
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

JggDvj2005Apr16
January 24, 2007

DVJ Perspective on:
Timing and synchronization for
time-sensitive applications in bridges
local area networks

Draft 0.201
Contributors:
See page xx.

Abstract: This working paper provides background and introduces possible higher level concepts
for the development of Audio/Video bridges (AVB).
Keywords: audio, visual, bridge, Ethernet, time-sensitive

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 23, 2007

Contribution from: dvj@alum.mit.edu.
2 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Editors’ Foreword

Comments on this draft are encouraged. PLEASE NOTE: All issues related to IEEE standards presen-
tation style, formatting, spelling, etc. should be addressed, as their presence can often obfuscate
relevant technical details.

By fixing these errors in early drafts, readers wll be able to devote their valuable time and energy to
comments that materially affect either the technical content of the document or the clarity of that technical
content. Comments should not simply state what is wrong, but also what might be done to fix the problem.

Information on 802.1 activities, working papers, and email distribution lists etc. can be found on the 802.1
Website:

http://ieee802.org/1/

Use of the email distribution list is not presently restricted to 802.1 members, and the working group has had
a policy of considering ballot comments from all who are interested and willing to contribute to the devel-
opment of the draft. Individuals not attending meetings have helped to identify sources of misunderstanding
and ambiguity in past projects. Non-members are advised that the email lists exist primarily to allow the
members of the working group to develop standards, and are not a general forum.

Comments on this document may be sent to the 802.1 email reflector, to the editors, or to the Chairs of the
802.1 Working Group and Interworking Task Group.

This draft was prepared by:

David V James
JGG
3180 South Court
Palo Alto, CA 94306
+1.650.494.0926 (Tel)
+1.650.954.6906 (Mobile)
Email: dvj@alum.mit.edu

Chairs of the 802.1 Working Group and Audio/Video Bridging Task Group:.

Michael Johas Teener
Chair, 802.1 Audio/Video Bridging Task
Broadcom Corporation
3151 Zanker Road
San Jose, CA
95134-1933
USA
+1 408 922 7542 (Tel)
+1 831 247 9666 (Mobile)
Email:mikejt@broadcom.com

Tony Jeffree
Group Chair, 802.1 Working Group
11A Poplar Grove
Sale
Cheshire
M33 3AX
UK
+44 161 973 4278 (Tel)
+44 161 973 6534 (Fax)
Email: tony@jeffree.co.uk

AVB BRIDGING JggDvj2005Apr16/D0.201
January 23, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Introduction to IEEE Std 802.1AS™

(This introduction is not part of P802.1AS, IEEE Standard for Local and metropolitan area networks—
Timing and synchronization for time-sensitive applications in bridged local area networks.)

This standard specifies the protocol and procedures used to ensure that the synchronization requirements are
met for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for
example,IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal
operation and following addition, removal, or failure of network components and network reconfiguration.
The design is based on concepts developed within the IEEE Std 1588, and is applicable in the context of
IEEE Stds 802.1D and 802.1Q.

Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as UTC or
TAI) is not part of this standard but is not precluded.

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 23, 2007

Contribution from: dvj@alum.mit.edu.
4 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Contributors

This working paper is based on contributions or review comments from the people listed below. Their listing
doesn't necessarily imply they agree with the entire content or the author's interpretation of their input.

Jim Battaglia Pioneer
Alexei Beliaev Gibson
Dirceu Cavendish NEC Labs America
George Claseman Micrel
Feifei (Felix) Feng Samsung Electronics
John Nels Fuller Independent
Geoffrey M. Garner Samsung Electronics
Kevin Gross Cirrus Logic
Jim Haagen-Smit HP
David V James JGG
Dennis Lou Pioneer
Michael D. Johas Teener Broadcom
Fred Tuck EchoStar

Version history

Version Date Author Comments

0.082 2005Apr28 DVJ Updates based on 2005Apr27 meeting discussions

0.085 2005May11 DVJ – Updated front-page list of contributors
– Updated book for continuous pages (Clause 1 discontinuity fixed)
– Miscellaneous editing fixes

0.088 2005Jun03 DVJ – Application latency scenarios clarified.

0.090 2005Jun06 DVJ – Misc editorials in bursting and bunching annex.

0.092 2005Jun10 DVJ – Extensive cleanup of Clause 5 subscription protocols, based on
2005Jun08 teleconference review comments.

0.121 2005Jun24 DVJ – Extensive cleanup of clock-synchronization protocols, base on
2005Jun22 teleconference review comments.

0.127 2005Jul04 DVJ – Pacing descriptions greatly enhanced.

0.200 2007Jan23 DVJ Removal of non time-sync related information.
Update based on recent teleconference suggestion (layering),
as well as input available from others’ drafts.

— TBD — —

AVB BRIDGING JggDvj2005Apr16/D0.201
January 23, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Formats

In many cases, readers may elect to provide contributions in the form of exact text replacements and/or
additions. To simplify document maintenance, contributors are requested to use the standard formats and
provide checklist reviews before submission. Relevant URLs are listed below:

General: http://grouper.ieee.org/groups/msc/WordProcessors.html
Templates: http://grouper.ieee.org/groups/msc/TemplateTools/FrameMaker/
Checklist: http://grouper.ieee.org/groups/msc/TemplateTools/Checks2004Oct18.pdf

Topics for discussion

Readers are encouraged to provide feedback in all areas, although only the following areas have been identi-
fied as specific areas of concern.

a) Layering. Should be reviewed.

TBDs

Further definitions are needed in the following areas:

a) Details of the client time-sync services should be defined.
b) Details of the Ethernet per-port time-sync services should be defined.
c) How are leap-seconds handled?
d) How are rate differences distributed? Avoid whiplash?
e) When the grand-master changes, should the new clock transitioin to it free-run rate instantaneously

or migrate there slowly over time?

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 23, 2007

Contribution from: dvj@alum.mit.edu.
6 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Contents

List of figures... 8

List of tables... 9

1. Overview... 11

1.1 Scope ... 11
1.2 Purpose .. 11
1.3 Introduction ... 11

2. References... 13

3. Terms, definitions, and notation ... 14

3.1 Conformance levels ... 14
3.2 Terms and definitions .. 14
3.3 Service definition method and notation... 15
3.4 State machines ... 16
3.5 Arithmetic and logical operators ... 19
3.6 Numerical representation... 19
3.7 Field notations ... 20
3.8 Bit numbering and ordering... 21
3.9 Byte sequential formats ... 22

3.10 Ordering of multibyte fields .. 22
3.11 MAC address formats.. 23
3.12 Informative notes... 24
3.13 Conventions for C code used in state machines .. 24

4. Abbreviations and acronyms .. 25

5. Architecture overview .. 27

5.1 Application scenarios .. 27
5.2 Design methodology.. 28
5.3 Time-synchronization facilities ... 29
5.4 Client processing details.. 32
5.5 Key distinctions from IEEE Std 1588 ... 33

6. Medium access control (MAC) service and reference model .. 35

6.1 Overview ... 35
6.2 Overview of MAC services ... 35
6.3 MAC services to the client layer ... 35

7. Ethernet duplex-cable time synchronization .. 38

7.1 Design methodology.. 38
7.2 Time-synchronization operation.. 39
7.3 timeSync frame format .. 42

AVB BRIDGING JggDvj2005Apr16/D0.201
January 23, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex A (informative) Bibliography .. 47

Annex B (informative) Bridging to IEEE Std 1394.. 48

B.1 Hybrid network topologies .. 48

Annex C (informative) Review of possible alternatives ... 50

C.1 Clock-synchronization alternatives ... 50

Annex D (informative) Time-of-day format considerations ... 52

D.1 Possible time-of-day formats... 52
D.2 Time format comparisons.. 54

Index .. 55

Annex E (informative) C-code illustrations.. 59

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
8 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

List of figures

Figure 1.1—Topology and connectivity .. 12
Figure 3.1—Service definitions ... 15
Figure 3.2—Bit numbering and ordering .. 21
Figure 3.3—Byte sequential field format illustrations .. 22
Figure 3.4—Multibyte field illustrations ... 22
Figure 3.5—Illustration of fairness-frame structure .. 23
Figure 3.6—MAC address format ... 23
Figure 3.7—48-bit MAC address format... 24
Figure 5.1—Garage jam session.. 27
Figure 5.2—Possible looping topology ... 28
Figure 5.3—Timing information flows ... 29
Figure 5.4—Grand-master precedence flows .. 30
Figure 5.5—Grand-master precedence .. 30
Figure 5.6—Hierarchical flows ... 31
Figure 5.7—AVB service interface model .. 32
Figure 6.1—AVB service and reference model relationship to the ISO/IEC OSI reference model 35
Figure 7.1—Timer snapshot locations... 39
Figure 7.2—Timer snapshot locations... 40
Figure 7.3—Rate-adjustment effects ... 41
Figure 7.4—timeSync frame format .. 42
Figure 7.5—typeCount format ... 43
Figure 7.6—gmSelection format.. 44
Figure 7.7—uniqueID format .. 44
Figure 7.8—Complete seconds timer format... 45
Figure 7.9—Complete seconds timer format... 45
Figure B.1—IEEE 1394 leaf domains ... 48
Figure B.2—IEEE 802.3 leaf domains .. 48
Figure B.3—Time-of-day format conversions .. 49
Figure B.4—Grand-master precedence mapping .. 49
Figure 4.1—Complete seconds timer format... 52
Figure D.2—IEEE 1394 timer format ... 52
Figure D.3—IEEE 1588 timer format ... 53
Figure D.4—EPON timer format... 53
Figure D.5—Compact seconds timer format ... 53
Figure D.6—Nanosecond timer format ... 53

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

List of tables

Table 3.1—State table notation example... 17
Table 3.2—Called state table notation example .. 18
Table 3.3—Special symbols and operators.. 19
Table 3.4—Names of fields and sub-fields ... 20
Table 3.5—wrap field values ... 21
Table 7.1—Clock-synchronization intervals ... 42
Table C.1Protocol comparison .. 50
Table D.1—Time format comparison.. 54

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
10 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

DVJ Perspective on: Timing and
synchronization for time-sensitive
applications in bridges local area
networks
1. Overview

1.1 Scope

This draft specifies the protocol and procedures used to ensure that the synchronization requirements are met
for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
neworks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. It specifies
the use of IEEE 1588 specifications where applicable in the context of IEEE Stds 802.1D and 802.1Q.
Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as UTC or
TAI) is not part of this standard but is not precluded.

1.2 Purpose

This draft enables stations attached to bridged LANs to meet the respective jitter, wander, and time synchro-
nization requirements for time-sensitive applications. This includes applications that involve multiple
streams delivered to multiple endpoints. To facilitate the widespread use of bridged LANs for these applica-
tions, synchronization information is one of the components needed at each network element where
time-sensitive application data are mapped or demapped or a time sensitive function is performed. This stan-
dard leverages the work of the IEEE 1588 WG by developing the additional specifications needed to address
these requirements.

1.3 Introduction

1.3.1 Background

Ethernet has successfully propagated from the data center to the home, becoming the wired home computer
interconnect of choice. However, insufficient support of real-time services has limited Ethernet’s success as
a consumer audio-video interconnects, where IEEE Std 1394 Serial Bus and Universal Serial Bus (USB)
have dominated the marketplace. Success in this arena requires solutions to multiple topics:

a) Discovery. A controller discovers the proper devices and related streamID/bandwidth parameters to
allow the listener to subscribe to the desired talker-sourced stream.

b) Subscription. The controller commands the listener to establish a path from the talker.
Subscription may pass or fail, based on availability of routing-table and link-bandwidth resources.

c) Synchronization. The distributed clocks in talkers and listeners are accurately synchronized.
Synchronized clocks avoid cycle slips and playback-phase distortions.

d) Pacing. The transmitted classA traffic is paced to avoid other classA traffic disruptions.

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
12 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

This draft covers the “Synchronization” component, assuming solutions for the other topics will be devel-
oped within other drafts or forums.

1.3.2 Interoperability

AVB time synchronization interoperates with existing Ethernet, but the scope of time-synchronization is
limited to the AVB cloud, as illustrated in Figure 1.1; less-precise time-synchronization services are
available everywhere else. The scope of the AVB cloud is limited by a non-AVB capable bridge or a
half-duplex link, neither of which can support AVB services.

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

1.3.3 Document structure

The clauses and annexes of this working paper are listed below.

— Clause 1: Overview
— Clause 2: References
— Clause 3: Terms, definitions, and notation
— Clause 4: Abbreviations and acronyms
— Clause 5: Architecture overview
— Clause xx: FrameFormats
— Clause xx: xx
— Annex A: Bibliography
— Annex B: Bridging to IEEE Std 1394
— Annex C: Review of possible alternatives
— Annex D: Time-of-day format considerations
— Annex E: C-code illustrations

Figure 1.1—Topology and connectivity

AVB
bridge

AVB
bridge

AVB
device

AVB
device

AVB
device

AVB
device

AVB
bridgeEthernet

bridge

Peer device is
not AVB capable

Ethernet
hub

device

AVB
device

AVB
device

Half-duplex link
can’t do AVBdevice

device

AVB “cloud”

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2. References

The following documents contain provisions that, through reference in this working paper, constitute provi-
sions of this working paper. All the standards listed are normative references. Informative references are
given in Annex A. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this working paper are encouraged to investigate the possibility
of applying the most recent editions of the standards indicated below.

ANSI/ISO 9899-1990, Programming Language-C.1,2

IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access Control
(MAC) Bridges.

1Replaces ANSI X3.159-1989
2ISO documents are available from ISO Central Secretariat, 1 Rue de Varembe, Case Postale 56, CH-1211, Geneve 20, Switzer-
land/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42 Street, 13th Floor, New York, NY
10036-8002, USA

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
14 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3. Terms, definitions, and notation

3.1 Conformance levels

Several key words are used to differentiate between different levels of requirements and options, as
described in this subclause.

3.1.1 may: Indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”).

3.1.2 shall: Indicates mandatory requirements to be strictly followed in order to conform to the standard and
from which no deviation is permitted (“shall” means “is required to”).

3.1.3 should: An indication that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“should”
means “is recommended to”).

3.2 Terms and definitions

For the purposes of this working paper, the following terms and definitions apply. The Authoritative
Dictionary of IEEE Standards Terms [B2] should be referenced for terms not defined in the clause.

3.2.1 bridge: A functional unit interconnecting two or more networks at the data link layer of the OSI
reference model.

3.2.2 clock master: A bridge or end station that provides the link clock reference.

3.2.3 clock slave: A bridge or end station that tracks the link clock reference provided by the clock master.

3.2.4 cyclic redundancy check (CRC): A specific type of frame check sequence computed using a
generator polynomial.

3.2.5 grand clock master: The clock master selected to provide the network time reference.

3.2.6 link: A unidirectional channel connecting adjacent stations (half of a span).

3.2.7 listener: A sink of a stream, such as a television or acoustic speaker.

3.2.8 local area network (LAN): A communications network designed for a small geographic area,
typically not exceeding a few kilometers in extent, and characterized by moderate to high data transmission
rates, low delay, and low bit error rates.

3.2.9 MAC client: The layer entity that invokes the MAC service interface.

3.2.10 medium (plural: media): The material on which information signals are carried; e.g., optical fiber,
coaxial cable, and twisted-wire pairs.

3.2.11 medium access control (MAC) sublayer: The portion of the data link layer that controls and
mediates the access to the network medium. In this working paper, the MAC sublayer comprises the MAC
datapath sublayer and the MAC control sublayer.

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.2.12 network: A set of communicating stations and the media and equipment providing connectivity
among the stations.

3.2.13 plug-and-play: The requirement that a station perform classA transfers without operator intervention
(except for any intervention needed for connection to the cable).

3.2.14 protocol implementation conformance statement (PICS): A statement of which capabilities and
options have been implemented for a given Open Systems Interconnection (OSI) protocol.

3.2.15 span: A bidirectional channel connecting adjacent stations (two links).

3.2.16 station: A device attached to a network for the purpose of transmitting and receiving information on
that network.

3.2.17 topology: The arrangement of links and stations forming a network, together with information on
station attributes.

3.2.18 transmit (transmission): The action of a station placing a frame on the medium.

3.2.19 unicast: The act of sending a frame addressed to a single station.

3.3 Service definition method and notation

The service of a layer or sublayer is the set of capabilities that it offers to a user in the next higher (sub)layer.
Abstract services are specified in this working paper by describing the service primitives and parameters
that characterize each service. This definition of service is independent of any particular implementation
(see Figure 3.1).

Specific implementations can also include provisions for interface interactions that have no direct
end-to-end effects. Examples of such local interactions include interface flow control, status requests and
indications, error notifications, and layer management. Specific implementation details are omitted from this
service specification, because they differ from implementation to implementation and also because they do
not impact the peer-to-peer protocols.

Figure 3.1—Service definitions

LAYER N
SERVICE USER

LAYER N-1
SERVICE PROVIDER

LAYER N
SERVICE USER

REQUEST

INDICATION

TIME

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
16 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.3.1 Classification of service primitives

Primitives are of two generic types.

a) REQUEST. The request primitive is passed from layer N to layer N-1 to request that a service be
initiated.

b) INDICATION. The indication primitive is passed from layer N-1 to layer N to indicate an internal
layer N-1 event that is significant to layer N. This event can be logically related to a remote service
request, or can be caused by an event internal to layer N-1.

The service primitives are an abstraction of the functional specification and the user-layer interaction. The
abstract definition does not contain local detail of the user/provider interaction. For instance, it does not
indicate the local mechanism that allows a user to indicate that it is awaiting an incoming call. Each
primitive has a set of zero or more parameters, representing data elements that are passed to qualify the
functions invoked by the primitive. Parameters indicate information available in a user/provider interaction.
In any particular interface, some parameters can be explicitly stated (even though not explicitly defined in
the primitive) or implicitly associated with the service access point. Similarly, in any particular protocol
specification, functions corresponding to a service primitive can be explicitly defined or implicitly available.

3.4 State machines

3.4.1 State machine behavior

The operation of a protocol can be described by subdividing the protocol into a number of interrelated
functions. The operation of the functions can be described by state machines. Each state machine represents
the domain of a function and consists of a group of connected, mutually exclusive states. Only one state of a
function is active at any given time. A transition from one state to another is assumed to take place in zero
time (i.e., no time period is associated with the execution of a state), based on some condition of the inputs to
the state machine.

The state machines contain the authoritative statement of the functions they depict. When apparent conflicts
between descriptive text and state machines arise, the order of precedence shall be formal state tables first,
followed by the descriptive text, over any explanatory figures. This does not override, however, any explicit
description in the text that has no parallel in the state tables.

The models presented by state machines are intended as the primary specifications of the functions to be
provided. It is important to distinguish, however, between a model and a real implementation. The models
are optimized for simplicity and clarity of presentation, while any realistic implementation might place
heavier emphasis on efficiency and suitability to a particular implementation technology. It is the functional
behavior of any unit that has to match the standard, not its internal structure. The internal details of the
model are useful only to the extent that they specify the external behavior clearly and precisely.

3.4.2 State table notation

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

NOTE—The following state machine notation was used within 802.17, due to the exactness of C-code
conditions and the simplicity of updating table entries (as opposed to 2-dimensional graphics).
Early state table descriptions can be converted (if necessary) into other formats before publication.

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.4.2.1 Parallel-execution state tables

State machines may be represented in tabular form. The table is organized into two columns: a left hand side
representing all of the possible states of the state machine and all of the possible conditions that cause transi-
tions out of each state, and the right hand side giving all of the permissible next states of the state machine as
well as all of the actions to be performed in the various states, as illustrated in Table 3.1. The syntax of the
expressions follows standard C notation (see 3.13). No time period is associated with the transition from one
state to the next.

Row 3.1-1: Do nothing if the size of the queued MAC control frame is larger than the PTQ space.
Row 3.1-2: Do nothing in the absence of MAC control transmission credits.
Row 3.1-3: Otherwise, transmit a MAC control frame.

Row 3.1-4: When the transmission completes, start over from the initial state (i.e., START).
Row 3.1-5: Until the transmission completes, remain in this state.

Each combination of current state, next state, and transition condition linking the two is assigned to a
different row of the table. Each row of the table, read left to right, provides: the name of the current state; a
condition causing a transition out of the current state; an action to perform (if the condition is satisfied); and,
finally, the next state to which the state machine transitions, but only if the condition is satisfied. The symbol
“—” signifies the default condition (i.e., operative when no other condition is active) when placed in the
condition column, and signifies that no action is to be performed when placed in the action column.
Conditions are evaluated in order, top to bottom, and the first condition that evaluates to a result of TRUE is
used to determine the transition to the next state. If no condition evaluates to a result of TRUE, then the state
machine remains in the current state. The starting or initialization state of a state machine is always labeled
“START” in the table (though it need not be the first state in the table). Every state table has such a labeled
state.

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

Table 3.1—State table notation example

Current

R
ow

Next

state condition action state

START sizeOfMacControl > spaceInQueue 1 — START

passM == 0 2

— 3 TransmitFromControlQueue(); FINAL

FINAL SelectedTransferCompletes() 4 — START

— 5 — FINAL

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
18 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.4.2.2 Called state tables

A RETURN state is the terminal state of a state machine that is intended to be invoked by another state
machine, as illustrated in Table 3.2. Once the RETURN state is reached, the state machine terminates
execution, effectively ceasing to exist until the next invocation by the caller, at which point it begins
execution again from the START state. State machines that contain a RETURN state are considered to be
only instantiated when they are invoked. They do not have any persistent (static) variables.

Row 3.2-1: The size of the queued MAC control frame is less than the PTQ space.
Row 3.2-2: In the absence of MAC control transmission credits, no action is taken.
Row 3.2-3: MAC control transmissions have precedence over client transmissions.

Row 3.2-4: If the transmission completes with an error, set an error defect indication.
Row 3.2-5: Otherwise, no error defect is indicated.

Table 3.2—Called state table notation example

Current

R
ow

Next

state condition action state

START sizeOfMacControl > spaceInQueue 1 — FINAL

passM == 0 2

— 3 TransmitFromControlQueue(); RETURN

FINAL MacTransmitError(); 4 errorDefect = TRUE RETURN

— 5 —

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5 Arithmetic and logical operators

In addition to commonly accepted notation for mathematical operators, Table 3.3 summarizes the symbols
used to represent arithmetic and logical (boolean) operations. Note that the syntax of operators follows
standard C notation (see 3.13).

3.6 Numerical representation

Decimal, hexadecimal, and binary numbers are used within this working paper. For clarity, decimal numbers
are generally used to represent counts, hexadecimal numbers are used to represent addresses, and binary
numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their usual 0, 1, 2, … format. Hexadecimal numbers are represented by
a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16, except in C-code
contexts, where they are written as 0x123EF2 etc. Binary numbers are represented by a string of one or
more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be represented
as “1A16” or “110102”.

MAC addresses and OUI/EUI values are represented as strings of 8-bit hexadecimal numbers separated by
hyphens and without a subscript, as for example “01-80-C2-00-00-15” or “AA-55-11”.

Table 3.3—Special symbols and operators

Printed character Meaning

&& Boolean AND

!! Boolean OR

! Boolean NOT (negation)

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

"# Less than or equal to

$# Greater than or equal to

Equal to

!= Not equal to

 # Assignment operator

// Comment delimiter

NOTE—The following notation was taken from 802.17, where it was found to have benefits:
– The subscript notation is consistent with common mathematical/logic equations.
– The subscript notation can be used consistently for all possible radix values.

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
20 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.7 Field notations

3.7.1 Use of italics

All field names or variable names (such as level or myMacAddress), and sub-fields within variables (such as
thisState.level) are italicized within text, figures and tables, to avoid confusion between such names and
similarly spelled words without special meanings. A variable or field name that is used in a subclause
heading or a figure or table caption is also italicized. Variable or field names are not italicized within C code,
however, since their special meaning is implied by their context. Names used as nouns (e.g., subclassA0) are
also not italicized.

3.7.2 Field conventions

This working paper describes values that are packetized or MAC-resident, such as those illustrated in
Table 3.2.

Run-together names (e.g., thisState) are used for fields because of their compactness when compared to
equivalent underscore-separated names (e.g., this_state). The use of multiword names with spaces (e.g.,
“This State”) is avoided, to avoid confusion between commonly used capitalized key words and the
capitalized word used at the start of each sentence.

A sub-field of a field is referenced by suffixing the field name with the sub-field name, separated by a
period. For example, thisState.level refers to the sub-field level of the field thisState. This notation can be
continued in order to represent sub-fields of sub-fields (e.g., thisState.level.next is interpreted to mean the
sub-field next of the sub-field level of the field thisState).

Two special field names are defined for use throughout this working paper. The name frame is used to
denote the data structure comprising the complete MAC sublayer PDU. Any valid element of the MAC
sublayer PDU, can be referenced using the notation frame.xx (where xx denotes the specific element); thus,
for instance, frame.serviceDataUnit is used to indicate the serviceDataUnit element of a frame.

Unless specifically specified otherwise, reserved fields are reserved for the purpose of allowing extended
features to be defined in future revisions of this working paper. For devices conforming to this version of
this working paper, nonzero reserved fields are not generated; values within reserved fields (whether zero or
nonzero) are to be ignored.

Table 3.4—Names of fields and sub-fields

Name Description

newCRC Field within a register or frame

thisState.level Sub-field within field thisState

thatState.rateC[n].c Sub-field within array element rateC[n]

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.7.3 Field value conventions

This working paper describes values of fields. For clarity, names can be associated with each of these
defined values, as illustrated in Table 3.5. A symbolic name, consisting of upper case letters with underscore
separators, allows other portions of this working paper to reference the value by its symbolic name, rather
than a numerical value.

Unless otherwise specified, reserved values allow extended features to be defined in future revisions of this
working paper. Devices conforming to this version of this working paper do not generate nonzero reserved
values, and process reserved fields as though their values were zero.

A field value of TRUE shall always be interpreted as being equivalent to a numeric value of 1 (one), unless
otherwise indicated. A field value of FALSE shall always be interpreted as being equivalent to a numeric
value of 0 (zero), unless otherwise indicated.

3.8 Bit numbering and ordering

Data transfer sequences normally involve one or more cycles, where the number of bytes transmitted in each
cycle depends on the number of byte lanes within the interconnecting link. Data byte sequences are shown in
figures using the conventions illustrated by Figure 3.2, which represents a link with four byte lanes. For
multi-byte objects, the first (left-most) data byte is the most significant, and the last (right-most) data byte is
the least significant.

Figures are drawn such that the counting order of data bytes is from left to right within each cycle, and from
top to bottom between cycles. For consistency, bits and bytes are numbered in the same fashion.

NOTE—The transmission ordering of data bits and data bytes is not necessarily the same as their counting order; the
translation between the counting order and the transmission order is specified by the appropriate reconciliation sublayer.

Table 3.5—wrap field values

Value Name Description

0 STANDARD Standard processing selected

1 SPECIAL Special processing selected

2,3 — Reserved

Figure 3.2—Bit numbering and ordering

data[n+0] data[n+1] data[n+2] data[n+3]

data[n+4] data[n+5] data[n+6] data[n+7]

bit
0

bit
31

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
22 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.9 Byte sequential formats

Figure 3.3 provides an illustrative example of the conventions to be used for drawing frame formats and
other byte sequential representations. These representations are drawn as fields (of arbitrary size) ordered
along a vertical axis, with numbers along the left sides of the fields indicating the field sizes in bytes. Fields
are drawn contiguously such that the transmission order across fields is from top to bottom. The example
shows that field1, field2, and field3 are 1-, 1- and 6-byte fields, respectively, transmitted in order starting
with the field1 field first. As illustrated on the right hand side of Figure 3.3, a multi-byte field represents a
sequence of ordered bytes, where the first through last bytes correspond to the most significant through least
significant portions of the multi-byte field, and the MSB of each byte is drawn to be on the left hand side.

NOTE—Only the left-hand diagram in Figure 3.3 is required for representation of byte-sequential formats. The
right-hand diagram is provided in this description for explanatory purposes only, for illustrating how a multi-byte field
within a byte sequential representation is expected to be ordered. The tag “Transmission order” and the associated
arrows are not required to be replicated in the figures.

3.10 Ordering of multibyte fields

In many cases, bit fields within byte or multibyte objects are expanded in a horizontal fashion, as illustrated
in the right side of Figure 3.4. The fields within these objects are illustrated as follows: left-to-right is the
byte transmission order; the left-through-right bits are the most significant through least significant bits
respectively.

Figure 3.3—Byte sequential field format illustrations

Figure 3.4—Multibyte field illustrations

field1
field2

field3

field4

field5

field6

field7

field8

byte[5]

1
1

6

6

2

2

n

4

byte[3]

byte[4]

byte[1]

byte[2]

byte[0]

Transmission
order

byte[4] byte[5]

byte[0] byte[1] byte[2] byte[3]

byte[0]

byte[1]

byte[2]

byte[3]

byte[4]

byte[5] twoByteField

MSB LSB

fourByteField

LSBMSB

byte representation

field representation

byte representation

field representation

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 23

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The first fourByteField can be illustrated as a single entity or a 4-byte multibyte entity. Similarly, the second
twoByteField can be illustrated as a single entity or a 2-byte multibyte entity.

To minimize potential for confusion, four equivalent methods for illustrating frame contents are illustrated in
Figure 3.5. Binary, hex, and decimal values are always shown with a left-to-right significance order,
regardless of their bit-transmission order.

3.11 MAC address formats

The format of MAC address fields within frames is illustrated in Figure 3.6.

3.11.1 oui: A 24-bit organizationally unique identifier (OUI) field supplied by the IEEE/RAC for the
purpose of identifying the organization supplying the (unique within the organization, for this specific
context) 24-bit dependentID. (For clarity, the locallyAdministered and groupAddress bits are illustrated by
the shaded bit locations.)

NOTE—The following text was taken from 802.17, where it was found to have benefits:
The details should, however, be revised to illustrate fields within an AVB frame header serviceDataUnit.

Figure 3.5—Illustration of fairness-frame structure

Figure 3.6—MAC address format

a) Sequential-byte format

1 subType

6 sa

2 protocolType

1 hopcount

6 da

(…)
b) Field names

subType

da_lo

sa_lo

protocolType hopCount

da_hi

sa_hi

c) Hexadecimal values

0116

45 6716

48 76 54 3216

FA CE16 0316

AC DE 48 2316

AC DE16

d) Binary values

0000 00012

0100 0101 0110 01112

0100 1000 0111 0110 0101 0100 0011 00102

1111 1010 1100 11102 0000 00112

1010 1100 1101 1110 0100 1000 0010 00112

1010 1100 1101 11102

MSB LSB

oui

6

dependentID

gl

Legend:
l : locallyAdministered
 (called the ‘U/L address bit’ or ‘universally or locally administered bit in IEEE 802)

g : groupAddress
(called the ‘I/G address bit’ or ‘individual/group bit’ in IEEE 802)

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
24 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.11.2 dependentID: An 24-bit field supplied by the oui-specified organization. The concatenation of the oui
and dependentID provide a unique (within this context) identifier.

To reduce the likelihood of error, the mapping of OUI values to the oui/dependentID fields are illustrated in
Figure 3.7. For the purposes of illustration, specific OUI and dependentID example values have been
assumed. The two shaded bits correspond to the locallyAdministered and groupAddress bit positions illus-
trated in Figure 3.6.

3.12 Informative notes

Informative notes are used in this working paper to provide guidance to implementers and also to supply
useful background material. Such notes never contain normative information, and implementers are not
required to adhere to any of their provisions. An example of such a note follows.

NOTE—This is an example of an informative note.

3.13 Conventions for C code used in state machines

Many of the state machines contained in this working paper utilize C code functions, operators, expressions
and structures for the description of their functionality. Conventions for such C code can be found in
Annex E.

Figure 3.7—48-bit MAC address format

MSB LSB
AC166 2316 4516 6716

OUI value: AC-DE-48
Organization assigned extension: 23-45-67

DE16 4816

byte transmission order

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4. Abbreviations and acronyms

This working paper contains the following abbreviations and acronyms:

AP access point

AV audio/video

AVB audio/video bridging

AVB network audio/video bridged network

BER bit error ratio

BMC best master clock

BMCA best master clock algorithm

CRC cyclic redundancy check

FIFO first in first out

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ISO International Organization for Standardization

ITU International Telecommunication Union

LAN local area network

LSB least significant bit

MAC medium access control

MAN metropolitan area network

MSB most significant bit

OSI open systems interconnect

PDU protocol data unit

PHY physical layer

PLL phase-locked loop

RFC request for comment

RPR resilient packet ring

VOIP voice over internet protocol

NOTE—This clause should be skipped on the first reading (continue with Clause 5).
This text has been lifted from the P802.17 draft standard, which has a relative comprehensive list.
Abbreviations/acronyms are expected to be added, revised, and/or deleted as this working paper evolves.

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
26 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5. Architecture overview

5.1 Application scenarios

5.1.1 Garage jam session

As an illustrative example, consider AVB usage for a garage jam session, as illustrated in Figure 5.1. The
audio inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges,
mixed within an audio console, return through two bridges, and return to the ear through headphones.

Using Ethernet within such systems has multiple challenges: low-latency and tight time-synchronization.
Tight time synchronization is necessary to avoid cycle slips when passing through multiple processing
components and (ultimately) to avoid overrun/underrun at the the final D/A converter’s FIFO. The challenge
of low-latency transfers is being addressed in other forums and is outside the scope of this draft.

Figure 5.1—Garage jam session

t0 = 1 ms
A/D conversion

delay

t7 = 2 ms
processing

delay

t12 = 6 ms
(air delay for
6’ distance)

t3 = 1 ms
processing

delay

t11 = 1 ms
D/A conversion

delay

t10 = T

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
28 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.1.2 Looping topologies

Bridged Ethernet networks currrently have no loops, but bridging extensions are contemplating looping
topologies. To ensure longevity of this standard, the time-synchronization protocols are tolerant of looping
topologies that could occur (for example) if the dotted-line link were to be connected in Figure 5.2.

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

5.2 Design methodology

5.2.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.
b) All clocks are accurate, typically to within '100PPM.
c) Details of the best time-synchronization protocols are physical-layer dependent.

5.2.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:
a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.
b) Inexpensive. For consumer AVB devices, the costs of synchronized timers are minimal.

(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)
c) Scalable. The protocol is independent of the networking technology. In particular:

1) Cyclical physical topologies are supported.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

Figure 5.2—Possible looping topology

AVB
bridge

AVB
bridge

AVB
device

AVB
device

AVB
device

AVB
device

AVB
bridgeEthernet

bridge

Peer device is
not AVB capable

Ethernet
hub

device

AVB
device

AVB
device

Half-duplex link
can’t do AVBdevice

device

AVB “cloud”

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.2.3 Strategies

Strategies used to meet these objectives include the following:
a) Precision is achieved by calibrating and adjusting timeOfDay clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:
1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Feed-forward. PLLs are unnecessary within bridges, but possible within applications.
3) Frequent. Frequent (nominally 100 Hz) interchanges reduces needs for overly precise clocks.

5.3 Time-synchronization facilities

In concept, the clock-synchronization protocol starts with the selection of the reference-timer station, called
a grand-master station (oftentimes abbreviated as grand-master). Every AVB-capable station is grand-master
capable, but only one is selected to become the grand-master station within each network. To assist in the
grand-master selection, each station is associated with a distinct preference value; the grand-master is the
station with the “best” preference values. Thus, time-synchronization services involve two subservices, as
listed below and described in the following subclauses.

a) Selection. Looping topologies are isolated (from a time-synchronizatin perspective) into a spanning
tree. The root of the tree, which provides the time reference to others, is the grand master.

b) Distribution. Synchronized time is distributed through the the grand-master’s spanning tree.

5.3.1 Grand-master selection

5.3.1.1 Grand-master responsibilities

Clock synchronization involves streaming of timing information from a grand-master timer to one or more
slave timers. Although primarily intended for non-cyclical physical topologies (see Figure 5.3a), the
synchronization protocols also function correctly on cyclical physical topologies (see Figure 5.3b), by
activating only a non-cyclical subset of the physical topology.

Figure 5.3—Timing information flows

a) Non-cyclical grand-master topologies

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

a) Cyclical grand-master topologies

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
30 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.3.1.2 Grand-master behavior

As part of the grand-master selection process, stations forward the best of their observed preference values
to neighbor stations, allowing the overall best-preference value to be ultimately selected and known by all.
The station whose preference value matches the overall best-preference value ultimately becomes the
grand-master.

The grand-master station observes that its precedence is better than values received from its neighbors, as
illustrated in Figure 5.4a. A slave stations observes its precedence to be worse than one of its neighbors and
forwards the best-neighbor precedence value to adjacent stations, as illustrated in Figure 5.4b. To avoid
cyclical behaviors, a hopsCount value is associated with preference values and is incremented before the
best-precedence value is communicated to others.

5.3.1.3 Grand-master precedence

Grand-master precedence is based on the concatenation of multiple fields, as illustrated in Figure 5.5. The
port value is used within bridges, but is not transmitted between stations.

This format is similar to the format of the spanning-tree precedence value, but a wider uniqueID is provided
for compatibility with interconnects based on 64-bit station identifiers.

Figure 5.4—Grand-master precedence flows

Figure 5.5—Grand-master precedence

a) Grand-master station flows

MinimumValue

thisPrecedence hopsCount +=1

b) Clock-slave station flows

MinimumValue

thisPrecedence hopsCount +=1

MSB
uniqueID hops

LSB
portpHi pLovarianceidentifierstratum tech

gmSelection

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.3.2 Synchronized-time distribution

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations,
as illustrated in Figure 5.6a. A more detailed illustration shows pairs of synchronized clock-master and
clock-slave components, as illustrated in Figure 5.6b. The active clock agents are illustrated as
black-and-white components; the passive clock agents are illustrated as grey-and-white components.

Internal communications distribute synchronized time from clock-slave agents b1, c1, and e1 to the other
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. Within a clock-slave, precise time
synchronization involves adjustments of timer value and rate-of-change values.

Time synchronization yields distributed but closely-matched timeOfDay values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs,) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter
from the supplied timeOfDay values

Figure 5.6—Hierarchical flows

b0

b1

c0 c1 c2 c3

e0

e1

e2

S

S
e3

S

a) Clock synchronization flow

Legend:
grand-master clock slave
streaming data

G

G S

b2

b3

SS

S

S

b) Agents along the synchronization path

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b3 e3

e0

e1

e2

Legend:
grand master slave station
master agent slave agent
internal coupling clock-synch flow

b2

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
32 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.3.3 MAC service model

The MAC service model assumes the presence of one or more time-synchronized AVB ports communicating
with a higher-level MAC client, as illustrated in Figure 5.7. The receive portion of each port provides
grand-master precedence information, which assists in the grand-master selection process. The transmit
portion of each port provides the higher-level client with a local time and (in response) receives status
containing the grand-master precedence and the client’s synchronized version of the grand-master time. All
components are assumed to have access to a common free-running (not adjustable) local timer. There is not
necessarily a one-to-one correspondence between the primitives and formal procedures and the interfaces in
any particular implementation.

5.4 Client processing details

TBD.

Figure 5.7—AVB service interface model

MAC service
interface

MAC client

Port[0] Port[0]
rx tx rx tx

MA_CONTROL[0].indication

MA_CONTROL[1].indicationstatus

Common local-clock domain

MA_CONTROL[0].indication:

uniqueID hops portpHi pLovarianceidentifierstratum tech

grand-master precedence

super seconds fractiongrand-master time:

fractionlocal timer:

MA_CONTROL[1].indication:
fractionlocal timer:

super seconds fractiongrand-master time:

uniqueID hops portpHi pLovarianceidentifierstratum tech

grand-master precedence

indication
status

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 33

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.5 Key distinctions from IEEE Std 1588

Although based on the concepts of IEEE Std 1588, this draft is different in multiple ways:
a) All bridges are boundary clocks, since they compensate their received time by pass-through delays,

by setting the client time on received frames, then transmitting the current client time when frames
are transmitted. There are no transparent (in 1588 terminology) bridges.

b) The processing by the client is distinguished by the processing performed in the MAC, thus
isolating the client from that multiple (and sometimes strange) wireless and PON MACs protocols.

c) To simplify computations, time is uniformly represented as a simple 80-bit scaled signed integer.
d) For Ethernet, a higher update frequency of 100 Hz is assumed. This reduces timeouts for failed

grand masters, and worst-case times for clear the network of rogue packets, while also reducing
timer-value drifts between updates.

e) For Ethernet, only one frame type simplifies the protocols and reduces transient-recovery times.

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
34 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6. Medium access control (MAC) service and reference model

6.1 Overview

This clause provides an overview of the MAC sublayer and the reconciliation sublayer (see shaded portions
of Figure 6.1), specifies the services provided by the MAC sublayer, including the MAC control sublayer
and the MAC datapath sublayer, and provides a reference model for the MAC sublayer. Higher-layer clients
can include the logical link control (LLC) sublayer, bridge relay entity, or other users of ISO/IEC LAN inter-
national standard MAC services. The services are described in an abstract way and do not imply any
particular implementations or any exposed interfaces. There is not necessarily a one-to-one correspondence
between the primitives and formal procedures and the interfaces in any particular implementation.

6.2 Overview of MAC services

The services provided by the MAC sublayer are listed below. For each port, these services are invoked
periodically at modest processing rates (100Hz, for Ethernet MACs).

a) The receive port provides grand-master precedence and time, as well as local time, to the client.
b) The transmit port provides the client with a recent-past local time and (in response) the client

provides the grand-master precedence and time as status.

6.3 MAC services to the client layer

The services of a layer or sublayer are the set of capabilities that it offers to the next higher (sub)layer. The
services specified in this standard are described by abstract service primitives and parameters that charac-
terize each service. This definition of a service is independent of any particular implementation.

The following two service primitives are defined for the client interfaces, and shall be implemented.

— MA_CONTROL[0].indication
— MA_CONTROL[1].indication

Figure 6.1—AVB service and reference model relationship to the
ISO/IEC OSI reference model

MAC service
interface

PHY service
interface

Higher layers

Medium

Presentation

Application

Session

Transport

Network

 Data link

 Physical

MAC datapath

Logical link control (MAC client)

MAC control

Physical layer

TX controlRX control

OSI reference
model layers

AVB layers

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
36 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.3.1 MA_CONTROL[0].indication

6.3.1.1 Function

The MA_CONROL[0].indication primitive provides the client with an association of local time and the
grand-master time (as received from the closer-to grand-master station), as well as the grand-master
precedence.

6.3.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MA_CONTROL[0].indication
(

local_time,
gm_precedence,
gm_time

)

The parameters of the MA_CONROL[0].indication are described below.

local_time
Provides the value of a local time when the value of gm_time was sampled.

gm_precedence
Provides the recently observed grand-master prededence, or NULL if such as precedence has not
been received within a physical-layer dependent timeout interval. Fields within this component
include the following (more-significant fields are listed first):

pHi A 4-bit user-selectable overriding precedence.
stratum An 8-bit identifier that identifies the type of grand-master.
identifier An 8-bit identifier that identifies ….
variance A 16-bit value that identifies the grand-master clock quality.
pLo A 4-bit user-selectable tie-breaking precedence.
tech An 8-bit value that, when appended with the uniqueID, is globally unique.
uniqueID An 8-bit value that, when prepended with the tech, is globally unique.
hops An 8-bit value that counts visible repeaters from the grand master.
port An 8-bit value that identifies the port that received the gm_precedence value.

gm_time
Provides the value of the distributed grand-master time, compensated for intermediate delays.
Fields within this component include the following (more-significant fields are listed first):

super A signed 16-bit value representing 232 seconds.
seconds An unsigned 32-bit value representing seconds.
fraction An unsigned 32-bit value representing fractions-of-seconds.

6.3.1.3 When generated

The MA_CONROL[0].indication primitive is invoked by the MAC entity whenever new knowledge of time
or the grand-master precedence is generated.

6.3.1.4 Effect of receipt

The receipt of the MA_CONROL[0].indication primitive causes the client entity to adjust its image of
grand-master time and rate. Details are TBD.

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 37

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.3.2 MA_CONTROL[1].indication

6.3.2.1 Function

The MA_CONROL[1].indication primitive provides the client with a recent value of local time; the client
returns the associated grand-master time (as synchronized to the closer-to grand-master station), as well as
the grand-master precedence.

6.3.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MA_CONTROL[1].indication
(

local_time,
)

MA_CONTROL[1].status
(

gm_precedence,
gm_time

)

The parameters of the MA_CONROL[1].indication are described below.

local_time
Provides the value of a local time when the value of gm_time was sampled.

The returned values for the MA_CONROL[1].indication are described below.

gm_precedence
Provides the client’s recently observed best grand-master precedence. See xx for details.

gm_time
Provides the value of the distributed grand-master time, compensated for intermediate delays.
See xx for details.

6.3.2.3 When generated

The MA_CONROL[1].indication primitive is periodically invoked by the MAC entity whenever new
knowledge of time and/or the grand-master precedence is needed to update attached clock-slave neighbors.

6.3.2.4 Effect of receipt

The receipt of the MA_CONROL[0].indication primitive causes the client entity to returns the desired status
values.

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
38 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7. Ethernet duplex-cable time synchronization

7.1 Design methodology

7.1.1 Assumptions

Support of duplex-link Ethernet is based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Point-to-point transmit/receive duplex connections are provided.
b) Transmit/receive propagation delays within duplex cables are well matched.

7.1.2 Strategies

Strategies used to meet these objectives include the following:
a) Precision is achieved by calibrating and adjusting timeOfDay clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:
1) Symmetric. Clock-master/clock-slave computations are similar (only slave results are saved).
2) Periodic. Messages are sent periodically, rather than in timely response to other requests.
3) Frequent. Frequent (typically 1 kHz) interchanges reduces needs for precise clocks.

c) Balanced functionality.
1) Low-rate. Complex computations are infrequent and can be readily implemented in firmware.
2) High-rate. Frequent computations are simple and can be readily implemented in hardware.

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.2 Time-synchronization operation

7.2.1 Periodic packet transmissions

Time-sychronization involves periodic not-necessarily synchronized packet transmissions between adjacent
stations, as illustrated in Figure 7.1a. The transmitted frame contains the following information:

select—specifies grand-master precedence
global—an estimation of the grand-master time
local—a sampling of the station-local time
delta—derived parameters from the neighbor, returned in a following cycle.

Snapshots are taken when packets are transmitted (illustrated as txA and txB) and received (illustrated as rxA
and rxB), as illustrated in Figure 7.2b. The transmitted stopshot txA is placed into the next frame that is
transmitted, as packetA.local, along with grand-master time packetA.global sampled at this time. The
transmitted stopshot txB is similarly placed into the next frame that is transmitted, as packetB.local, along
with grand-master time packetB.global sampled at this time.

The receive snapshot is double buffered, in that the value of rxB0 is copied to rxB1 when the rxB0 snapshot
is taken. Similarly, the value of rxA0 is copied to rxA1 when the rxA0 snapshot is taken.

The computed value of deltaA is the difference between the received packetFromB.local value and the pre-
vious rxA snapshot, as specified by Equation 7.1. Similarly, deltaB (the value transmitted from stationB to
stationA) is specified by Equation 7.2.

deltaA = rxA1 - packetFromB.local; (7.1)
deltaB = rxB1 - packetFromA.local; (7.2)

The value of the intermediate span delay is readily derived from these values. At stationA and stationB,
these computations are specified by Equation 7.3 and Equation 7.4, respectively.

cableDelayComputedAtA = (deltaA + packetFromB.delta)/2; (7.3)
cableDelayComputedAtB = (packetFromA.delta + deltaB)/2; (7.4)

Figure 7.1—Timer snapshot locations

a) Basic time-sync messages

packB

rxB0

packA

rxA0

sendA

sendB

local
global

txB

txA

select

~10ms
~10ms

delta

stationA stationB

rxB1

rxA1

deltaB

deltaA

b) Relevant snap-shot storage

rxA0

rxB0

rxA0

rxA0

sendA

sendB

local
global

txB

txA

select

~10ms
~10ms

delta

stationA stationB

rxB1

rxA1

deltaB

deltaA

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
40 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.2.2 Clock-slave client-supplied information

The clock-slave client-supplied information involves transmission of information from the port to the client
(see Clause 6). For stationA, this information is listed below.

local_time The value of rxA1.
gm_time The sum of two components, packetFromB.global+deltaA, where:

packetFromB.global—the value received from the clock-master stationB.
deltaA—the most-recent computed value.

For stationB this information is listed below.

local_time The value of rxB1.
gm_time The value of two components, packetFromA.global+deltaB, where:

packetFromA.global—the value received from clock-master stationA.
deltaB—the most-recent computed value.

7.2.3 Timer snapshot locations

Mandatory jitter-error accuracies are sufficiently loose to allow transmit/receive snapshot circuits to be
located with the MAC, as illustrated in Figure 7.2a. Vendors may elect to further reduce timing jitter by
latching the receive/transmit times within the PHY, where the uncertain FIFO latencies can be best avoided.

Figure 7.2—Timer snapshot locations

a) Simple clockSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe

PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

b) Precise clockSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe
PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 41

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.2.4 Rate-difference effects

If the absence of rate adjustments, significant timeOfDay errors can accumulate between send-period
updates, as illustrated on the left side of Figure 7.3. The 2 (s deviation is due to the cumulative effect of
clock drift, over the 10 ms send-period interval, assuming clock-master and clock-slave crystal deviations of
!100 PPM and +100 PPM respectively.

While this regular sawtooth is illustrated as a highly regular (and thus perhaps easily filtered) function,
irregularities could be introduced by changes in the relative ordering of clock-master and clock-slave
transmissions, or transmission delays invoked by asynchronous frame transmissions. Tracking peaks/valleys
or filtering such irregular functions are thought unlikely to yield similar timeOfDay deviation reductions.

The differences in rates could easily be reduced to less than 1 PPM, assuming a 200 ms measurement
interval (based on a 100 ms slow-period interval) and a 100 ns arrival/departure sampling error. A clock-rate
adjustment at time 100 ms could thus reduce the clock-drift related errors to less than 5 ns. At this point, the
timer-offset measurement errors (not clock-drift induced errors) dominate the clock-synchronization error
contributions.

The preceding discussion illustrates the need for timer-rate (as well as timer-offset) adjustments. To avoid
PLL-chain whiplash type of effects, the rates are computed as follows:

a) Each clock-slave station computes the rate difference between its clock and its clock master.
b) Each clock-slave station adds its rate difference to the cumulative rate difference; that result is

passed to its attached clock-slave stations.

Detailed descriptions of these rate-adjustment behaviors are TBD.

7.2.5 Clock-synchronization intervals

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional messages can
cancel the cable-delay effects.

Clock synchronization involves the processing of periodic events. Multiple time periods are involved, as
listed in Table 7.1. The clock-period events trigger the update of free-running timer values; the period affects
the timer-synchronization accuracy and is therefore constrained to be small.

The send-period events trigger the interchange of timeSync frames between adjacent stations. While a
smaller period (1 ms or 100 (s) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

Figure 7.3—Rate-adjustment effects

timeOfDay
deviation

time

2 (s

5 ns

470 ms 480 ms 490 ms 500 ms 510 ms 520 ms 530 ms460 ms

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
42 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3 timeSync frame format

7.3.1 timeSync fields

Clock synchronization (timeSync) frames facilitate the synchronization of neighboring clock span-master
and clock span-slave stations. The frame, which is normally sent once each isochronous cycle, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in Figure 7.4. The
gray boxes represent physical layer encapsulation fields that are common across Ethernet frames.

7.3.1.1 da: A 48-bit (destination address) field that specifies the station(s) for which the frame is intended.
The da field contains either an individual or a group 48-bit MAC address (see 3.11), as specified in 9.2 of
IEEE Std 802-2001.

7.3.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field
contains an individual 48-bit MAC address (see 3.11), as specified in 9.2 of IEEE Std 802-2001.

7.3.1.3 protocolType: A 16-bit field contained within the payload that identifies the format and function of
the following fields.

Table 7.1—Clock-synchronization intervals

Name Time Description

clock-period < 20 ns Resolution of timer-register value updates

send-period 10 ms Time between sending of periodic timeSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences

Figure 7.4—timeSync frame format

6 da

6 sa

2 protocolType

4 fcs

8 uniqueID — Less-significant grand-master election precedence

— Cumulative offset times from the grand-master

10 timeOfDay — Incoming link’s frame transmssion time (1 cycle delayed)

4 deltaTime — Outgoing link’s frame propagation time

— Frame check sequence

— Destination MAC address

— Source MAC address

1 typeCount

— Distinguishes AVB frames from others

— Distinguishes timeSync from other AVB frames

— Cumulative rate differences from the grand-master4 totalRating

1 hopsCount — Hop count from the grand master

4 baseTime

— Cumulative offset times from the grand-master6 gmSelection

2 leapSeconds — Additional seconds are introduced as time passes

6 reserved — Reserved

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 43

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.1.4 typeCount: An 8-bit field that identifies the format and function of the following fields (see 7.3.2).

7.3.1.5 hopsCount: An 8-bit field that identifies the maximum number of hops between the talker and
associated listeners.

7.3.1.6 gmSelection: A 6-byte field that has specifies precedence in the grand-master selection protocols
(see 7.3.3).

7.3.1.7 uniqueID: A 64-bit field that uniquely identifies the contending grand clock master (see 7.3.4).

7.3.1.8 timeOfDay: An 80-bit field that specifies the time within the source station when the previous
timeSync frame was transmitted (see 7.3.5).

7.3.1.9 baseTime: A 32-bit field that specifies the fractions-off-second offset time within the source station
(see 7.3.6).

7.3.1.10 deltaTime: A 32-bit field that specifies the differences between timeSync receive and transmit
times, as measured in fractions-of-second on the opposing link (see 7.3.6).

7.3.1.11 totalRating: A 32-bit field that specifies a scaled version of the diffRate value. The diffRate value
transmitted by station n represents the rate difference between station n and the grand master.

7.3.1.12 leapSeconds: A 16-bit field that specifies the number of seconds that should be added to the
timeOfDay value, when converting between xx and yy values. (On IEEE-1588, this is called the UTCOffset
field.)

7.3.1.13 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

7.3.2 typeCount subfields

The 8-bit typeCount field provides a subtype identifier and a sequence number for detecting lost-frame
transmissions, as illustrated in Figure 7.5.

7.3.2.1 subCount: A 4-bit field that distinguishes the timeSync frame from other frames with the same
protocolType field.

7.3.2.2 syncCount: A 4-bit field that is incremented on each timeSync-frame transmission.

Figure 7.5—typeCount format

MSB LSB
subType syncCount

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
44 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.3 gmSelection subfields

The 48-bit gmSelection field provides precedence information of the current grand master, as illustrated in
Figure 7.6.

7.3.3.1 pHi: A 4-bit field that can be configured by the user and overrides the remaining
gmSelection-resident precedence fields.

7.3.3.2 stratum: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.

7.3.3.3 identifier: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.

7.3.3.4 variance: A 16-bit precedence-selection field defined by the like-named IEEE-1588 field.

7.3.3.5 pLo: A 4-bit field that can be configured by the user and overrides the remaining
gmSelection-resident precedence fields.

7.3.3.6 technology: An 8-bit field that identifies the format of the 8-byte uniqueID field.

7.3.4 uniqueID subfields

The 64-bit uniqueID field is a unique identifier. For stations that have a uniquely assigned 48-bit
macAddress, the 64-bit uniqueID field is derived from the 48-bit MAC address, as illustrated in Figure 7.7.

7.3.4.1 oui: A 24-bit field assigned by the IEEE/RAC (see xx).

7.3.4.2 extension: A 16-bit field assigned to encapsulated EUI-48 values.

7.3.4.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see xx).

Figure 7.6—gmSelection format

Figure 7.7—uniqueID format

pHi pLovarianceidentifierstratum technology

MSB LSBmacAddress

FFFE16

oui ouiDependent

oui ouiDependentextension

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.5 timeOfDay subfield formats

Time-of-day values within a frame are based on seconds and fractions-of-second values, consistent with
IETF specified NTP[B7] and SNTP[B8] protocols, as illustrated in Figure 7.8.

7.3.5.1 superSecs: A 16-bit field that extends the range of the seconds field.

7.3.5.2 seconds: A 32-bit field that specifies time in seconds.

7.3.5.3 fraction: A 32-bit field that specified time offset within the second, in units of 2-32 second.

The concatenation of thes fields specifies a 96-bit timeOfDay value, as specified by Equation 7.5.

time = superSecs*232 + seconds + (fraction / 232) (7.5)

7.3.6 Local time formats

The local-time values within a frame are based on a fractions-of-second value, as illustrated in Figure 7.9.
The 32-bit fraction field specifies the time offset within the second, in units of 2-32 second.

Figure 7.8—Complete seconds timer format

Figure 7.9—Complete seconds timer format

seconds fraction

32 bits

LSB
superSecs

32 bits16 bits

MSB

fraction

32 bits

LSBMSB

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 46

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 47

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annexes

Annex A

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.1

[B2] IEEE Std 802-2002, IEEE Standards for Local and Metropolitan Area Networks: Overview and
Architecture.

[B3] IEEE Std 801-2001, IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture.

[B4] IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Bridges.

[B5] IEEE Std 1394-1995, High performance serial bus.

[B6] IEEE Std 1588-2002, IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.

[B7] IETF RFC 1305: Network Time Protocol (Version 3) Specification, Implementation and Analysis,
David L. Mills, March 19922

[B8] IETF RFC 2030: Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI, D. Mills,
October 1996.

1IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://standards.ieee.org/).

2IETF publications are available via the World Wide Web at http://www.ietf.org.

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
48 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex B

(informative)

Bridging to IEEE Std 1394

To illustrate the sufficiency and viability of the AVB time-synchronization services, the transformation of
IEEE 1394 packets is illustrated.

B.1 Hybrid network topologies

B.1.1 Supported IEEE 1394 network topologies

This annex focuses on the use of AVB to bridge between IEEE 1394 domains, as illustrated in Figure B.1.
The boundary between domains is illustrated by a dotted line, which passes through a SerialBus adapter
station.

B.1.2 Unsupported IEEE 1394 network topologies

Another approach would be to use IEEE 1394 to bridge between IEEE 802.3 domains, as illustrated in
Figure B.2. While not explicitly prohibited, architectural features of such topologies are beyond the scope of
this working paper.

Figure B.1—IEEE 1394 leaf domains

Figure B.2—IEEE 802.3 leaf domains

IEEE 1394IEEE 1394 IEEE 802.3

IEEE 1394IEEE 802.3 IEEE 802.3

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 49

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

B.1.3 Time-of-day format conversions

The difference between AVB and IEEE 1394 time-of-day formats is expected to require conversions within
the AVB-to-1394 adapter. Although multiplies are involved in such conversions, multiplications by con-
stants are simpler than multiplications by variables. For example, a conversion between AVB and
IEEE 1394 involves no more than two 32-bit additions and one 16-bit addition, as illustrated in Figure B.3.

B.1.4 Grand-master precedence mappings

Compatible formats allow either an IEEE 1394 or IEEE 802.3 stations to become the network’s grand-mas-
ter station. While difference in format are present, each format can be readily mapped to the other, as illus-
trated in Figure B.4:

Figure B.3—Time-of-day format conversions

Figure B.4—Grand-master precedence mapping

seconds cycleOffsetcycleCount

seconds fraction

a
b = (a*125)>>7;

cycles fraction

c
d = (c*3)>>6;

b

d

Notes:
Two 32-bit additions for b:

b = ((a<<7) - (a<<2) + a) >> 7;
One 16-bit additions for d:

d = ((c<<2) + c) >> 6;

MSB LSB

macAddressHisp
MSB LSB

systemID pad

eui64

sp systemID

0

macAddressLo

macAddressHi pad macAddressLo

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
50 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex C

(informative)

Review of possible alternatives

C.1 Clock-synchronization alternatives

NOTE—This tables has not been reviewed for considerable time and is thus believed to be inaccurate.
However, the list is being maintained (until it can be updated) for its usefulness as talking points.

A comparison of the AVB and IEEE 1588 time-synchronization proposals is summarized in Table C.1.

Row 1: The size of a timeSync frame should be no larger than an Ethernet MTU, to minimize overhead.
AVB-SG: The size of a timeSync frame is an Ethernet MTU.
1588: The size of a timeSync frame is (to be provided).

Row 2: Cascaded phase-lock loops (PLLs) can yield undesirable whiplash responses to transients.
AVB-SG: There are no cascaded phase-lock loops.
1588: There are multiple initialization phases (to be provided).

Table C.1Protocol comparison

Properties

R
ow

Descriptinos

state AVB-SG 1588

timeSync MTU <= Ethernet MTU 1 yes

No cascaded PLL whiplash 2 yes

Number of frame types 3 1 > 1

Phaseless initialization sequencing 4 yes no

Topology 5 duplex links general

Grand-master precedence parameters 6 spanning-tree like special

Rogue-frame settling time, per hop 7 10 ms 1 s

Arithmetic complexity numbers 8 64-bit binary 2 x 32-bit binary

negatives 9 2’s complement signed

Master transfer discontinuities rate 10 gradual change

offset limitations 11 duplex-cable match
sampling error

Firmware friendly no delay constraints 12 yes

n-1 cycle sampling 13 yes

Time-of-day value precision offset resolution 14 233 ps

overflow interval 15 136 years

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 51

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 3: There number of frame types should be small, to reduce decoding and processing complexities.
AVB-SG: Only one form of timeSync frame is used.
1588: Multiple forms of timeSync frames are used (to be provided).

Row 4: Multiple initialization phases adds complexity, since miss-synchronized phases must be managed.
AVB-SG: There are no distinct initialization phases.
1588: There are multiple initialization phases (to be provided).

Row 5: Arbitrary interconnect topologies should be supported.
AVB-SG: Topologies are constrained to point-to-point full-duplex cabling.
1588: Supported topologies include broadcast interconnects.

Row 6: Grand-master selection precedence should be software configurable, like spanning-tree parameters.
AVB-SG: Grand-master selection parameters are based on spanning-tree parameter formats.
1588: Grand-master selection parameters are (to be provided).

Row 7: The lifetime of rogue frames should be minimized, to avoid long initialization sequences.
AVB-SG: Rogue frame lifetimes are limited by the 10 ms per-hop update latencies.
1588: Rogue frame lifetimes are limited by (to be provided).

Row 8: The time-of-day formats should be convenient for hardware/firmware processing.
AVB-SG: The time-of-day format is a 64-bit binary number.
1588: The time-of-day format is a (to be provided).

Row 9: The time-of-day negative-number formats should be convenient for hardware/firmware processing.
AVB-SG: The time-of-day format is a 2’s complement binary number.
1588: The time-of-day format is a (to be provided).

Row 10: The rate discontinuities caused by grand-master selection changes should be minimal.
AVB-SG: Smooth rate-change transitions with a 2.5 second time constant is provided.
1588: (To be provided).

Row 11: The time-of-day discontinuities caused by grand-master selection changes should be minimal.
AVB-SG: Maximum time-of-day errors are limited by cable-length asymmetry and time-snapshot

errors.
1588: (To be provided).

Row 12: Firmware friendly designs should not rely on fast response-time processing.
AVB-SG: Response processing time have no significant effect on time-synchronization accuracies.
1588: (To be provided).

Row 13: Firmware friendly designs should not rely on immediate or precomputed snapshot times.
AVB-SG: Snapshot times are never used within the current cycle, but saved for next-cycle transmission.
1588: (To be provided).

Row 14: The fine-grained time-of-day resolution should be small, to faciliate accurate synchronization.
AVB-SG: The 64-bit time-of-day timer resolution is 233 ps, less than expected snapshot accuracies.
1588: (To be provided).

Row 15: The time-of-day extent should be suffiently large to avoid overflows within one’s lifetime.
AVB-SG: The 64-bit time-of-day timer overflows once every 136 years.
1588: (To be provided).

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
52 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex D

(informative)

Time-of-day format considerations

To better understand the rationale behind the ‘extended binary’ timer format, other formats are evaluated and
compared within this annex.

D.1 Possible time-of-day formats

D.1.1 Extended binary timer formats

The extended-binary timer format is used within this working paper and summarized herein. The 64-bit
timer value consist of two components: a 32-bit seconds and 32-bit fraction fields, as illustrated in
Figure 4.1.

The concatenation of 32-bit seconds and 32-bit fraction field specifies a 64-bit time value, as specified by
Equation D.1.

time = seconds + (fraction / 232) (D.1)
Where:

seconds is the most significant component of the time value (see Figure 4.1).
fraction is the less significant component of the time value (see Figure 4.1).

D.1.2 IEEE 1394 timer format

An alternate “1394 timer” format consists of secondCount, cycleCount, and cycleOffset fields, as illustrated
in Figure D.2. For such fields, the 12-bit cycleOffset field is updated at a 24.576MHz rate. The cycleOffset
field goes to zero after 3171 is reached, thus cycling at an 8kHz rate. The 13-bit cycleCount field is
incremented whenever cycleOffset goes to zero. The cycleCount field goes to zero after 7999 is reached, thus
restarting at a 1Hz rate. The remaining 7-bit secondCount field is incremented whenever cycleCount goes to
zero.

Figure 4.1—Complete seconds timer format

Figure D.2—IEEE 1394 timer format

seconds fraction

32 bits32 bits

MSB LSB

secondCount cycleOffsetcycleCount

13 bits 12 bits7 bits

MSB LSB

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 53

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.3 IEEE 1588 timer format

IEEE 1588 timer format consists of seconds and nanoseconds fields components, as illustrated in
Figure D.3. The nanoseconds field must be less than 109; a distinct sign bit indicates whether the time repre-
sents before or after the epoch duration.

D.1.4 EPON timer format

The IEEE 802.3 EPON timer format consists of a 32-bit scaled nanosecond value, as illustrated in
Figure D.4. This clock is logically incremented once each 16 ns interval.

D.1.5 Compact seconds timer format

An alternate “compact seconds” format could consist of 8-bit seconds and 24-bit fraction fields, as
illustrated in Figure D.5. This would provided similar resolutions to the IEEE 1394 timer format, without the
complexities associated with its binary coded decimal (BCD) like encoding.

D.1.6 Nanosecond timer format

An alternate “nanosecond” format could consists of 2-bit seconds and 30-bit nanoSeconds fields, as
illustrated in Figure D.6.

Figure D.3—IEEE 1588 timer format

Figure D.4—EPON timer format

Figure D.5—Compact seconds timer format

Figure D.6—Nanosecond timer format

seconds
MSB LSB

nanoSecondss

Legend: s: sign

nanoTicks
MSB LSB

seconds = nanoTicks/62500000

seconds fraction

24 bits8 bits

MSB LSB

sec nanoSeconds

30 bits2 bits

MSB LSB

Legend: sec: seconds

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
54 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2 Time format comparisons

To better understand the relative benefits of different time formats, the relevant properties are summarized in
Table D.1. Counter complexity is not included in the comparison, since the digital logic complexity is
comparable for all formats.

Column 1: A desirable property is the support of a wide range of second values, to eliminate the need for
defining/coordinating/implementing auxiliary seconds-synchronization protocols. The 136-year range of the
extended binary format is sufficient for this purpose.

Column 2: A desirable property is a fine-grained resolution, sufficient to measure each bit-transmission
times. The ‘extened binary’ provides the most precision; exceeds the resolution of expected cost-effective
time-capture circuits.

Column 3: Computation of time differences involves the subraction of two timer-snapshot values. Subtrac-
tion of ‘extended binary’ numbers involving standard 64-bit binary arithmetic; no special field-overlow
compensations are required. Only the less precise ‘compact seconds’ and nanoseconds formats are simpler,
due to the reduced 32-bit size of the timer values.

Column 4: Time values must oftentimes be compared to externally provided values (e.g., timers extracted
from GPS or stratum-clock sources). For these purposes, the availability of a seconds component is desired.
The ‘extended binary’ format provides a seconds component that can be easily extracted or such purposes.

Table D.1—Time format comparison

Name Subclause

R
an

ge

Pr
ec

isi
on

A
ri

th
m

et
ic

Se
co

nd
s

D
ef

in
ed

st
an

da
rd

s

Column — 1 2 3 4 5

extended binary TBD 136 years 232 ps Good Good RFC 1305 NTP,
RFC 2030 SNTPv4

IEEE 1394 D.1.2 128 s 30 ns Poor Good IEEE 1394

IEEE 1588 D.1.3 272 years 1 ns Fair Good IEEE 1588

IEEE 802 (EPON) D.1.4 69 s 16 ns Good Poor IEEE 802.3

compact seconds D.1.5 256 s 60 ns Best Good —

nanoseconds D.1.6 4 s 1 ns Best Poor —

JggDvj2005Apr16/D0.201
AVB BRIDGING January 24, 2007

Copyright © 2002, 2003 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change. 55

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Index

B
baseTime

See clockSync frame

C
clockSync frame

da ... 42
sa.. 42
protocolType .. 42
typeCount ... 43

subType... 43
syncCount ... 43

hopsCount .. 43
gmSelection.. 43

pHi .. 44
stratum .. 44
identifier ... 44
variance .. 44
pLo .. 44
technlology ... 44

uniqueID .. 43
oui ... 44
extension ... 44
ouiDependent.. 44

timeOfDay.. 43
superSecs .. 45
seconds ... 45
fraction ... 45

baseTime .. 43
deltaTime ... 43
totalRating ... 43
leapSeconds ... 43
fcs ... 43

D
da

See clockSync frame
deltaTime

See clockSync frame

E
extension

See clockSync frame
See uniqueIDsubfields

F
fcs

See clockSync frame
fraction

See clockSync frame
See timeOfDay subfields

G
gmSelection

See clockSync frame
gmSelection subfields

pHi ... 44
stratum... 44
identifier .. 44
variance ... 44
pLo... 44
technology ... 44

H
hopsCount

See clockSync frame

I
identifier

See clockSync frame
See gmSelectionsubfields

L
leapSeconds

See clockSync frame

O
oui

See clockSync frame
See uniqueIDsubfields

ouiDependent
See clockSync frame
See uniqueIDsubfields

P
pHi

See clockSync frame
See gmSelectionsubfields

pLo
See clockSync frame
See gmSelectionsubfields

protocolType
See clockSync frame

S
sa

See clockSync frame
seconds

See clockSync frame
See timeOfDay subfields

stratum
See gmSelectionsubfields

subCount
See clockSync frame

subType
See typeCountsubfields

JggDvj2005Apr16/D0.201
January 24, 2007 WHITE PAPER CONTRIBUTION TO

Copyright © 2002, 2003 IEEE. All rights reserved.
56 This is an unapproved IEEE Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

superSecs
See clockSync frame
See timeOfDaysubfields

syncCount
See clockSync frame
See typeCountsubfields

T
technology

See clockSync frame
See gmSelectionsubfields

timeOfDay
See clockSync frame

timeOfDay subfields
superSecs ... 45
seconds... 45
fraction... 45

totalRatinge
See clockSync frame

typeCount
See clockSync frame

typeCount subfields
subType .. 43
syncCount .. 43

U
uniqueID

See clockSync frame
uniqueID subfields

extension .. 44
oui .. 44
ouiDependent ... 44

V
variance

See clockSync frame
See gmSelectionsubfields

AVB BRIDGING JggDvj2005Apr16/D0.201
January 24, 2007

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 57

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

JggDvj2005Apr16/D0.201 WHITE PAPER CONTRIBUTION TO
January 24, 2007

Contribution from: dvj@alum.mit.edu.
58 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 59

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Annex E

(informative)

C-code illustrations

This Annex provides code examples that illustrate the behavior of AVB entities. The code in this Annex is purely for informational purposes, and should not be construed
as mandating any particular implementation. In the event of a conflict between the contents of this Annex and another normative portion of this standard, the other
normative portion shall take precedence.

The syntax used for the following code examples conforms to ANSI X3T9-1995.

NOTE—This annex is provided as a placeholder for illustrative C-code. Locating the C code in one loca-
tion (as opposed to distributed throughout the working paper) is intended to simplify its review, extraction,
compilation, and execution by critical reviewers.
Also, placing this code in a distinct Annex allows the code to be conveniently formatted in 132-character
landscape mode. This eliminates the need to truncate variable names and comments, so that the resulting
code can be better understood by the reader.

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// ***
// 1 1 1 1
// 1 2 3 4 5 6 7 8 9 0 1 2 3
//3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012

#include <assert.h>
#include <stdio.h>

// unsigned char uint8_t; // 1-byte unsigned integer
// unsigned short uint16_t; // 2-byte unsigned integer
// unsigned int uint32_t; // 4-byte unsigned integer
// unsigned long long uint64_t; // 8-byte unsigned integer

// signed char int8_t; // 1-byte signed integer
// signed short int16_t; // 2-byte signed integer
// signed int int32_t; // 4-byte signed integer
// signed long long int64_t; // 8-byte signed integer

#define OPTION_FAST 0 // 1 if precedence-change is very-quick
#define OPTION_BASE 0 // 1 if baseTimer hardware is provided
#define DIFF_SCALE ((double)4096 * ((uint64_t)1 << 31)) // Changes <200PPM to a 32-bit signed integer
#define EXTRACT_CORE(a, b) (((a) << 32) | ((b) >> 32)) // Extract seconds and fraction component
#define FULL_SCALE (0x7FFFFFFF) // Biggest 32-bit positive integer
#define LIMIT(a, b, c) MAX(MIN((a), (b)), (c)) // Force base/bounds constraints
#define MAX(a, b) ((a) < (b) ? (b) : (a)) // Maximum value definition
#define MIN(a, b) ((a) > (b) ? (b) : (a)) // Minimum value definition
#define MINIMUM_WIDE(a, b) (CompareWide((a), (b)) < 0 ? (a) : (b))
#define ONES64 ~((uint64_t)0) // 64-bit all-ones value
#define SCALE64 ((double)16 * (1 << 30) * (1 << 30)) // Floating-point equivalent of (1<<64)
#define BASE_PORT(siPtr) (siPtr->portPtr) // A pointer to the first station port
#define NEXT_PORT(piPtr) (piPtr->portPtr) // A pointer to the next station port
#define GRAND 2 // An indication of grand-master mode
#define SLAVE 1 // If not grand-master, slave mode

// The grand-master precedence check is based on concatenated fields, as follows:
//
// MSB LSB
// | hi | lo |
// +---+
// | 0000 systemTag eui64 00 hops portTag |
// +----16----’----16----’--------------------64-----------------------’--8--’--8--’----16---+
//
// If hops == ONES, this value is considered VOID and has the worse precedence
// Otherwise, the best precedence corresponds to the smallest of two tested values.
//

#if (CPU_TYPE == BIG)
typedef struct
{

uint64_t hi; // more-significant portion
uint64_t lo; // less-significant portion

} DoubleData;
typedef struct

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 61

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

{
unsigned fill16:16;
unsigned systemTag:16;
unsigned uniqueHi:32;
unsigned uniqueLo:32;
unsigned fill08:8;
unsigned hopsCount:8;
unsigned portLevel:4;
unsigned portNumber:12;

} DoubleInfo;
#else
typedef struct
{

uint64_t lo; // less-significant portion
uint64_t hi; // more-significant portion

} DoubleData;
typedef struct
{

unsigned portNumber:12;
unsigned portLevel:4;
unsigned hopsCount:8
unsigned fill08:8;
unsigned uniqueLo:32;
unsigned uniqueHi:32;
unsigned systemTag:16;
unsigned fill16:16;

} DoubleInfo;
#endif

typedef union
{

DoubleData data; // As 64-bit data values
DoubleInfo info; // As data fields

} PrecedenceInfo;

typedef struct _PortInfo
{

struct _PortInfo *portPtr; // Points to the next linked port
unsigned portLevel:4; // Relative priority number of ports
unsigned portNumber:12; // Port number
DoubleData portPrecedence; // Incoming frame parameters

uint8_t skipCount; // Number of 10ms intervals
uint32_t cableDelay; // The cable delay, from local master
uint32_t linkOffset; // The cable difference, from local master
uint64_t deltaTime; // For inclusion in transmitted frames

// Best if captured accurately by the PHY
uint64_t latchRxFlexTime; // Snapshot of flexTimer, on clockSync arrival,

// available for this clockSync reception.
uint64_t latchTxFlexTime; // Snapshot of flexTimer, on clockSync departure,

// available for next clockSync transmission

uint64_t savedRxFlexTime; // Previous latchRxFlexTime value
uint64_t savedRxFlexData; // Previous clockSync.lastFlexTime value

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 62

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// If OPTION_BASE is 1, baseTimer snapshots:
uint32_t latchRxBaseTime; // Captured clockSync base-time arrival
uint32_t latchTxBaseTime; // Captured clockSync base-time departure (delayed)

} PortInfo;

typedef struct
{ // Customized per-station components

PortInfo *portPtr; // Points to a linked-list of ports
double nominalFrequency; // Nominal clock frequency, in Hz
int8_t clockDeviation; // Deviation in parts-per-million
uint64_t eui64; // 64-bit extended unique identifier
unsigned systemLevel:4; // Relative priority number of ports
unsigned systemNumber:12; // Port number

unsigned selectCount; // Grand-master selection count

uint8_t skipCount; // Number of 10ms intervals
uint32_t myDiffRate; // The rate difference, from upstream neighbor
uint32_t diffRate; // The rate difference, from grand-master
uint32_t linkOffset; // The cable difference, from local master
uint64_t deltaTime; // For inclusion in transmitted frames

DoubleData thisPrecedence; // The precedence of this station
DoubleData bestPrecedence; // The best observed precedence
int16_t bestPort; // Selected clock-slave port

uint64_t savedRxFlexTime; // Previous latchRxFlexTime value
uint32_t savedRxBaseTime; // Previous latchRxBaseTime value

uint64_t timeOfDay; // Offset and rate-compensated timer value
uint64_t flexTimerHi; // Offset and rate adjustable 64-bit timer
uint64_t flexTimerLo; // Offset and rate adjustable 64-bit timer
uint64_t flexOffset; // Adjustable offset value for flexTimer
uint64_t flexRate; // 40-bit adjustable rate for flexTimer

uint64_t baseTimer; // Fixed-rate fixed-offset 64-bit timer
uint64_t baseRate; // SCALE64/clockFrequency, pre-initialized

uint32_t savedRxBaseTickTime; // Saved values of savedRxBaseTime
uint32_t savedRxBaseTickData; // Saved values of clockSync.lastBaseTime;

} StationInfo;

typedef struct // The clockSync frame, reserved-padded to
{ // the minimum 64-byte frame size.

uint32_t da_hi; // Ethernet’s 48-bit destination address
uint16_t da_lo; // "
uint16_t sa_hi; // Ethernet’s 48-bit source address
uint32_t sa_lo; // "
uint16_t protocolType; // Specifies format/meaning of following
uint8_t subType; // Refined format/meaning specification
uint8_t syncCount; // Sequence numbers for consistency checks
uint8_t hopsCount; // Hop counts from the grand master
uint8_t reserved; // A few reserved bytes, for 64-byte minimum
uint16_t systemTag; // Precedence for grand-master election

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 63

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

uint64_t uniqueID; // Identifier for grand-master election
uint64_t lastFlexTime; // flexTimer on last clockSync transmission
uint64_t deltaTime; // Time difference on opposing link
uint64_t offsetTime; // Cumulative grand-master offset differences
uint32_t diffRate; // Cumulate grand-master rate differences
uint32_t lastBaseTime; // baseTimer on last clockSync transmission
uint32_t fcs; // Frame check sequence

} ClockSyncFrame;

uint32_t BaseTimerChange(uint64_t, uint64_t, double);
void ClockSyncArrived(StationInfo *, PortInfo *);
void ClockSyncDeparted(StationInfo *, PortInfo *);
void ClockSyncReceive(StationInfo *, PortInfo *, ClockSyncFrame *, uint8_t);
void ClockSyncTransmit(StationInfo *, PortInfo *, ClockSyncFrame *);
int CompareWide(DoubleData, DoubleData);
DoubleData PrecedenceMerge(uint16_t, uint64_t, uint8_t, uint8_t, uint16_t);
void TimerTick(StationInfo *);
int UpdatePrecedence(StationInfo *, PortInfo *);

// Called with:
// stationInfoPtr -- the station information context
void
StationSetup(StationInfo *stationInfoPtr)
{

PortInfo *portPtr;
StationInfo *siPtr = stationInfoPtr;
uint16_t systemTag;
uint16_t count;

assert(siPtr != NULL);
siPtr->baseRate = SCALE64 / siPtr->nominalFrequency; // The nominal frequency
siPtr->systemLevel = 0X8; // Mid-range default with
systemTag = ((uint16_t)(siPtr->systemLevel) << 12) | siPtr->systemNumber; // systemNumber extension
siPtr->thisPrecedence = // This station precedence
PrecedenceMerge(systemTag, siPtr->eui64, 0, 0, 0); // has zero-valued hopsCount

count = 0;
for (portPtr = BASE_PORT(siPtr); portPtr != NULL; portPtr = NEXT_PORT(portPtr)) { // Per-port initialization

portPtr->portLevel = 0X8; // Mid-range default with
portPtr->portNumber = count; // port-number extension
count += 1;

}
}

// Called with:
// stationInfoPtr -- the station information context
// portInfoPtr -- the port information context
// clockSyncPtr -- the contents of a clockSync frame
void
ClockSyncReceive(StationInfo *stationInfoPtr, PortInfo *portInfoPtr, ClockSyncFrame *clockSyncPtr, uint8_t rateAdjust)
{

PortInfo *piPtr = portInfoPtr, *portPtr;
PrecedenceInfo precedence;
StationInfo *siPtr = stationInfoPtr;
ClockSyncFrame *csPtr = clockSyncPtr;

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

uint32_t measuredDelta, receivedDelta, diffRate;
uint64_t rxDelta, txDelta, clockDelta, cableDelay;
double tempRate;
int8_t grand, slave;

assert(siPtr != NULL && piPtr != NULL);
if (csPtr != NULL && csPtr->hopsCount != 0XFF) // Compute the precedence,

piPtr->portPrecedence = PrecedenceMerge(csPtr->systemTag, // in the absence of timeouts
csPtr->uniqueID, csPtr->hopsCount, piPtr->portLevel, piPtr->portNumber);

else // Compute the precedence,
piPtr->portPrecedence.hi = piPtr->portPrecedence.lo = ~((uint64_t)0); // in the presence of timeouts

if (OPTION_FAST && UpdatePrecedence(siPtr, piPtr)) {
for (portPtr = BASE_PORT(siPtr); portPtr != NULL; portPtr = NEXT_PORT(portPtr))

siPtr->bestPrecedence = MINIMUM_WIDE(piPtr->portPrecedence, siPtr->bestPrecedence);
siPtr->selectCount += 1;

}
if (csPtr == NULL)

return;

rxDelta = piPtr->savedRxFlexTime - csPtr->lastFlexTime; // Measured receive-link delay
txDelta = csPtr->deltaTime; // Reported transmit-link delay
clockDelta = (txDelta - rxDelta)/2; // Local timer differences
cableDelay = (txDelta + rxDelta)/2; // Cable transmission delay

precedence.data = siPtr->bestPrecedence;
grand = (precedence.info.hopsCount == 0) ? GRAND : 0; // Grand-master properties
slave = (precedence.info.portNumber == piPtr->portNumber) ? SLAVE : 0; // Slave port identification
switch(grand | slave) {
case GRAND: // Grand-master properties
case GRAND | SLAVE: // override slave-port ID

siPtr->diffRate = 0; // Grand-master reference
siPtr->flexRate = siPtr->baseRate; // runs at the base rate
break;

case SLAVE:
if (rateAdjust) { // Low-rate adjustments

measuredDelta = (siPtr->savedRxBaseTime - siPtr->savedRxBaseTickTime); // Clock-slave difference
receivedDelta = (csPtr->lastBaseTime - siPtr->savedRxBaseTickData); // Clock-master difference
siPtr->savedRxBaseTickTime = siPtr->savedRxBaseTime; // Previous saved value
siPtr->savedRxBaseTickData = csPtr->lastBaseTime; // Previous saved value
tempRate = DIFF_SCALE * ((double)(receivedDelta - measuredDelta)/receivedDelta); // Local rate difference
siPtr->myDiffRate = LIMIT(tempRate, FULL_SCALE, -FULL_SCALE); // Rate difference limits

}
siPtr->diffRate = diffRate =
LIMIT(siPtr->myDiffRate + csPtr->diffRate, FULL_SCALE, -FULL_SCALE); // Rate-range limitation

siPtr->flexOffset = csPtr->offsetTime + clockDelta + siPtr->linkOffset; // Offset compensation
siPtr->flexRate = siPtr->baseRate + siPtr->baseRate * (diffRate / DIFF_SCALE); // Rate compensation
if (OPTION_BASE)

siPtr->savedRxBaseTime = piPtr->latchRxBaseTime;
else

siPtr->savedRxBaseTime += // Receiver’s baseTimer snapshot
BaseTimerChange(siPtr->savedRxFlexTime, piPtr->latchRxFlexTime, diffRate);

break;
default:

break;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 65

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

}
piPtr->cableDelay = cableDelay; // Local cable-delay knowledge
piPtr->savedRxFlexTime = piPtr->latchRxFlexTime; // Saved reference time
piPtr->deltaTime = rxDelta; // Saved for retransmission

}

// Called with:
// stationInfoPtr -- the station information context
// portInfoPtr -- the port information context
int
UpdatePrecedence(StationInfo *stationInfoPtr, PortInfo *portInfoPtr)
{

PortInfo *piPtr = portInfoPtr;
DoubleData pastPrecedence;
PrecedenceInfo precedence;
StationInfo *siPtr = stationInfoPtr;

// Set grand-master precedence
assert(siPtr != NULL && piPtr != NULL);
precedence.data = pastPrecedence = siPtr->bestPrecedence; // Compare precedence values
if (piPtr->portNumber == precedence.info.portNumber) // If this is the best port,

siPtr->bestPrecedence = MINIMUM_WIDE(piPtr->portPrecedence, siPtr->thisPrecedence); // update baseline precedence
else // If this is not the best port,

siPtr->bestPrecedence = MINIMUM_WIDE(piPtr->portPrecedence, siPtr->bestPrecedence); // update overall precedence
return(CompareWide(siPtr->bestPrecedence, pastPrecedence) != 0); // A precedence-change result

}

// Called with:
// stationInfoPtr -- the station information context
// portInfoPtr -- the port information context
// clockSyncPtr -- the contents of a clockSync frame
void
ClockSyncTransmit(StationInfo *stationInfoPtr, PortInfo *portInfoPtr, ClockSyncFrame *clockSyncPtr)
{

ClockSyncFrame *csPtr = clockSyncPtr;
PortInfo *piPtr = portInfoPtr;
PrecedenceInfo precedence;
StationInfo *siPtr = stationInfoPtr;

assert(siPtr != NULL && piPtr != NULL && csPtr != NULL);
if (UpdatePrecedence(siPtr, piPtr)) // If precedence has changed,

siPtr->selectCount += 1; // start fast transmissions

// An absent baseTimer is emulated by properly scaling time differences,
// measured from the last recorded received-clockSync event.
// - baseTime value was computed
// - a different normDiffRate value has taken effect
if (!OPTION_BASE)

piPtr->latchTxBaseTime = siPtr->savedRxBaseTime + // Derived from latchTxFlexRate
BaseTimerChange(siPtr->savedRxFlexTime, piPtr->latchTxFlexTime, siPtr->diffRate);

precedence.data = siPtr->bestPrecedence;
csPtr->hopsCount = precedence.info.hopsCount; // Increment hop-count value
csPtr->systemTag = precedence.info.systemTag; // Supply systemTag values
csPtr->uniqueID = ((uint64_t)(precedence.info.uniqueHi) << 32) | precedence.info.uniqueLo; // Unique number tie-breaker

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 66

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

csPtr->lastFlexTime = piPtr->latchTxFlexTime; // Send last timer value
csPtr->deltaTime = piPtr->deltaTime; // Send received-link delay
csPtr->lastBaseTime = piPtr->latchTxBaseTime; // Send last baseTimer value
csPtr->offsetTime = siPtr->flexOffset; // This station’s cumulative offset
csPtr->diffRate = siPtr->diffRate; // Send current diffRate value

}

// Called when a clockSync frame is received, to latch timer values.
// Latches timers are available when ClockSyncReceive() is called.
//
// Called with:
// stationInfoPtr -- the station information context
// portInfoPtr -- the port information context
void
ClockSyncArrived(StationInfo *stationInfoPtr, PortInfo *portInfoPtr)
{

PortInfo *piPtr = portInfoPtr;
StationInfo *siPtr = stationInfoPtr;

assert(siPtr != NULL);
piPtr->latchRxFlexTime = EXTRACT_CORE(siPtr->flexTimerHi, siPtr->flexTimerLo); // Latch seconds:fraction fields
if (OPTION_BASE) // If a baseTimer is present,

piPtr->latchRxBaseTime = siPtr->baseTimer >> 32; // latch its fraction field
}

// Called when a clockSync frame is transmitted, to latch timer values.
// Latches timers are available for the next ClockSyncTransmit() call.
//
// Called with:
// stationInfoPtr -- the station information context
// portInfoPtr -- the port information context
void
ClockSyncDeparted(StationInfo *stationInfoPtr, PortInfo *portInfoPtr)
{

PortInfo *piPtr = portInfoPtr;
StationInfo *siPtr = stationInfoPtr;

assert(siPtr != NULL);
piPtr->latchTxFlexTime = EXTRACT_CORE(siPtr->flexTimerHi, siPtr->flexTimerLo); // Latch seconds:fraction fields
if (OPTION_BASE) // If a baseTimer is present,

piPtr->latchTxBaseTime = siPtr->baseTimer >> 32; // latch its fraction field
}

// Called at a high clock rate (less than 20 ns) to update flexTimer and baseTimer (if present).
// This routine is intended to illustrate the computations involved in updating hardware timers;
// this code is _not_ expected to be incorporated into firmware.
//
// +---+
// 0000 0000 0000 0000(hex) | fraction subfraction | flexRate
// | +---------32---------.---------32---------+
// | |
// ____________________v____________________ ____________________v____________________
// ’---’---’
// (flexAdd:128)
// ---

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 67

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// ^ |
// | v
// +---+
// | superSeconds seconds fraction subfraction | flexTimer
// +---------32---------’---------32---------’---------32---------’---------32---------+
// _______________________________________/
// |
// v
// ---
// (offsetAdd:64)-->timeOfDay
// ---
// ^
// |
// +---+
// | seconds fraction | flexOffset
// +----------32--------’---------32---------+
//
//
// +---+
// | fraction subfraction | baseRate
// +---------32---------.---------32---------+
// |
// v
// ---
// (baseAdd:64)
// ---
// ^ |
// | v
// +---+
// | fraction subfraction | baseTimer
// +---------32---------’---------32---------+
//
//
// Called with:
// stationInfoPtr -- the station information context
void
TimerTick(StationInfo *stationInfoPtr)
{

StationInfo *siPtr = stationInfoPtr;
int64_t pastTimerLo;

assert(siPtr != NULL);
pastTimerLo = siPtr->flexTimerLo; // Saved to detect overflows
siPtr->flexTimerLo += siPtr->flexRate; // Addition of the subfractions
siPtr->flexTimerHi += (pastTimerLo > siPtr->flexTimerLo) ? 1 : 0; // Propagate carry into seconds
siPtr->timeOfDay = EXTRACT_CORE(siPtr->flexTimerHi, siPtr->flexTimerLo) + siPtr->flexOffset; // Compensate for offset drifts
if (OPTION_BASE)

siPtr->baseTimer += siPtr->baseRate;
}

// Called with:
// stationInfoPtr -- the station information context
// currentTime -- the current flexTimer value
// diffRate -- the scaled rate difference
uint32_t

JggDvj2005Apr16/D0.201, January 24, 2007 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 68

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

BaseTimerChange(uint64_t lastTime, uint64_t nextTime, double diffRate)
{

uint64_t delta;

delta = nextTime - lastTime; // Compute lapsed time
delta -= delta * (diffRate / DIFF_SCALE); // Compensate by rate difference
return(delta); // Return incremenal change

}

// Merge multiple fields into an 128-bit integer, for comparisons
// Called with:
// systemTag -- the 16-bit most-significant precedence subfield
// uniqueID -- the 64-bit unique identifier (EUI-64)
// hopsCount -- the hop-count distance from the grand master
// portTag -- the tag associated with the port
DoubleData
PrecedenceMerge(uint16_t systemTag, uint64_t uniqueID, uint8_t hopsCount, uint8_t portLevel, uint16_t portNumber)
{

PrecedenceInfo result;

result.info.fill16 = 0;
result.info.systemTag = systemTag;
result.info.uniqueHi = (uniqueID >> 32);
result.info.uniqueLo = uniqueID;
result.info.fill08 = 0;
result.info.hopsCount = hopsCount;
result.info.portLevel = portLevel;
result.info.portNumber = portNumber;
return(result.data);

}

// Performs a comparison of 128-bit preceision unsigned values
// Called with:
// a -- the first of two 128-bit values
// b -- the final of two 128-bit values
int
CompareWide(DoubleData a, DoubleData b)
{

if (a.hi != b.hi)
return(a.hi > b.hi ? 1 : -1);

if (a.lo != b.lo)
return(b.lo > b.lo ? 1 : -1);

return(0);
}

