specifies the local free-running time within this subnet, when the
previous ClockSync frame was received (see 11.2.1).

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 80

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.3.1.3 When generated

The service primitive is generated upon the receipt of a time-sync related frame delivered from the MAC.
The intent is to facilitate reformatting and snapshot-time adjustment before the content of that frame is
delivered to the ClockMaster and TS entities.

11.3.1.4 Effect of receipt

The service primitive invokes processing of time-sync related content and forwarding of unrelated content.
For time-sync related content, the processing included reformatting and compensation for receive-link
transmission delays.

11.3.2 ES_UNITDATA.response

11.3.2.1 Function

Provides the TimeSyncRxEpon entity with clock-synchronization parameters derived from arriving
time-sync frames.

11.3.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

ES_UNITDATA.indication {
destination_address, // Destination address
source_address, // Optional
priority, // Forwarding priority
service_data_unit, // Delivered content
{ // Contents of the service_data_unit

protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between ClockSync and other AVB frames
version, // Distinguishes between ClockSync frame versions
priority, // Precedence for grandmaster selection
clockID, // Precedence for grandmaster selection
hops, // Distance from the grandmaster station
interval, // Nominal ClockSync transmission interval
flags, // Control flags
utcOffset, // Difference between UTC and TAI timescales
grandTime, // Global-time snapshot (1-cycle delayed)
extraTime, // Accumulated grandTime error
ticksTime // Local-time snapshot (1-cycle delayed)

}
}

The parameter definitions for the ES_UNITDATA.response and the ES_UNITDATA.indication are the same
(see 11.3.1.2).

11.3.2.3 When generated

The service primitive is generated upon the receipt of a time-sync related frame delivered from the MAC.
The intent is to facilitate reformatting and snapshot-time adjustment before the content of that frame is
delivered to the ClockMaster and TS entities.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
81 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.3.2.4 Effect of receipt

The service primitive invokes processing of time-sync related content and forwarding of unrelated content.
For time-sync related content, the processing included reformatting and compensation for receive-link
transmission delays.

11.4 TimeSyncRxEpon state machine

11.4.1 Function

The TimeSyncRxEpon state machine is responsible for receiving MAC-supplied ClockSyncRxEpon PDUs,
converting their media-dependent parameters, and sending normalized GrandSync PDUs. The sequencing of
this state machine is specified by Table 11.1; details of the computations are specified by the C-code of
Annex G.

11.4.2 State machine definitions

11.4.2.1 MAX_HOPS: See 6.3.2.2.

11.4.2.2 NULL: A value that (by design) cannot be confused with a valid value.

11.4.2.3 Q_GS_RX: The queue identifier associated with PDUs sent to the GrandSync.

11.4.2.4 Q_ES_TX: The queue identifier associated with frames received by the MAC.

11.4.3 State machine variables

11.4.3.1 ePtr: A pointer to a entity-specific data structure comprising:
interval—The expected interval between time-sync frame transmissions.

11.4.3.2 backTime: Represents the time lapse between transmission of reception of the ClockSync frame.

11.4.3.3 rsPtr: A pointer to the service-data-unit portion of the rxInfo storage.

11.4.3.4 rxInfo: A storage location for received service-interface parameters, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
extraTime, function, grandTime, hops,
precedence, protocolType, ticksTime, version

11.4.3.5 rxPtr: A pointer to the rxInfo storage location.

11.4.3.6 tsPtr: A pointer to the service-data-unit portion of the txInfo storage.

11.4.3.7 txInfo: A storage location for to-be-transmitted CLOCK_SYNC.indication parameters, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
extraTime, function, grandTime, hops, precedence,
protocolType, localTime, ticksTime, version

11.4.3.8 txPtr: A pointer to the txInfo storage location.

11.4.4 State machine routines

11.4.4.1 Dequeue(queue): See 6.3.4.

11.4.4.2 Enqueue(queue, info): See 6.3.4.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 82

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.4.4.3 StationTimes(entityPointer): Returns the station’s generic localTime and media-dependent
subnet-synchronized tickTime values.

11.4.4.4 TicksToTime(ticks): Returns the localTime duration corresponding to the argument time duration.

11.4.4.5 ClockSyncSdu(info): See 6.3.4.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
83 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.4.5 TimeSyncRxEpon state machine table

The TimeSyncRxEpon state machine processes arriving media-dependent ClockSyncRxEpon PDUs and
sends standard ClockSync PDUs to the GrandSync entity, as illustrated in Table 11.1.

Row 11.1-1: Initiate inspection of frames received from the lower-level MAC.
Row 11.1-2: Wait for the next frame to arrive.

Row 11.1-3: The non-ClockSync frames are passed through.
Row 11.1-4: Overly aged ClockSync frames are discarded.
Row 11.1-5: Received OLT frames are compensated for the link-delay.
Row 11.1-6: Received ONU frames are not link-delay compensated (this is done at the OLT).

Row 11.1-7: Active ClockSync frames are adjusted for transfer delays and passed through.

Table 11.1—TimeSyncRxEpon state machine table

Current

R
ow

Next

state condition action state

START (rxInfo =
Dequeue(Q_RX_MAC))!=NULL

1 — TEST

— 2 times = StationTime(ePtr); START

TEST !ClockSyncSdu(rsPtr) 3 Enqueue(Q_ES_RX, rxInfo); START

rsPtr->hops >= MAX_HOPS 4 — START

ePtr->type == OLT 5 baseTime = –ePtr->roundTripDelay/2; SEND

— 6 baseTime = 0;

SEND — 7 diffTime = times.ticksTime – rsPtr->ticksTime;
localTime = times.localTime –
TicksToTime(baseTime + diffTime);

txPtr->destination_address =
rxPtr->destination_address;

txPtr->source_address = rxPtr->source_address;
tsPtr->protocolType = rsPtr->protocolType;
tsPtr->function = rsPtr->function;
tsPtr->version = rsPtr->version;
tsPtr->priority = rsPtr->priority;
tsPtr->clockID = rsPtr->clockID;
tsPtr->hops = rsPtr->hops;
tsPtr->interval = rsPtr->interval;
tsPtr->flags = rsPtr->flags;
tsPtr->utcOffset = rsPtr->utcOffset;
tsPtr->grandTime = rsPtr->grandTime;
tsPtr->extraTime = rsPtr->extraTime;
tsPtr->localTime = localTime;
Enqueue(Q_GS_RX, txInfo);

START

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 84

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.5 TimeSyncTxEpon state machine

11.6 TimeSyncTxEpon service interface primitives

11.6.1 ES_UNITDATA.request

11.6.1.1 Function

Provides the EPON entity with clock-synchronization parameters for constructing departing time-sync
frames.

11.6.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

ES_UNITDATA.request
{

destination_address, // Destination address
source_address, // Optional
priority, // Forwarding priority
service_data_unit, // Delivered content
{ // Contents of the service_data_unit

protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between ClockSync and other frames
version, // Distinguishes between ClockSync frame versions
priority, // Bias for grandmaster precedence
clockID, // Tie-breaker for grandmaster precedence
hops, // Distance from the grandmaster station
grandTime, // Global-time snapshot (1-cycle delayed)
extraTime, // Accumulated grandTime error
ticksTime // Local-time snapshot

}
}

The parameters of the MA_UNITDATA.request are described in 11.3.1.2.

11.6.1.3 When generated

The service primitive is generated at a periodic rate, for the purposes of synchronizing the grandTime values
resident in other stations.

11.6.1.4 Effect of receipt

The service primitive triggers the transmission of a ClockSync frame on the affiliated port.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
85 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.7 ClockSlave state machine

11.7.1 Function

The TimeSyncTxEpon state machine is responsible for modifying time-sync CLOCK_SYNC.response
parameters to form ClockSync frames for transmission over the attached link.

11.7.2 State machine definitions

11.7.2.1 MAX_HOPS: See 6.3.2.2.

11.7.2.2 NULL: A value that (by design) cannot be confused with a valid value.

11.7.2.3 Q_ES_RX: The queue identifier associated with PDUs sent for transmission by the MAC.

11.7.2.4 Q_GS_TX: The queue identifier associated with PDUs sent for transmission from the GrandSync.

11.7.2.5 T10ms: A constant the represents a 10 ms value.

11.7.3 State machine variables

11.7.3.1 backInterval: Represents the back-interpolation interval for transmit-time affiliations.

11.7.3.2 ePtr: A pointer to a entity-specific data structure comprising:
baseTimer—Recently saved time events, each consisting of the following:

index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range]—Recently saved time events, each consisting of the following:

grandTime—A previously sampled grandmaster synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
localTime—The station-local time affiliated with the sampled grandTime value.

lastTime—The last PDU-transmit time; used to space periodic transmissions.
rxSaved—A copy of the last received GrandSync parameters.
interval—The expected interval between time-sync frame transmissions.

11.7.3.3 rsPtr: A pointer to the service-data-unit portion of rxInfo storage.

11.7.3.4 rxInfo: Storage for the contents of GrandSync PDUs, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
protocolType, function, version, priority, clockID, hops,
interval, flags, utcOffset, grandTime, extraTime

11.7.3.5 rxPtr: A pointer to the rxInfo storage.

11.7.3.6 rxInterval: Represents the sync-interval associated with this station’s clock-slave port.

11.7.3.7 localTime: See 6.3.3.

11.7.3.8 ssPtr: A pointer to the service-data-unit portion of the ePtr->rxSaved storage

11.7.3.9 sxPtr: A pointer to the ePtr->rxSaved storage.

11.7.3.10 tsPtr: A pointer to the service-data-unit portion of txInfo storage.

11.7.3.11 txInfo: Storage for a to-be-transmitted MAC frame, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
86 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

extraTime, function, grandTime, hops,
protocolType, precedence, ticksTime, version

11.7.3.12 txPtr: A pointer to the txInfo storage.

11.7.3.13 ticksTime: A 32-bit shared EPON media-dependent time value; incremented every 16 ns.

11.7.4 State machine routines

11.7.4.1 Dequeue(queue): See 6.3.4.

11.7.4.2 Enqueue(queue, info): See 6.3.4.

11.7.4.3 NextTimed(btPtr, localTime, backInterval): See 8.3.4.

11.7.4.4 StationTime(entity): See 6.3.4.

11.7.4.5 TicksTime(entity): See 11.4.4.

11.7.4.6 ClockSyncSdu(info): See 6.3.4.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 87

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11.7.5 TimeSyncTxEpon state machine table

The TimeSyncTxEpon state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSyncEpon frames, as illustrated in Table 11.2.

Row 11.2-1: Accepted PDUs are further checked before being processed.
Row 11.2-2: Transmit periodic ClockSync frames.
Row 11.2-3: Wait for the next change-of-state.

Row 11.2-4: Non-ClockSync PDUs are retransmitted in the standard fashion.
Row 11.2-5: Overly aged ClockSync PDUs are not transmitted.
Row 11.2-6: Transmitted OLT frames are compensated for the link-delay.
Row 11.2-7: Transmitted ONU frames are not link-delay compensated (this is done at the OLT).

Row 11.2-8: Format and transmit the media-specific ClockSync frame.

Table 11.2—TimeSyncTxEpon state machine table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_GS_TX))
!= NULL

1 — TEST

(localTime – ePtr->lastTime)
> T10ms

2 ePtr->lastTime = localTime; SEND

— 3 times = StationTime(ePtr); START

TEST !ClockSyncSdu(rsPtr) 4 Enqueue(Q_ES_TX, rxPtr); START

ssPtr->hops >= MAX_HOPS 5 —

ePtr->type == OLT 6 baseTime = –ePtr->roundTripDelay/2; SEND

— 7 baseTime = 0;

SEND — 8 rxInterval = ssPtr->interval;
txInterval = ePtr->interval;
backInterval =
(3 * rxInterval + txInterval) / 2;

localTime = times.localTime +
 TicksToTime(baseTime);
nextTimes =
NextTimed(btPtr, localTime, backInterval);
txPtr->destination_address =
sxPtr->destination_address;

txPtr->source_address = sxPtr->source_address;
tsPtr->protocolType = ssPtr->protocolType;
tsPtr->function = ssPtr->function;
tsPtr->version = ssPtr->version;
tsPtr->precedence = ssPtr->precedence;
tsPtr->hops = ssPtr->hops;
tsPtr->grandTime = nextTimes.grandTime;
tsPtr->extraTime = nextTimes.extraTime;
tsPtr->ticksTime = ticksTime;
Enqueue(Q_ES_TX, txPtr);

START

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
88 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 89

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annexes

Annex A

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.1

[B2] IEEE Std 802-2002, IEEE Standards for Local and Metropolitan Area Networks: Overview and
Architecture.

[B3] IEEE Std 801-2001, IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture.

[B4] IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Bridges.

[B5] IEEE Std 1394-1995, High performance serial bus.

[B6] IEEE Std 1588-2002, IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.

[B7] IETF RFC 1305: Network Time Protocol (Version 3) Specification, Implementation and Analysis,
David L. Mills, March 19922

[B8] IETF RFC 2030: Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI, D. Mills,
October 1996.

1IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://standards.ieee.org/).

2IETF publications are available via the World Wide Web at http://www.ietf.org.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
90 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex B

(informative)

Time-scale conversions

B.1 Overview

For historical reasons, time is specified in a variety of ways as listed in Table B.1. GPS, PTP, and TAI times
are based on values yielded by atomic clocks and advance on each second. NTP and UTC times are similar,
but are occasionally adjusted by one leap-second, to account for differences between the atomic clocks and
the rotation time of the earth.

B.2 TAI and UTC

TAI and UTC are international standards for time based on the SI second; both are expressed in days, hours,
minutes and seconds. TAI is implemented by a suite of atomic clocks and forms the timekeeping basis for
other time scales in common use. The rate at which UTC time advances is normally identical to the rate of
TAI. An exception is an occasion when UTC is modified by adding or subtracting leap seconds.

Prior to 1972-01-01, corrections to the offset between UTC and TAI were made in fractions of a second.
After 1972-01-01, leap-second corrections are applied to UTC preferably following second 23:59:59 of the
last day of June or December. As of 2006-01-01, TAI and UTC times differed by +33 seconds.

In POSIX based computer systems, the common time conversion algorithms can produce the correct
ISO 8601-2004 printed representation format “YYYY-MM-DD hh:mm:ss” for both TAI and UTC.

Table B.1—Time-scale parameters

Time scale

Parameter GPS PTP TAI NTP UTC

approximate
epoch

1980-01-06
1999-08-22

1970-01-01 1972-01-01* 1900-01-01 1972-01-01*

representation weeks.seconds seconds YYYY-MM-DD
hh:mm:ss

seconds YYYY-MM-DD
hh:mm:ss

rollover (years) 19.7 8,925,513 10,000 136.19 10,000

leapSeconds no yes

Notes:
* The TAI time when TAI and UTC were first specified to deviate by only integer seconds.

(There is no true epoch for the TAI and UTC time scales.)
GPS global positioning satellite
NTP Network Time Protocol
PTP Precision Time Protocol (commonly used in POSIX)
TAI International Atomic Time (from the French term Temps Atomique International)

UTC Coordinated Universal Time (a compromise between the English and French):
English speakers wanted the initials of their language: CUT for "coordinated universal time"
French speakers wanted the initials of their language: TUC for "temps universel coordonné".

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 91

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The PTP epoch is set such that a direct application of the POSIX algorithm to a PTP time-scale timestamp
yields the ISO 8601-2004 printed representation of TAI. Subtracting the current leapSeconds value from a
PTP timestamp prior to applying the POSIX algorithm yields the ISO 8601-2004 printed representation of
UTC. Conversely, applying the inverse POSIX algorithm and adding leapSeconds converts from the ISO
8601-2004 printed form of UTC to the form convenient for generating a PTP timestamp.

Example: The POSIX algorithm applied to a PTP timestamp value of 8 seconds yields 1970-01-01 00:00:08
(eight seconds after midnight on 1970-01-01 TAI). At this time the value of leapSeconds was approximately
8 seconds. Subtracting this 8 seconds from this time yields 1970-01-01 00:00:00 UTC.

Example: The POSIX algorithm applied to a PTP timestamp value of 0 seconds yields 1970-01-01 00:00:00
TAI. At this time the value of leapSeconds was approximately 8 seconds. Subtracting this 8 seconds from
this time yields 1969-12-31 23:59:52 UTC.

B.3 NTP and GPS

Two standard time sources of particular interest in implementing PTP systems: NTP and GPS. Both NTP
and GPS systems are expected to provide time references for calibration of the grandmaster supplied PTP
time.

NTP represents seconds as a 32 bit unsigned integer that rolls-over every 232
 seconds ≈ 136 years, with the

first such rollover occurring in the year 2036. The precision of NTP systems is usually in the millisecond
range.

NTP is a widely used protocol for synchronizing computer systems. NTP is based on sets of servers, to
which NTP clients synchronize. These servers themselves are synchronized to time servers that are traceable
to international standards.

NTP provides the current time. In NTP version 4, the current leapSeconds value and warning flags marking
indicating when a leapSecond will be inserted at the end of the current UTC day. The NTP clock effectively
stops for one second when the leap second is inserted.

GPS time comes from a global positioning satellite system, GPS, maintained by the U.S. Department of
Defense. The precision of GPS system is usually in the 10-100 ns range. GPS system transmissions
represent the time as {weeks, secondsInWeek}, the number of weeks since the GPS epoch and the number of
seconds since the beginning of the current week.

GPS also provides the current leapSeconds value, and warning flags marking the introduction of a leap
second correction. UTC and TAI times can be computed solely based the information contained in the GPS
transmissions.

GPS timing receivers generally manage the epoch transitions (1024-week rollovers), providing the correct
time (YYYY-MM-DD hh:mm:ss) in TAI and/or UTC time scales, and often also local time; in addition to
providing the raw GPS week, second of week, and leap second information.

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
92 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

B.4 Time-scale conversions

Previously discussed representations of time can be readily converted to/from PTP time based on a constant
offsets and the distributed leapSeconds value, as specified in Table B.2. Within Table B.2, all variables
represent integers; ‘/’ and ‘%’ represent a integer divide and remainder operation, respectively.

Table B.2—Time-scale conversions

ta

PTP value tb:name format

GPS weeks:seconds tb = ta.seconds + 315 964 819 +
(gpsRollovers * 1024 + ta.weeks) * (7 * DAYSECS);

ta.weeks = (tb – 315 964 819) / (7 * DAYSECS);
ta.days = (tb – 315 964 819) % (7 * DAYSECS);

TAI date{YYYY,MM,DD}:time{hh,mm,ss} tb = DateToDays(“1970-01-01”, ta.date) * DAYSECS +
((ta.time.hh * 24) + ta.time.mm) *60) + ta.time.ss;

secs = tb % DAYSECS;
ta.date = DaysToDate(“1970-01-01”, tb / DAYSECS);
ta.time.hh = secs / 3600;
ta.time.mm = (secs % 3600)/60;
ta.time.ss = (secs % 60);

NTP seconds tb = (ta +leapSeconds)–2208988800;

ta = (ta–leapSeconds) +2208988800;

UTC date{YYYY,MM,DD}:time{hh,mm,ss} tb = DateToDays(“1970-01-01”, ta.date) * DAYSECS +
((ta.time.hh * 24) + ta.time.mm) *60) + ta.time.ss +
leapSeconds;

tc = tb – leapSeconds;
secs = tc % DAYSECS;
ta.date = DaysToDate(“1970-01-01”, tc/DAYSECS);
ta.time.hh = secs / 3600;
ta.time.mm = (secs % 3600)/60;
ta.time.ss = (secs % 60);

Note:
gpsRollovers Currently equals 1; changed from 0 to 1 between 1999-08-15 and 1999-08-22.

DAYSECS The number of seconds within a day: (60*60*24).
leapSeconds Extra seconds to account for variations in the earth-rotation times: 33 on 2006-01-01.
DateToDays For arguments DateToDays(past, present), returns days between past and present dates.
DaysToDate For arguments DaysToDate(past, days), returns the current date, days after the past date.

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 93

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

B.5 Time zones and GMT

The term Greenwich Mean Time (GMT) once referred to mean solar time at the Royal Observatory in
Greenwich, England. GMT now commonly refers to the time scale UTC; or the UK winter time zone
(Western European Time, WET). Such GMT references are strictly speaking incorrect; but nevertheless
quite common. The following representations correspond to the same instant of time:

18:07:00 (GMT), commonplace usage 13:07:00 (Eastern Standard Time, EST)
18:07:00 (UTC) 1:07 PM (Eastern Standard Time, EST)
18:07:00 (Western European Time, WET) 10:07:00 (Pacific Standard Time, PST)

6:07 PM (Western European Time, WET) 10:07 AM (Pacific Standard Time, PST)

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
94 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex C

(informative)

Reclocked ClockSync requirements

C.1 Cascaded clock considerations

C.1.1 Cascading causes sync-interval bunching

The naive approach towards forwarding time-synchronization information is to quickly propagate
time-reference snapshots through successive stations. Unfortunately, relatively small (¼ interval)
residence-time delays per station can cause significant bunching, as illustrated in Figure C.1.

Techniques for avoiding such bunching are well known and practiced in the form of reclocked synchronous
circuits. For example, Ethernet stations accept (baud-rate) information at a closely matched input clock rate,
reclock the data with a local reference, and regenerate information without degraded jitter performance.

C.1.2 Reclocking eliminates sync-interval bunching

Applying these techniques to clock-sync transmission is straightforward. Rather than quickly forwarding
these frames, their information is saved. That saved information is then forwarded in the same periodic
fashion, based on local-station timing, as illustrated in Figure C.2. While such reclocked systems more
susceptible to gain-peaking/whiplash effects, inherent design and verification simplicities favor their use.

Figure C.1—Cascading causes sync-interval bunching

Figure C.2—Reclocking eliminates sync-interval bunching

10 ms
intervals

0.0-2.5 ms
…delays…

degraded
intervals

7.5 – 12.5 ms
intervals

0.0 – 27.5 ms
intervals

☺ . /

10 ms
intervals

degraded
intervals

7.5 – 12.5 ms
intervals

☺ ☺ ☺

7.5 – 12.5 ms
intervals

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 95

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

C.1.3 Reclocking localizes sync-interval properties

The reclocked sync-interval strategy is compatible with bridged mixed-media systems. The persistent or
transient sync-interval rate of an intermediate (perhaps longer or more power sensitive) link could be less
than the rate assumed for the clock-master, as illustrated in the center of Figure 3.3. Similarly, wireless links
could base their timing events on triggers initiated by the clock-slave station, as illustrated in the right side
of Figure 3.3.

Other flow-through clocking designs would require special “boundary clock” architectures to support such
mixed systems. With the interval reclocking strategy, the additional (specification and implementation)
complexities of such boundary-clock architectures are easily avoided.

C.2 Sampling offset/rate conversion

Each clock-master port is responsible for using its received {grandTime,extraTime,rcTime} affiliations to
derive distinct {grandTime1,extraTime1,txTime} affiliations that are transmitted to its neighbor. Since the
values of rcTime and txTime are (by convention) coupled to the receive and transmit times, this update
involves generation of {grandTime,extraTime,rcTime} triads by resampling within the array of previously
saved {grandTime,extraTime,rcTime} triads.

C.2.1 Forward extrapolation inaccuracies

A typical design approach (and that used by IEEE Std 1588) views the received {grandTime,rcTime}
affiliations as points on a curve, sampled at received-snapshot times rc[n]. The objective is to generate the
distinct set of {grandTime1,txTime} affiliations by extrapolating from a distinct set of receive-snapshot
times rc[n], as illustrated in Figure 3.4.

Figure 3.3—Reclocking localizes sync-interval properties

Figure 3.4—Extrapolation for grandTime

10 ms
intervals

degraded
intervals

7.5 – 12.5 ms
master intervals

37.5 – 42.5 ms
long intervals

7.5 – 12.5 ms
slave intervals

grandTime

stationTimerc[n-N] rc[n] txTime

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
96 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Extrapolation techniques exhibit gain peaking at frequencies whose wavelength is twice the {rc[n-N],rc[n]}
slope-averaging interval, because the extrapolated value can exceed what would have been the sampled time
value. A cascade of multiple stations emphasizes the gain-peaking inaccuracies, allowing errors to
accumulate in an O(N2) fashion.

C.2.2 Forward interpolation inaccuracies

To reduce gain-peaking effects, the resampling computation can be migrated to a safe-interpolation domain.
This involves subtracting a backTime constant from txTime, yielding a new time tbTime, for which a less
gain-peaking sensitive interpolation is viable, as illustrated in Figure C.5. In concept, the stale (but not
incorrect) {grandTime,rcTime} affiliations could be passed to the terminal clock-slave stations, wherein a
single extrapolation-to-the-future accumulation could be performed. A preferred technique is to compensate
the interpolation result on an per-station basis as the time-reference flows towards the clock-slave station, as
discussed in the following subclauses.

C.2.3 Backward grandTime interpolation

A more-scalable backward-interpolation approach also views the received {grandTime,rcTime} affiliations
as points on a curve. The objective is to generate the distinct set of {grandTime1,txTime} affiliations by
interpolating within a distinct set of {grandTime, rcTime} points on the curve, as illustrated in Figure C.6.

rateRatio = (grandTime[n] – grandTime[n-N]) / (rc[n] – rc[n-N]) (3.1)

grandTime1[m] = grandTime[n] + rateRatio * ((txTime – backTime) – rc[n]) + backTime; (3.2)
backTime is a constant (sync-interval dependent) value.

extraTime1[m] = (rateRatio – ONE) * backTime; (3.3)

Figure C.5—Extrapolation for grandTime

Figure C.6—Interpolation for grandTimeA

grandTime

stationTimerc[n-N] rc[n] txTime

backTime

tbTime

safe interpolation domain

grandTime

stationTime

extraTimeB

rc[n-(N-1)] rc[n] txTime

slope = 1.0 ←backTime

↑backTIme

tbTime

slope = rateRatio

grandTime1

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 97

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The advantage of this technique is the separation of grandTime[m] and extra[m] components. The
interpolation process eliminates gain-peaking for the grandTime[m] value, thus reducing error effects when
passing through multiple bridges. The sideband extraTime signal remains significant, and is therefore carried
through bridges, so that the cumulative grandTimed[m]+extraTime[m] value can be passed to the end-point
application.

From an intuitive perspective, the whiplash-free nature of the back-in-time interpolation is attributed to the
use of interpolation (as opposed to extrapolation) protocols. Interpolation between input values never
produces a larger output value, as would be implied by a gain-peaking (larger-than-unity gain) algorithm. A
disadvantage of back-in-time interpolation is the requirement for a side-band extraTime communication
channel, over which the difference between nominal and rate-normalized backTime values can be
transmitted.

C.2.4 Backward extraTime Averaging

An averaging (rather than backward-interpolation) approach is applied to the received {extraTime, rcTime}
affiliations as points on a curve, sampled at received-snapshot times rc[n]. The {extraTime,tx[m]} affilia-
tions are produced by averaging recently observed extraTime values, as illustrated in Figure C.7.

extraTimeA[m] = (extraTime[n–(N–1)] + … extraTime[n]) / N (3.4)
extraTime1[m] = extraTimeA[m]+ extraTimeB[m]; (3.5)

The to-be-transmitted value of extraTime1[m] consists of a contribution extraTimeA (accumulated from pre-
vious stations’s grandTime interpolations) and a contribution errorTimeB (coming from this station’s
grandTime interpolation). Note that the averaging of extraA values is effectively a low-pass filtering process
that removes noise without causing a gain-peaking frequency response.

NOTE—For simplicity and scalability, the computed extraTime1 time is based on N, a fixed number of samples, where
N is a convenient power-of-two in size.

Figure C.7—Interpolation of extraTimeD

extraTime

stationTimerc[n-(N-1)] rc[n] tx[m]

N values

averageValue

extraTimeA

JggDvj20050416/D0.726 WHITE PAPER CONTRIBUTION TO
2007-08-12

Contribution from: dvj@alum.mit.edu.
98 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex D

(informative)

Simulation results (preliminary)

D.1 Simulation environment

This annex describes several simulations performed with the intent of comparing time-extrapolation and
time-interpolation algorithms. To reduce possibilities of code-conversion errors, the simulation model
executes the C code of Annex G. Simulation time is based on a 128-bit systemTime, represented by
64-bit seconds and fractions-of-second components, to ensure that precision and range are not constraining
factors.

The simulation consists of bridgeCount identical super-bridge components, as illustrated in Figure D.1. For
generality and uniformity, each bridge includes ClockMaster and ClockSlave entities. The smallest MAC
address is assigned to the left-most station; for other stations, the address is incremented for each sequential
right-side bridge. The simulations assumed bridgeCount values of 8 (the assumed AVB diameter) and 64
(a reasonable IEEE 802.17 ring diameter).

The transmit portion of the TS component (emulated by the DuplexTxExec routine) introduces a random
delay of no more than 2.5 ms, thus emulating delays consistent with the 10 ms sync-frame transmission rate.
A 20 ns sampling clock ambiguity (corresponding to 25 MHz) is incorporated into the MAC component
(emulated by the DupMacTxExec routine).

The cable is modeled as a symmetric 500ns delay, corresponding to a cable length of approximately 100
meters.

Station clock accuracies are assigned randomly/uniformly within the range of the allowed ±100 PPM
deviation from the simulation’s emulated/exact systemTime reference.

NOTE—Please be tolerant of the editor of this document, who just downloaded the gnuplot application and fft4 library
today. These initial cut-and-paste of plots are primitive (to be improved, when EPS or other formats are understood) and
no noise-spectrum plots (to better illustrate gain peaking) are currently available. Improvements expected soon…

Figure D.1—Time-synchronization flows

ClockSlave

ClockTarget

ClockMaster

ClockSource

MAC

(PHY)

TS

(PHY)

LAN

TS

MAC relay

ClockSlaveGrandSync

MAC

(PHY)

LLC
TS

(PHY)

TS

MAC relay

MAC

(PHY)

LAN

LLC
TS

MAC

(PHY)

MAC relay

ClockSlaveGrandSync

ClockTarget

GrandSync

ClockSource ClockTarget

LLC LLC

MAC

LLC
TS

a) Clock master b) Clock bridge… c) Clock slave

ClockMaster

MAC

LLC

10ms tick 10ms samples

ClockMaster

ClockSource

40ns
ticks

max
2.5ms
delay

delay = 500ns
…

bridgeCount = 8, 64

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 99

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2 Initialization transients

D.2.1 Cascaded 8 stations

A significant expected initialization transient is observed when all stations simultaneously start operations,
as illustrated in Figure D.2. This can be contributed to inaccurate initial estimates of receiver’s link-delay
and transmitter’s rate estimations. The transient delays (although significant) are much less than expected
from designs based on many-sample grandmaster rate-syntonization delays within bridges.

D.2.2 Cascaded 64 stations

The length of the initialization transient increases when the number of bridges is increased to 64, as
illustrated in Figure D.3. The much-longer duration of such transients is perhaps tolerable, but illustrates the
desire to avoid extrapolation-based on many-sample grandmaster rate-syntonization delays within bridges.

Figure D.2—Startup transients with 8 stations

Figure D.3—Startup transients with 64 stations

-3e-06

-2e-06

-1e-06

 0

 1e-06

 2e-06

 3e-06

 4e-06

 0 0.5 1 1.5 2 2.5 3 3.5 4

"valueInt8b"

-2e-05

-1.5e-05

-1e-05

-5e-06

 0

 5e-06

 1e-05

 0 0.5 1 1.5 2 2.5 3 3.5 4

"valueInt64b"

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 100

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.3 Steady-state interpolation errors

D.3.1 Time interpolation with 8 stations

Simulations indicate modest peak-to-peak errors for 8-bridge topologies when interpolation-based protocols
are used, as illustrated in Figure D.4.

D.3.2 Time interpolation with 64 stations

Simulations indicate modest peak-to-peak error increases for 64-bridge topologies (as expected to 8-bridge
topologies) when interpolation-based protocols are used, as illustrated in Figure D.5. The data is consistent
with less-than-linear expectations, due to statistical averaging and intermediate interpolation filtering.

Figure D.4—Time interpolation with 8 stations

Figure D.5—Time interpolation with 64 stations

-1.5e-07

-1e-07

-5e-08

 0

 5e-08

 1e-07

 1.5e-07

 50 60 70 80 90 100

"valueInt8b"

-3e-07

-2e-07

-1e-07

 0

 1e-07

 2e-07

 3e-07

 4e-07

 50 60 70 80 90 100

"valueInt64b"

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 101

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.4 Steady-state extrapolation errors

D.4.1 Time extrapolation with 8 stations

Simulations indicate approximately twice the errors for 8-bridge topologies when extrapolation-based
protocols (as opposed to interpolation-based protocols) are used, as illustrated in Figure D.6.

D.4.2 Time extrapolation with 64 stations

Simulations indicate significantly larger peak-to-peak errors for 64-bridge topologies when
extrapolation-based protocols (as opposed to interpolation-based protocols) are used, as illustrated in
Figure D.7.

Figure D.6—Time extrapolation with 8 stations

Figure D.7—Time extrapolation with 64 stations

-4e-07

-3e-07

-2e-07

-1e-07

 0

 1e-07

 2e-07

 3e-07

 4e-07

 50 60 70 80 90 100

"valueExt8b"

-8e-05

-6e-05

-4e-05

-2e-05

 0

 2e-05

 4e-05

 6e-05

 8e-05

 50 60 70 80 90 100

"valueExt64b"

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 102

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex E

(informative)

Bridging to IEEE Std 1394

To illustrate the sufficiency and viability of the AVB time-synchronization services, the transformation of
IEEE 1394 packets is illustrated.

E.1 Hybrid network topologies

E.1.1 Supported IEEE 1394 network topologies

This annex focuses on the use of AVB to bridge between IEEE 1394 domains, as illustrated in Figure E.1.
The boundary between domains is illustrated by a dotted line, which passes through a SerialBus adapter
station.

E.1.2 Unsupported IEEE 1394 network topologies

Another approach would be to use IEEE 1394 to bridge between IEEE 802.3 domains, as illustrated in
Figure E.2. While not explicitly prohibited, architectural features of such topologies are beyond the scope of
this working paper.

Figure E.1—IEEE 1394 leaf domains

Figure E.2—IEEE 802.3 leaf domains

IEEE 1394IEEE 1394 IEEE 802.3

IEEE 1394IEEE 802.3 IEEE 802.3

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 103

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

E.1.3 Time-of-day format conversions

The difference between AVB and IEEE 1394 time-of-day formats is expected to require conversions within
the AVB-to-1394 adapter. Although multiplies are involved in such conversions, multiplications by con-
stants are simpler than multiplications by variables. For example, a conversion between AVB and
IEEE 1394 involves no more than two 32-bit additions and one 16-bit addition, as illustrated in Figure E.3.

E.1.4 Grandmaster precedence mappings

Compatible formats allow either an IEEE 1394 or IEEE 802.3 stations to become the network’s grandmaster
station. While difference in format are present, each format can be readily mapped to the other, as illustrated
in Figure E.4:

Figure E.3—Time-of-day format conversions

Figure E.4—Grandmaster precedence mapping

seconds cycleOffsetcycleCount

seconds fraction

a
b = (a*125)>>7;

cycles fraction

c
d = (c*3)>>6;

b

d

Notes:
Two 32-bit additions for b:

b = ((a<<7) - (a<<2) + a) >> 7;
One 16-bit additions for d:

d = ((c<<2) + c) >> 6;

MSB LSB

macAddressHisp
MSB LSB

systemID pad

eui64

sp systemID

0

macAddressLo

macAddressHi pad macAddressLo

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 104

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex F

(informative)

Time-of-day format considerations

To better understand the rationale behind the ‘extended binary’ timer format, various possible formats are
described within this annex.

F.1 Possible time-of-day formats

F.1.1 Extended binary timer formats

The extended-binary timer format is used within this working paper and summarized herein. The 64-bit
timer value consist of two components: a 40-bit seconds and 40-bit fraction fields, as illustrated in
Figure F.1.

The concatenation of 40-bit seconds and 40-bit fraction field specifies an 80-bit time value, as specified by
Equation F.1.

time = seconds + (fraction / 240) (F.1)
Where:

seconds is the most significant component of the time value.
fraction is the less significant component of the time value.

F.1.2 IEEE 1394 timer format

An alternate “1394 timer” format consists of secondCount, cycleCount, and cycleOffset fields, as illustrated
in Figure F.2. For such fields, the 12-bit cycleOffset field is updated at a 24.576MHz rate. The cycleOffset
field goes to zero after 3071 is reached, thus cycling at an 8kHz rate. The 13-bit cycleCount field is
incremented whenever cycleOffset goes to zero. The cycleCount field goes to zero after 7999 is reached, thus
restarting at a 1Hz rate. The remaining 7-bit secondCount field is incremented whenever cycleCount goes to
zero.

Figure F.1—Global-time subfield format

Figure F.2—IEEE 1394 timer format

seconds fraction

40 bits

LSB

40 bits

MSB

secondCount cycleOffsetcycleCount

13 bits 12 bits7 bits

MSB LSB

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 105

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

F.1.3 IEEE 1588 timer format

IEEE Std 1588-2002 timer format consists of seconds and nanoseconds fields components, as illustrated in
Figure F.3. The nanoseconds field must be less than 109; a distinct sign bit indicates whether the time repre-
sents before or after the epoch duration.

F.1.4 EPON timer format

The IEEE 802.3 EPON timer format consists of a 32-bit scaled nanosecond value, as illustrated in
Figure F.4. This clock is logically incremented once each 16 ns interval.

Figure F.3—IEEE 1588 timer format

Figure F.4—EPON timer format

seconds
MSB LSB

nanoSecondss

Legend: s: sign

nanoTicks
MSB LSB

seconds = nanoTicks/62500000

AVB BRIDGING JggDvj20050416/D0.726
2007-08-12

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 106

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

