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5. Architecture overview

5.1 Application scenarios

5.1.1 Garage jam session

As an illustrative example, consider AVB usage for a garage jam session, as illustrated in Figure 5.1. The
audio inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges,
mixed within an audio console, return through two bridges, and return to the ear through headphones.

Using Ethernet within such systems has multiple challenges: low-latency and tight time-synchronization.
Tight time synchronization is necessary to avoid cycle slips when passing through multiple processing
components and (ultimately) to avoid under-run/over-run at the final D/A converter’s FIFO. The challenge
of low-latency transfers is being addressed in other forums and is outside the scope of this draft.

Figure 5.1—Garage jam session
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5.1.2 Looping topologies

Bridged Ethernet networks currently have no loops, but bridging extensions are contemplating looping
topologies. To ensure longevity of this standard, the time-synchronization protocols are tolerant of looping
topologies that could occur (for example) if the dotted-line link were to be connected in Figure 5.2.

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

5.2 Design methodology

5.2.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.

b) All clocks are accurate, typically to within ±100PPM.

c) Details of the best time-synchronization protocols are physical-layer dependent.

5.2.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.

b) Inexpensive. For consumer AVB devices, the costs of synchronized timers are minimal.
(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol is independent of the networking technology. In particular:

1) Cyclical physical topologies are supported.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

Figure 5.2—Possible looping topology
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5.2.3 Strategies

Strategies used to meet these objectives include the following:

a) Precision is achieved by calibrating and adjusting grandTime clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:

1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Feed-forward. PLLs are unnecessary within bridges, but possible within applications.
3) Frequent. Frequent (nominally 100 Hz) interchanges reduces needs for overly precise clocks.

5.3 Grand-master selection

5.3.1 Grand-master overview

Clock synchronization involves streaming of timing information from a grand-master timer to one or more
slave timers. Although primarily intended for non-cyclical physical topologies (see Figure 5.3a), the
synchronization protocols also function correctly on cyclical physical topologies (see Figure 5.3b), by
activating only a non-cyclical subset of the physical topology.

In concept, the clock-synchronization protocol starts with the selection of the reference-timer station, called
a grand-master station (oftentimes abbreviated as grand-master). Every AVB-capable station is grand-master
capable, but only one is selected to become the grand-master station within each network. To assist in the
grand-master selection, each station is associated with a distinct preference value; the grand-master is the
station with the “best” preference values. Thus, time-synchronization services involve two subservices, as
listed below and described in the following subclauses.

a) Selection. Looping topologies are isolated (from a time-synchronization perspective) into a
spanning tree. The root of the tree, which provides the time reference to others, is the grand master.

b) Distribution. Synchronized time is distributed through the grand-master’s spanning tree.

5.3.2 Grand-master selection

As part of the grand-master selection process, stations forward the best of their observed preference values
to neighbor stations, allowing the overall best-preference value to be ultimately selected and known by all.

Figure 5.3—Timing information flows
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The station whose preference value matches the overall best-preference value ultimately becomes the
grand-master.

The grand-master station observes that its precedence is better than values received from its neighbors, as
illustrated in Figure 5.4a. A slave stations observes its precedence to be worse than one of its neighbors and
forwards the best-neighbor precedence value to adjacent stations, as illustrated in Figure 5.4b. To avoid
cyclical behaviors, a hopCount value is associated with preference values and is incremented before the
best-precedence value is communicated to others.

When stabilized, the value of n equals one and the hopCount value reflects the distance between this station
and its grand master, in units of hops-between-bridges. Other values are used to quickly stabilize systems
with rogue frames, as summarized in Equation 5.1.

#define HOPS 255 (5.1)
n = (frame.hopCount > hopCount) ? (HOPS - frame.hopCount) / 2 : 1;

NOTE—A rogue frame circulates at a high precedence, in a looping manner, where the source stations is no longer
present (or no longer active) and therefore cannot remove the circulating frame. The super-linear increase in n is
intended to quickly scrub rogue frames, when the circulation loop consists of less than HOPS stations.

5.3.3 Grand-master preference

Grand-master preference is based on the concatenation of multiple fields, as illustrated in Figure 5.5. The
port value is used within bridges, but is not transmitted between stations.

This format is similar to the format of the spanning-tree precedence value, but a wider clockID is provided
for compatibility with interconnects based on 64-bit station identifiers.

Figure 5.4—Grand-master precedence flows

Figure 5.5—Grand-master selector
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5.4 Synchronized-time distribution

5.4.1 Hierarchical grand masters

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations,
as illustrated in Figure 5.6a. A more detailed illustration shows pairs of synchronized clock-master and
clock-slave components, as illustrated in Figure 5.6b. The active clock agents are illustrated as
black-and-white components; the passive clock agents are illustrated as grey-and-white components.

Internal communications distribute synchronized time from clock-slave agents b1, c1, and e1 to the other
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. Within a clock-slave, precise time
synchronization involves adjustments of timer value and rate-of-change values.

Time synchronization yields distributed but closely-matched grandTime values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs,) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter
from the supplied grandTime values.

Figure 5.6—Hierarchical flows

b0

b1

c0 c1 c2 c3

e0

e1

e2

S

S
e3

S

a) Clock synchronization flow

Legend:
grand-master clock slave
streaming data

G

G S

b2

b3

SS

S

S

b) Agents along the synchronization path

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b3 e3

e0

e1

e2

Legend:
grand master slave station
master agent slave agent
internal coupling clock-synch flow

b2



AVB BRIDGING JggDvj20050416/D0.244
2007-04-23

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5.4.2 Time-synchronization flows

Time-reference information is created at a ClockSource entity, flows through multiple intermediate entities,
and is consumed at one or more ClockSink entities, as illustrated in Figure 5.7. Within this illustration, the
clock-master station (containing the ClockSource entity) and the clock-slave station (containing the
ClockSink entity) are illustrated as multipurpose bridges. Either of the ClockMaster and ClockSlave stations
could also be end stations (not illustrated), wherein no MAC-relay functionality is required.

5.4.2.1 Clock-master flows

Referring now to the clock-master (Figure 5.7-a) station. This clock-master station comprises client-level
ClockSink as well as ClockSource entities. The ClockSink entity is provided so that the client-clock can be
synchronized to the network clock, whenever another station is selected to become that grand-master. (The
ClockSource entity on the grand-master station provides the network-synchronized time reference.)

The ClockSource time-reference interfaces indirectly to the GrandSync entity via a ClockMaster entity. The
ClockMaster entity supplements the clock-synchronization provided by the ClockSource entity with
additional information (such as the grand-master precedence) that is needed by the GrandSync entity.

The GrandSync entity is responsible for selecting the preferred time-reference port from among the possible
direct-attached ClockSource and bus-bridge-port entities. The selection is based on user-preference,
clock-property, topology, and unique-clock-identifier information.

The GrandSync entity echoes the time-synchronization information from (what it determines to be) the
preferred port. Information from lower-preference ports is continuously monitored to detect preference
changes (typically due to attach or detach of clock-master capable stations). In the absence of such changes,
time-reference information in messages from lower-preference ports is ignored.

The GrandSync entity’s echoed time-reference information is observed by the directly-attached ClockSlave
and bridge-port entities. The information forms the basis for the time-synchronization information
forwarded to other indirectly-attached ClockSlave entities through this station’s bus-bridge ports 

Figure 5.7—Time-synchronization flows
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5.4.2.2 Bus-bridge flows

Referring now to the bus-bridge (Figure 5.7-b) station. This bus-bridge station comprises port and
GrandSync entities. Both ports are responsible for forwarding their received time-reference information to
the GransSync entity.

The bus bridge’s GrandSync entity is responsible for selecting the preferred time-reference port. The selec-
tion is based on user-preference, clock-property, topology, and unique-clock-identifier information provided
indirectly by remote ClockSource entities.

The GrandSync entity echoes the time-synchronization information from (what it determines to be) the
preferred port. Information from lower-preference ports is continuously monitored to detect preference
changes (typically due to attach or detach of clock-master capable stations). In the absence of such changes,
time-reference information in messages from lower-preference ports is ignored.

The GrandSync entity’s echoed time-reference information is observed by all bridge-port entities (including
the source port). The information forms the basis for the time-synchronization information forwarded to
other indirectly-attached ClockSlave entities through this station’s bus-bridge ports 

5.4.2.3 Clock-slave flows

Referring now to the clock-slave (Figure 5.7-c) station. This clock-slave station comprises port, GrandSync,
and ClockSlave entities, as well as a client-level ClockSink entity. All ports are responsible for forwarding
their received time-reference information to the GransSync entity.

As always, the GrandSync entity is responsible for selecting the preferred time-reference port from among
the possible direct-attached ClockSource and bus-bridge-port entities. The GrandSync entity echoes the
time-synchronization information from (what it determines to be) the preferred port.

The GrandSync entity’s echoed time-reference information is observed by the station-local ClockSlave
entity. The ClockSlave entity removes the extraneous grand-master preference information and re-times its
transmissions to match the client’s time-request rate. The time-reference information is then passed to the
ClockSink client.

5.4.2.4 Time-stamp flows

Referring now to the hashed PHY-to-TS lines within Figure 5.7 stations. Maintaining an accurate time
reference relies on the presence of accurate time-stamp hardware capabilities in or near the media-dependent
PHY. A bypass path is thus required at the receiver, so that the time-stamp can be affiliated with the arriving
timeSync information, before the SDU or service-interface parameters are processed by the time-synchroni-
zation (TS) entity above the MAC.

A similar bypass path is also required at the transmitter, so that the time-stamp of a transmitted frame can
become known to the time-synchronization (TS) entity above the MAC. For simplicity and convenience,
this time-stamp information is not placed into the transmitted frame, but (via processing by the
time-synchronization entity) can be placed within later transmissions.
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5.4.3 Back-in-time interpolation (no gain-peaking)

A transient phenomenon associated with cascaded PLLs is called whiplash or gain-peaking, depending on
how the phenomenon is observed. A whiplash effect is visible as ringing after a injected spike and/or a step
change in frequency. The gain-peaking effect is visible as a frequency gain, that becomes increasingly larger
through cascaded PLLs, for selected frequencies. For basic cascaded PLLs (see Figure 5.8a), this phenome-
non is unavoidable, although its effects can be reduced through careful design or manual tuning of peaking
frequencies.

To avoid this phenomenon when passing through multiple bridges, two signal values are transmitted over
intermediate hops: grandTime and errorTime (see Figure 5.8a). For stability, the grandTime value corre-
sponds to an interpolated DELAY time in the past (DELAY is typically assumed to be four transmission
intervals). For accuracy, the errorTime value represents errors due to differences in DELAY, as measured by
local-clock and syntonized-clock timers.

Within the context of Figure 5.8a, the clock-master stationA could send time-varying grandTime values and
a zero-valued errorTime value. The stationB bridge outputs a revised rate-interpolated whiplash-free
grandTime value, along with nonzero errorTime values.

The stationC bridge behaves similarly; producing a whiplash-free grandTime output along with revised
errorTime values. The propagation of (relatively DC-free) errorTime values is deferred for a DELAY-time
interval, so that new values can be conveniently interpolated between past-observed values.

The concept of whiplash-free interpolation assumes the presence of relatively stable clock rates. The next
grandTime output value out[m] is computed by interpolating between the last grandTime output value
out[m-1] and the most-recent relay[n]-supplied grandTime values, as illustrated in Figure 5.8b. To
compensate for the back-in-time error, the value of out[m]+DELAY is transmitted as the current grandTime
value.

From an intuitive perspective, the whiplash-free nature of the back-in-time interpolation is attributed to the
use of interpolation (as opposed to extrapolation) protocols. Interpolation between input values never
produces a larger output value, as would be implied by a gain-peaking (larger-than-unity gain) algorithm. A
disadvantage of back-in-time interpolation is the requirement for a side-band errorTime communication
channel, over which the difference between nominal and rate-normalized DELAY values can be transmitted.

Figure 5.8—Cascaded PLL designs
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5.5 Distinctions from IEEE Std 1588

Advantageous properties of this protocol that distinguish it from other protocols (including portions of
IEEE Std 1588) include the following:

a) Synchronization between grand-master and local clocks occurs at each station:

1) All bridges have a lightly filtered synchronized image of the grand-master time.
2) End-point stations have a heavily filtered synchronized image of the grand-master time.

b) Time is uniformly represented as scaled integers, wherein 40-bits represent fractions-of-a-second.

1) Grand-master time specifies seconds within a more-significant 40-bit field.
2) Local time specifies seconds within a more-significant 8-bit field.

c) Locally media-dependent synchronized networks don’t require extra time-snapshot hardware.

d) Error magnitudes are linear with hop distances; PLL-whiplash and O(n2) errors are avoided.

e) Multicast (one-to-many) services are not required; only nearest-neighbor addressing is assured.

f) A relatively frequent 100 Hz (as compared to 1 Hz) update frequency is assumed:

1) This rate can be readily implemented (in today’s technology) for minimal cost.
2) The more-frequent rate improves accuracy and reduces transient-recovery delays.
3) The more-frequent rate reduces transient-recovery delays.

g) Only one frame type simplifies the protocols and reduces transient-recovery times. Specifically:

1) Cable delay is computed at a fast rate, allowing clock-slave errors to be better averaged.
2) Rogue frames are quickly scrubbed (2.6 seconds maximum, for 256 stations).
3) Drift-induced errors are greatly reduced.
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6. GrandSync operation

6.1 Overview

6.1.1 GrandSync behavior

This clause specifies the state machines that specify GrandSync-entity processing. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the primitives and formal procedures and the
interfaces in any particular implementation.

The GrandSync entity is responsible for observing time-sync related MS_UNITDATA.indication service
primitives, selectively echoing these service-primitive parameters in associated MS_UNITDATA.request
parameters, as follows:

a) When a preferred time-sync related MS_UNITDATA.indication message arrives:

1) The grand-master preference and port-timeout parameters are saved.
2) MS_UNITDATA.indication parameters are echoed in MS_UNITDATA.request parameters.
3) The arrival time is recorded, for the purpose of monitoring port timeouts.

b) Arriving non-preferred MS_UNITDATA.indication messages are discarded.
The intent is to echo only messages from the currently selected grand-master port.

c) If the preferred-port timeout is exceeded, the preferred-port parameters are reset.
The intent is to restart grand-master selection based on the remaining candidate ports.

6.1.2 GrandSync interface model

The time-synchronization service model assumes the presence of one or more time-synchronized AVB ports
communicating with a MAC relay, as illustrated in Figure 6.1. All components are assumed to have access
to a common free-running (not adjustable) localTime value.

A received MAC frame is associated with link-dependent timing information, processed within the
TimeSync (TS) state machine, and passed to the GrandSync protocol entity. The GrandSync state machine
(illustrated with a darker boundary) is responsible for saving time parameters from observed
MS_UNITDATA.indication parameters and generating MS_UNITDATA.request parameters for delivery to
other ports.

Figure 6.1—GrandSync interface model
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The preference of the time-sync messages determines whether the message content is ignored by the
GrandSync protocol entity or modified and redistributed to the attached TS state machines. The sequencing
of this state machine is specified by Table 6.1; details of the computations are specified by the C-code of
Annex G.

Information exchanged with the GrandSync entity includes a source-port identifier, hops&precedence infor-
mation for grand-master selection, a globally synchronized grandTime, neighbor-syntonized localTime, and
a cumulative errorTime, as illustrated in Figure 6.2. A clock-slave end-point can filter the sum of grandTime
and errorTime values, thereby yielding its image of the globally synchronized grandTime value.

NOTE—The syncInterval value is relative static and could (if desired) be communicated by access to port-specific
resources. If this alternative configuration mechanism is preferred, this content will be removed from the service
interface contents.

Figure 6.2—GrandSync service-interface components
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6.2 Service interface primitives

6.2.1 MS_UNITDATA.indication

6.2.1.1 Function

Provides the GrandSync protocol entity with clock-synchronization parameters derived from activities on
the attached media-dependent ports. The information is sufficient to identify a single clock-slave port (typi-
cally the closest-to-grand-master port) and to disseminate grand-master supplied clock-synchronization
information to other ports.

6.2.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MS_UNITDATA.indication {
destination_address, // Destination address
source_address, // Optional
priority, // Forwarding priority
service_data_unit, // Delivered content
{ // Contents of the service_data_unit

protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between timeSync and other AVB frames
version, // Distinguishes between timeSync frame versions
precedence, // Precedence for grand-master selection
grandTime, // Global-time snapshot (1-cycle delayed)
errorTime, // Accumulated grandTime error
sourcePort, // Identifies the source port
hopCount, // Distance from the grand-master station
snapTime, // Local-time snapshot (1-cycle delayed)
syncInterval // Nominal timeSync transmission interval

}
}

NOTE—The grandTime field has a range of approximately 36,000 years, far exceeding expected equipment life-spans.
The localTime and linkTime fields have a range of 256 seconds, far exceeding the expected timeSync frame transmission
interval. These fields have a 1 pico-second resolution, more precise than the expected hardware snapshot capabilities.
Future time-field extensions are therefore unlikely to be necessary in the future.

The parameters of the MA_DATA.indication are described as follows:

6.2.1.2.1 destination_address: A 48-bit field that allows the frame to be conveniently stripped by its
downstream neighbor. The destination_address field contains an otherwise-reserved group 48-bit MAC
address (TBD).

6.2.1.2.2 source_address: A 48-bit field that specifies the local station sending the frame. The
source_address field contains an individual 48-bit MAC address (see 3.10), as specified in 9.2 of IEEE Std
802-2001. 

6.2.1.2.3 service_data_unit: A multi-byte field that provides information content. 

6.2.1.2.4 priority: Specifies the priority associated with content delivery. 
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The service_data_unit consists of subfields; for content exchanged with the GrandTime protocol entity,
these fields include the following.

6.2.1.2.5 protocolType: A 16-bit field contained within the payload that identifies the format and function of
the following fields.

6.2.1.2.6 function: An 8-bit field that distinguishes the timeSync frame from other AVB frame type.

6.2.1.2.7 version: An 8-bit field that identifies the format and function of the following fields (see xx).

6.2.1.2.8 precedence: A 14-byte field that has specifies precedence in the grand-master selection protocols
(see 6.2.1.4).

6.2.1.2.9 grandTime: An 80-bit field that specifies the grand-master synchronized time within the source
station, when the previous timeSync frame was transmitted (see 6.2.1.6).

6.2.1.2.10 errorTime: A 32-bit field that specifies the cumulative grand-master synchronized-time error.
(Propagating errorTime and grandTime separately eliminates whiplash associated with cascaded PLLs.)

6.2.1.2.11 sourcePort: An 8-bit field that identifies the port that sourced the encapsulating content.

6.2.1.2.12 hopCount: An 8-bit field that identifies the maximum number of hops between the talker and
associated listeners.

6.2.1.2.13 snapTime: A 64-bit field that specifies the local free-running time within this station, when the
previous timeSync frame was received (see 6.2.1.8).

6.2.1.2.14 syncInterval: A 48-bit field that specifies the nominal period between timeSync frame transmis-
sions.

NOTE—The syncInterval value is a port-specific constant value which (for apparent simplicity) has been illustrated as a
relayed frame parameter. Other abstract communication techniques (such as access to shared design constants) might be
selected to communicate this information, if requested by reviewers for consistency with existing specification
methodologies.

6.2.1.3 Version format

For compatibility with existing 1588 time-snapshot, a single bit within the version field is constrained to be
zero, as illustrated in Figure 6.3. The remaining versionHi and versionLo fields shall have the values of 0
and 1 respectively.

Figure 6.3—Global-time subfield format

LSB

8 bits

MSB

0versionHi versionLo
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6.2.1.4 precedence subfields

The precedence field includes the concatenation of multiple fields that are used to establish precedence
between grand-master candidates, as illustrated in Figure 6.4.

6.2.1.4.1 priority1: An 8-bit field that can be configured by the user and overrides the remaining
precedence-resident precedence fields.

6.2.1.4.2 class: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.

6.2.1.4.3 accuracy: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.

6.2.1.4.4 variance: A 16-bit precedence-selection field defined by the like-named IEEE-1588 field.

6.2.1.4.5 priority2: A 8-bit field that can be configured by the user and overrides the remaining
precedence-resident clockID field.

6.2.1.4.6 clockID: A 64-bit globally-unique field that ensures a unique precedence value for each potential
grand master, when {priority1, class, variance, priority2} fields happen to have the same value (see 6.2.1.5).

6.2.1.5 clockID subfields

The 64-bit clockID field is a unique identifier. For stations that have a uniquely assigned 48-bit macAddress,
the 64-bit clockID field is derived from the 48-bit MAC address, as illustrated in Figure 6.5.

6.2.1.5.1 oui: A 24-bit field assigned by the IEEE/RAC (see 3.10.1).

6.2.1.5.2 extension: A 16-bit field assigned to encapsulated EUI-48 values.

6.2.1.5.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see 3.10.2).

Figure 6.4—precedence subfields

Figure 6.5—clockID format

MSB LSB
clockIDpriority1 varianceclass priority2accuracy

MSB LSBmacAddress
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6.2.1.6 Global-time subfield formats

Time-of-day values within a frame are based on seconds and fractions-of-second values, consistent with
IETF specified NTP[B7] and SNTP[B8] protocols, as illustrated in Figure 6.6.

6.2.1.6.1 seconds: A 40-bit signed field that specifies time in seconds.

6.2.1.6.2 fraction: A 40-bit unsigned field that specifies a time offset within each second, in units of 2-40

second.

The concatenation of these fields specifies a 96-bit grandTime value, as specified by Equation 6.1.

grandTime = seconds + (fraction / 240) (6.1)

6.2.1.7 errorTime

The error-time values within a frame are based on a selected portion of a fractions-of-second value, as
illustrated in Figure 6.7. The 40-bit signed fraction field specifies the time offset within a second, in units of
2-40 second.

6.2.1.8 snapTime formats

The snapTime value within a frame is based on a fractions-of-second value, as illustrated in Figure 6.8. The
48-bit fraction field specifies the time offset within the second, in units of 2-48 second.

Figure 6.6—Global-time subfield format

Figure 6.7—errorTime format

Figure 6.8—snapTime format
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6.2.2 MS_UNITDATA.request

6.2.2.1 Function

Communicates GrandSync protocol-entity supplied information to attached media-dependent ports. The
information is sufficient for attached ports to update/propagate grand-master clock-synchronization
parameters.

6.2.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MA_UNITDATA.request
{

destination_address, // Destination address
source_address, // Optional
priority, // Forwarding priority
service_data_unit, // Delivered content
{ // Contents of the service_data_unit

protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between timeSync and other frames
version, // Distinguishes between timeSync frame versions
precedence, // Precedence for grand-master selection
grandTime, // Global-time snapshot (1-cycle delayed)
errorTime, // Accumulated grandTime error
sourcePort, // Identifies the source port
hopCount, // Distance from the grand-master station
snapTime, // Local-time snapshot (1-cycle delayed)
syncInterval // Nominal timeSync transmission interval

}
}

The parameters of the MA_UNITDATA.request are described in 6.2.1.2.

6.3 GrandSync state machine

6.3.1 Function

The GrandSync state machine is responsible for observing MS_UNITDATA.indication parameters, selecting
messages with preferred time-sync content, and echoing this content in following MS_UNITDATA.request
parameters.

6.3.2 State machine definitions

AVB identifiers
Assigned constants used to specify AVB frame parameters.

AVB_MCAST—The multicast destination address corresponding to the adjacent neighbor.
value—TBD.

AVB_TYPE—The protocolType corresponding that uniquely identifies time-sync SDUs.
value—TBD.

AVB_VERSION—The number that uniquely identifies this version of time-sync SDUs.
value—TBD.
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LAST_HOP
A constant that specifies the largest possible hopCount value.

value—255
NULL

A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
ONES

A large constant wherein all binary bits of the numerical representation are set to one.
queue values

Enumerated values used to specify shared FIFO queue structures.
Q_GS_IND—The queue identifier associated with MS_UNITDATA.indication transfers.
Q_MS_REQ—The queue identifier associated with MS_UNITDATA.request transfers.

6.3.3 State machine variables

better
A boolean variable indicating when a new preference is preferred.

ePtr
A pointer to the ClockSlave data structure, where the data structure comprises the following:

rxFrameCount—The frameCount field from the previous .
rxPrecedence—The precedence for grand-master selection (smaller is better).
rxSourcePort—Identifies the source-port for the best-preference MS_UNITDATA.indication.
rxSyncInterval—The syncInterval field from the best-preference MS_UNITDATA.indication.
rxLastTime—Time of the last MS_UNITDATA.indication, used for timeout purposes.

count
A local variable representing the previously saved hopCount value.

preferenceNew, preferenceOld
Local variables consisting of concatenated preference, hopCount, and port parameters.

rsPtr
A pointer to the service-data-unit portion of the rxInfo storage.

rxInfo
The parameters associated with an MS_UNITDATA.indication (see 6.2.1.2).

rxPtr
A pointer to the rxInfo storage.

stationTime
A shared value representing current time within each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
tsPtr

A pointer to the service-data-unit portion of the txInfo storage.
txInfo

Storage for parameters associated with an MS_UNITDATA.request (see 6.2.1.2).
rxPtr

A pointer to the txInfo storage.

6.3.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

info—The next available parameters.
NULL—No parameters available.

Enqueue(queue, info)
Places the info parameters at the tail of the specified queue on all ports.
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FormPref(precedence, hops, port)
Forms a preference by concatenating 14-byte preference, 1-byte hops, and 1-byte port field values.

StationTime(ePtr)
Returns the value of the station’s shared local timer, encoded as follows:

seconds—A 16-bit unsigned value representing seconds.

fraction—A 48-bit unsigned value representing portions of a second, in units of 2-40 second.
TimeSyncSdu(info)

Checks the frame contents to identify MS_DATAUNIT.indication frames.
TRUE—The frame is a timeSync frame.
FALSE—Otherwise.
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6.3.5 GrandSync state table

The GrandSync state machine includes a media-dependent timeout, which effectively restarts the
grand-master selection process in the absence of received timeSync frames, as specified by Table 6.1.

Table 6.1—GrandSync state table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_GS_IND))
!= NULL

1 rsPtr = &(rxInfo.service_data_unit); TEST

(stationTime – ePtr->timer) 
> 4 * esPtr->syncInterval

2 ePtr->rxHopCount = ePtr->rxSourePort =
ePtr->rxPrecedence = ONES;

ePtr->rxLastTime= stationTime;

START

— 3 stationTime = StationTime();

TEST TimeSyncSdu(rsPtr) &&
rsPtr->hopCount != LAST_HOP

4 preferenceNew = FormPref(rsPtr->precedence,
rsPtr->hopCount, rsPtr->port);

preferenceOld = FormPref(ePtr->rxPrecedence,
ePtr->rxHopCount, ePtr->rxSourcePort);

better = (preferenceNew <= preferenceOld);

SERVE

— 5 — START

SERVE rsPtr->port == esPtr->port 6 tsPtr = &(txInfo.service_data_unit);
count = ePtr->rxHopCount;
ePtr->rxHopCount = rsPtr->hopCount;
ePtr->rxPrecedence = rsPtr->precedence;
ePtr->rxSourcePort = rsPtr->sourcePort;
ePtr->rxLastTime = stationTime;

NEAR

better 7

— 8 — START

NEAR rsPtr->hopCount > count 9 tsPtr->hopCount = Min(LAST_HOP, 
1 + (LAST_HOP + rsPtr->hopCount) / 2);

LAST

— 10 tsPtr->hopCount = rsPtr->hopCount + 1;

LAST — 11 txPtr->destination_address = AVB_MCAST;
txPtr->source_address = MacAddress(ePtr);
tsPtr->protocolType = AVB_TYPE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;
tsPtr->precedence = rsPtr->precedence;
tsPtr->grandTime = rsPtr->grandTime;
tsPtr->errorTime = rsPtr->errorTime;
tsPtr->localTime = rsPtr->localTime;
tsPtr->sourcePort = rsPtr->sourcePort;
tsPtr->syncInterval = rsPtr->syncInterval;
Enqueue(Q_MS_REQ, txInfo);

START
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Row 6.1-1: Available indication information is processed; the preference comparison is precomputed.
The preferenceNew and preferenceOld values consist of precedence, hopCount, and port components.
Row 6.1-2: The absence of indications forces the timeout, after a port-specific delay
Row 6.1-3: Wait for changes of conditions.

Row 6.1-4: Still-active time-sync messages are serviced.
Row 6.1-5: Other messages and over-aged indications are discarded.
Row 6.1-6: Same-port indications always have preference.
Row 6.1-7: Preferred preference-level indications are accepted.
Row 6.1-8: Other indications are discarded.

Row 6.1-9: Increasing hopCount values are indicative of a rogue frame and are therefore quickly quashed.
Row 6.1-10: Non-increasing hopCount values are incremented and are thus aged slowly.

Row 6.1-11: Reset the timeout timer; broadcast saved parameters to all ports (including the source).
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7. ClockMaster/ClockSlave state machines

7.1 Overview

7.1.1 ClockMaster/ClockSlave behaviors

This clause specifies the state machines that specify ClockMaster and ClockSlave entity processing. The
operations are described in an abstract way and do not imply any particular implementations or any exposed
interfaces. There is not necessarily a one-to-one correspondence between the primitives and formal proce-
dures and the interfaces in any particular implementation.

The ClockMaster entity is responsible for forwarding the grand-master time supplied by the ClockSource
via the masterSync service primitive, as follows:

a) A count value (this is normally incremented in sequential masterSync messages) is checked.

b) Grand-master time from masterSync[n+1] is associated with the masterSync[n] invocation time.

c) The masterSync parameters are supplemented and passed to the GrandSync entity.

The ClockSlave entity is responsible for extracting the grand-master time delivered by the GrandSync entity
and supplying the current value to the ClockSink entity through the slavePoke service interface, as follows:

a) Grand-master time samples are extracted from GrandSync-supplied MS_UNITDATA-request
messages, and saved as inputs for computing grand-master times in following slaveSync messages.

b) When triggered by a slavePoke indication, a slaveSync message is delivered to the ClockSink.
That message supplies the grand-master time associated with the slavePoke invocation time.

7.1.2 ClockMaster/ClockSlave interface model

The time-synchronization service model assumes the presence of one or more grand-master capable entities
communicating with a MAC relay, as illustrated on the left side of Figure 7.1. A grand-master capable port
is also expected to provide clock-slave functionality, so that any non-selected grand-master-capable station
can synchronize to the selected grand-master station. 

Figure 7.1—ClockMaster interface model

802.n MAC

PHY

LAN

ISS

LLC

TS

802.n MAC

PHY

LAN

ISS

MS
LLC

TS

MS

MAC relay

ClockMaster ClockSlaveGrandSync

ClockSource ClockSink
masterSync

~localTime~

client
lower levels

slavePoke
slaveSync



AVB BRIDGING JggDvj20050416/D0.244
2007-04-23

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The clock-master ClockMaster state machine (illustrated with an italics name and darker boundary) is
responsible for monitoring its port’s masterSync requests and sending MAC-relay frames. The sequencing
of this state machine is specified by Table 7.1; details of the computations are specified by the C-code of
Annex G.

The time-synchronization service model assumes the presence of one or more clock-slave capable time-sync
entities communicating with a GrandSync protocol entity, as illustrated on the top-side of Figure 7.1. A
non-talker clock-slave capable entity is not required to be grand-master capable.

The ClockSlave state machine (illustrated with an italics name and darker boundary) is responsible for sav-
ing time parameters from relayed timedSync frames and servicing time-sync requests from the attached
clock-slave interface. The sequencing of this state machine is specified by Table 7.2; details of the computa-
tions are specified by the C-code of Annex G.

7.2 ClockMaster service interfaces

7.2.1 Shared service interfaces

The ClockMaster entity is coupled to the bridge ports TS entities via the defined MS_SYNC.indication
service interface (see 6.2.1).

7.2.2 masterSync service interface

7.2.2.1 Function

Provides the ClockMaster entity with clock-synchronization parameters derived from the reference clock.
The information is sufficient to provide the ClockMaster with accurate {grandTime, localTime}
associations. The ClockSource entity supplies the reference time for service-interface invocation n within
the parameters of the next service-interface n+1.

7.2.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

masterSync {
frameCount, // An integrity-check that is incremented each invocation
grandTime, // Global-time snapshot (1-cycle delayed)

}

The parameters of the masterSync service-interface primitive are described as follows:

7.2.2.2.1 frameCount: An 8-bit field that is incremented on each service-interface in.

7.2.2.2.2 grandTime: An 80-bit field that specifies the grand-master synchronized time within the source
station, when the previous timeSync frame was transmitted (see 6.2.1.6).
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7.2.3 State machine definitions

AVB identifiers
Assigned constants used to specify AVB frame parameters (see 6.3.2).

AVB_MCAST
AVB_TYPE
AVB_FUNCTION
AVB_VERSION

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

COUNT
A numerical constant equal to the range of the info.frameCount field value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_CM_SET—The queue identifier associated with received clock-master sync frames.
Q_GS_IND—A GrandSync queue identifier (see 6.3.2).

7.2.4 State machine variables

info
A contents of a higher-level supplied time-synchronization request, including the following:

grandTime—The value of grand-master time, when the previous masterSync frame was sent.
frameCount—A value that increments on each masterSync frame transmission.

next
A transient value representing the expected value of the next info.frameCount field value.

ePtr
A pointer to an entity data structure with information comprising the following:

rxSyncFrame—The next frame to be transmitted over the MAC-relay.
rxFrameCount—The value of frameCount within the last received frame.
rxSnapShot0—The info.snapShot field value from the last receive-port poke indication.
rxSnapShot1—The value of the ePtr->rxSnapShot0 field saved from the last poke indication.
syncInterval—The expected rate of clockMaster service-interface invocations.

stationTime
A local variable representing the station’s localTime value.

txInfo
Temporary storage for a to-be-transmitted MS_UNITDATA.request parameters (see 6.2.2.2).

tsPtr
A pointer to the SDU portion of txInfo storage.

txPtr
A pointer to txInfo storage.

7.2.5 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue)
Places the frame at the tail of the specified queue.

SourcePort(entity)
Returns the source port identifier associated with the argument entity.
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StationTime(entity)
Returns the shared value representing current time within this station. Within the state machines of
this standard, this is assumed to have two components, as follows:

seconds—A 16-bit unsigned value representing seconds.

fraction—A 48-bit unsigned value representing portions of a second, in units of 2-48 second.
TimeSyncSdu(info)

Checks the frame contents to identify MS_DATAUNIT.request request frames.
TRUE—The frame is a timeSync frame.
FALSE—Otherwise.

7.2.6 ClockMaster state table

The ClockMaster state table encapsulates clock-provided sync information into a MAC-relay frame, as illus-
trated in Table 7.1.

Row 7.1-1: Update snapshot values on masterSync request arrival.
Row 7.1-2: Wait for the next change of state.

Row 7.1-3: Sequential requests are forwarded as a MA_UNITDATA.request to the GrandSync entity.
Row 7.1-4: Nonsequential requests are discarded.

Table 7.1—ClockMaster state machine table

Current
R

ow
Next

state condition action state

START (rxInfo = Dequeue(Q_CM_SET))
!= NULL

1 ePtr->rxSnapShot1 = ePtr->rxSnapShot0;
ePtr->rxSnapShot0 = stationTime;
count = (ePtr->rxFrameCount + 1) % COUNT;
ePtr->rxFrameCount = rxInfo.frameCount;
good = (count == rxInfo.frameCount);

SEND

— 2 stationTime = StationTime(ePtr); START

SEND good 3 txPtr = &(txInfo);
tsPtr = &(txInfo.service_data_unit);
txPtr->destination_address = AVB_MCAST;
txPtr->source_address = MacAddress(ePtr);
tsPtr->prototolType = AVB_TYPE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;
tsPtr->precedence = ePtr->precedence;;
tsPtr->hopCount = 0;
tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->grandTime = rxInfo.grandTime;
tsPtr->errorTime = 0;
tsPtr->snapTime = ePtr->rxSnapShot1;
tsPtr->syncInterval = ePtr->syncInterval;
Enqueue(Q_MS_IND, txInfo);

START

— 4 —
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7.3 ClockSlave service interfaces

7.3.1 Shared service interfaces

The ClockSlave entity is coupled to the GrandSync entity, via the defined MS_SYNC.request service
interface (see 6.2.2).

7.3.2 slavePoke service interface

7.3.2.1 Function

Triggers the ClockSlave entity to provide a {grandTime, localTime} duple that is synchronized with the
grand-master clock.

7.3.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

slavePoke {
frameCount // An integrity-check that is incremented each invocation

}

The parameters of the masterSync service-interface primitive are described as follows:

7.3.2.2.1 frameCount: An 8-bit field that is incremented on each service-interface in each invocation.

7.3.3 slaveSync service interface

7.3.3.1 Function

Provides the ClockSync entity with clock-synchronization parameters derived from the reference clock. The
information comprises {frameCount, grandTime} duples: frameCount is supplied by the previous slavePoke
invocation; grandTime represents the invocation time of that preceding slavePoke service primitive.

7.3.3.2 Semantics of the service primitive

The semantics of the primitives are as follows:

masterSync {
frameCount, // Identifies the previous slavePoke invocation
grandTime, // Grand-master synchronized snapshot.

}

The parameters of the slaveSync service-interface primitive are described as follows:

7.3.3.2.1 frameCount: An 8-bit field that copied from the like-named field of the previous slavePoke
service-interface invocation.

7.3.3.2.2 grandTime: An 80-bit field that specifies the grand-master synchronized time within the
ClockSlave entity, when the previous slavePoke service-interface was invoked.
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7.4 ClockSlave state machine

7.4.1 Function

7.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MS_REQ—A GrandSync queue identifier (see 6.3.2).
Q_CS_REQ—The queue identifier associated with slavePoke requests.
Q_CS_IND—The queue identifier associated with slaveSync indications.

7.4.3 State machine variables

ePtr
A pointer to entity-dependent information, including the following:

rxSyncInterval—The saved like-named MA_DATAUNIT.indication value.
rxTimed—The time of the previous MA_DATAUNIT.indication, saved for timeout purposes
syncInterval—The expected service rate of slavePoke services.
timed[3]—Recently saved time events, each consisting of the following:

grandTime—A previously sampled grand-master synchronized time.
errorTime—The residual error associated with the sampled grandTime value.
localTime—The stationTime affiliated with the sampled grandTime value.

cxInfo
A contents of a higher-level supplied time-synchronization request, including the following:

count—A value that increments on each masterSync message transfer.
rxInfo

A contents of a GrandSync supplied MA_UNITDATA.request (see 6.2.2), including the following:
grandTime—The value of grand-master synchronized time, taken at when rxInfo arrived.
errorTime—The residual error associated with the sampled grandTime value.
localTime—The stationTime affiliated with the sampled grandTime value.

stationTime
See 7.2.4.

txInfo
A contents of a ClockSlave supplied slaveSync (see 6.2.2), comprising the following:

count—The saved value of the like named field from the previous slavePoke message.
grandTime—The grand-master synchronized time sampled during the slavePoke transfer.

7.4.4 State machine routines

Dequeue(queue)
Enqueue(queue)
StationTime(entity)
TimeSyncSdu(info)

See 7.2.5.
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7.4.5 ClockSlave state table

The ClockSlave state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSync frames, as illustrated in Table 7.2.

Row 7.2-1: The received MS_UNITDATA.request parameters are dequeued for checking.
Row 7.2-2: A clock-slave request generates an affiliated information-providing indication.
The affiliated indication has the sequence-count information provided by the request.
The delivered end-point grandTime value is the sum of delivered grandTime and errorTime values.
The requested content is queued for delivery to the higher-level client.
Row 7.2-3: Wait for the next change-of-conditions.

Row 7.2-4: Validated GrandSync entity requests are accepted; its time parameters are saved.
The back-interpolation time is estimated from the syncInterval times of the source and clock slave.
(This back-interpolation time is used by NextTimes( ), which provides transmission-time estimates.)
Row 7.2-5: Wait for the next change-of-conditions.

Table 7.2—ClockSlave state table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_MS_REQ))
!= NULL

1 rsPtr = &(rxPtr->service_data_unit); TEST

((cxInfo =
Dequeue(Q_CS_REQ)) != NULL

2 nextTimes = NextTimes(stationTime,
ePtr->rxSyncInterval, ePtr->syncInterval,
ePtr->rxTimed);

txInfo.count = cxInfo.count;
txInfo.grandTime =
nextTimes.grandTime + nextTimes.errorTime;

Enqueue(Q_CS_IND, txInfo);

START

— 3 stationTime = StationTime(ePtr);

TEST GrandSyncReq(rsPtr) 4 timePtr = &(ePtr->rxTimed);
timePtr->grandTime = rxinfo.grandTime;
timePtr->errorTime = rxInfo.errorTime;
timePtr->localTime = rxInfo.localTime;
ePtr->rxSyncInterval = rsPtr->syncInterval;

START

— 5 —
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8. Duplex-link state machines

8.1 Overview

This clause specifies the state machines that support duplex-link 802.3-based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the formal specification and the interfaces in
any particular implementation.

8.1.1 Duplex-link indications

The duplex-link TimeSyncRxDuplex state machines are provided with snapshots of timeSync-frame recep-
tion and transmission times, as illustrated by the ports within Figure 8.1. These link-dependent indications
can be different for bridge ports attached to alternative media.

The rxSync and txSync indications provide a tag (to reliably associate them with MAC-supplied timeSync
frames) and a localTime stamp indicating when the associated timeSync frame was received, as illustrated
within Figure 8.2.

8.1.2 Rate-normalization requirements

If the absence of rate adjustments, significant grandTime errors can accumulate between periodic updates, as
illustrated in Figure 8.3. The 2 µs deviation is due to the cumulative effect of clock drift, over the 10 ms
send-period interval, assuming clock-master and clock-slave crystal deviations of −100 PPM and +100 PPM
respectively.

While this regular sawtooth is illustrated as a highly regular (and thus perhaps easily filtered) function,
irregularities could be introduced by changes in the relative ordering of clock-master and clock-slave
transmissions, or transmission delays invoked by asynchronous frame transmissions. Tracking peaks/valleys
or filtering such irregular functions are thought unlikely to yield similar grandTime deviation reductions.

Figure 8.1—Duplex-link interface model

Figure 8.2—Contents of rxSync/txSync indications
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To reduce such time deviations, a lower-rate (currently assumed to be 80 ms) activity measures the ratio of
each station’s frequency to that of its adjacent neighbor. When these calibration factors are applied, the
effects of rate differences are easily be reduced to less than 1 PPM, based on the aforementioned
time-accuracy assumptions. At this point, the timer-offset measurement errors (not clock-drift induced
errors) dominate the clock-synchronization error contributions.

8.1.3 Duplex-link delays

On some forms of duplex-link media, time-synchronization involves periodic not-necessarily synchronized
packet transmissions between adjacent stations, as illustrated in Figure 8.4a. The transmitted frame contains
the following information:

precedence—Specifies the grand-master precedence.
grandTime—An estimation of the grand-master time.
localTime—A sampling of the neighbor’s local time.
thatTxTime—The adjacent link’s timeSync transmit time.
thatRxTime—The adjacent link’s timeSync receive time.

Snapshots are taken when packets are transmitted (illustrated as txA and txB) and received (illustrated as rxA
and rxB), as illustrated in Figure 8.4b. The receive snapshot is double buffered, in that the value of rxB0 is
copied to rxB1 when the rxB0 snapshot is taken. Similarly, the value of rxA0 is copied to rxA1 when the
rxA0 snapshot is taken.

The physical entity that triggers the received-frame and transmitted-frame snapshot operations is
deliberately left ambiguous. Mandatory jitter-error accuracies are sufficiently loose to allow transmit/receive

Figure 8.3—Rate-adjustment effects

Figure 8.4—Timer snapshot locations
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snapshot circuits to be located with the MAC. Vendors may elect to further reduce timing jitter by latching
the receive/transmit times within the PHY, where the uncertain FIFO latencies can be more easily avoided.

The the timeSync frame arrives from stationA, the frame’s localTime value is copied to the rxB2 register,
and is simultaneously available with the updated rxB1 snapshot value. Similarly, when the timeSync frame
arrives from stationB, the frame’s localTime value is copied to the rxA2 register, and is simultaneously avail-
able with the updated rxA1 snapshot value. 

For stationB, the values inserted into each frame include the following:
localTime—The txB value, representing the last timeSync frame-transmission time on this link.
thatTxTime—The rxB2 value, representing a timeSync frame-transmission time on the other link.
thatRxTime—The rxB1 value, representing a timeSync frame-reception time on the other link.
grandTime—The computed grand-master time associated with the co-resident localTime value.

For stationA, the values inserted into each frame include the following:
localTime—The txA value, representing the last timeSync frame-transmission time on this link.
thatTxTime—The rxA2 value, representing a timeSync frame-transmission time on the other link.
thatRxTime—The rxA1 value, representing a timeSync frame-reception time on the other link.
grandTime—The computed grand-master time associated with the co-resident localTime value.

Assuming the local stationA and stationB timers have the same frequencies and the two links on the span
have identical delays, the link delay can be computed at stationB and stationA, based on the contents of the
most-recently received timeSync frame, as specified by Equation 8.1 and Equation 8.2 respectively.

linkDelayB = ((rxB1 - frame.thatTxTime) - (frame.localTime - frame.thatRxTime))/2; (8.1)
linkDelayA = ((rxA1 - frame.thatTxTime) - (frame.localTime - frame.thatRxTime))/2; (8.2)

If the stationA-to-stationB and stationB-to-stationA links have different propagation delays, these linkDelay
calculations do not correspond to the different propagation delays, but represent the average of the two link
delays. Implementers have the option of manually specifying the link-delay differences via MIB-accessible
parameters, within tightly-synchronized systems where this inaccuracy might be undesirable.

8.1.4 Received timeSync computations

The baseline link-delay calculations of 8.1.3 are sufficient for 802.11v and other interconnects wherein the
timeSync turn-around latencies are tightly controlled by the MAC. For 802.3 and other interconnects, the
turnaround times can be done above the MAC and can be much larger than the packet-transmission times.
For such media, the duplex-link delay calculations must be compensated by measured differences in
adjacent-station clock rates, as discussed within this subclause.

Assuming the local stationA and stationB timers have the different frequencies and the two links on the span
have identical delays, the link delay can be computed at stationB based on the contents of the most-recently
received timeSync frame.

NOTE—The rating portion of the linkDelay computation is based on the station-local time within adjacent-neighbor
exchanges and is therefore unaffected by discontinuities in the distributed grand-master time reference.
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8.2 timeSyncDuplex frame format

8.2.1 timeSyncDuplex fields

Duplex-link time-synchronization (timeSyncDuplex) frames facilitate the synchronization of neighboring
clock-master and clock-slave stations. The frame, which is normally sent at 10ms intervals, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in Figure 8.5. The
gray boxes represent physical layer encapsulation fields that are common across Ethernet frames.

NOTE— Existing 1588 time-snapshot hardware captures the values between byte-offset 34 and 45 (inclusive). The
location of the frameCount field (byte-offset 44) has been adjusted to ensure this field can be similarly captured for the
purpose of unambiguously associating timeSync-packet snapshots (that bypass the MAC) and timeSync-packet contents
(that pass through the MAC).

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocolType, 8-bit function,
8-bit version, 14-byte precedence, 80-bit grandTime, 32-bit errorTime, 8-bit hopCount, and 6-byte
localTime field are specified in 6.2.1.2.

8.2.1.1 frameCount: An 8-bit field that is incremented by one between successive timeSync frame
transmission.

8.2.1.2 thatTxTime: A 48-bit field that specifies the local free-running time within the source station, when
the previous timeSync frame was transmitted on the opposing link (see 6.2.1.8).

8.2.1.3 thatRxTime: A 48-bit field that specifies the local free-running time within the target station, when
the previous timeSync frame was received on the opposing link (see 6.2.1.8).

8.2.1.4 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

Figure 8.5—timeSyncDuplex frame format
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8.2.2 Clock-synchronization intervals

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional messages can
cancel the cable-delay effects.

Clock synchronization involves the processing of periodic events. Multiple time periods are involved, as
listed in Table 8.1. The clock-period events trigger the update of free-running timer values; the period affects
the timer-synchronization accuracy and is therefore constrained to be small. 

The send-period events trigger the interchange of timeSync frames between adjacent stations. While a
smaller period (1 ms or 100 µs) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

Table 8.1—Clock-synchronization intervals

Name Time Description

clock-period < 20 ns Resolution of timer-register value updates

send-period 10 ms Time between sending of periodic timeSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences



JggDvj20050416/D0.244 WHITE PAPER CONTRIBUTION TO
2007-04-23

Contribution from: dvj@alum.mit.edu.
56 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8.3 TimeSyncRxDuplex state machine

8.3.1 Function

The TimeSyncRxDuplex state machine is responsible for monitoring its port’s rxSync indications, receiving
MAC-supplied frames, and sending MAC-relay frames. The sequencing of this state machine is specified by
Table 8.2; details of the computations are specified by the C-code of Annex G.

8.3.2 State machine definitions

LAST_HOP
A constant representing the largest-possible frame.hopCount value.

value—255.
NULL

A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
queue values

Enumerated values used to specify shared FIFO queue structures.
Q_MS_IND—The queue identifier associated with MAC frames sent into GrandSync.
Q_ES_IND—The queue identifier associated with the received MAC frames.
Q_RX_SYNC—The queue identifier associated with rxSync, sent from the lower levels.

8.3.3 State machine variables

cableDelay, cableDelay0
Scaled integers representing cable-delay times.

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
cxInfo

A contents of a lower-level supplied time-synchronization poke indication, including the following:
localTime—The value of stationTime associated with the last timeSync packet arrival.
frameCount—The value of the like-named field within the last timeSync packet arrival.

delta0, delta1
Scaled integers representing times since the recent time-rating snapshots.

ePtr
A pointer to a data structure that contains port-specific information comprising the following:

rxFrameCount—The value of frameCount within the last received frame.
rxRated—The ratio of the local-station and remote-station local-timer rates.
rxSnapCount—The value of info.frameCount saved from the last poke indication.
rxSnapShot0—The info.snapShot field value from the last receive-port poke indication.
rxSnapShot1—The value of the ePtr->rxSnapShot1 field saved from the last poke indication.
rxSyncFrame—The value of the previously observed timeSync frame.

rsPtr
A pointer to service-data-unit portion of rxInfo storage.

rxInfo
Storage for received time-sync messages.

rxPtr
A pointer to rxInfo storage.

tsPtr
A pointer to service-data-unit portion of txInfo storage.
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txInfo
Storage for to-be-transmitted time-sync messages.

txPtr
A pointer to txInfo storage.

frame
A MAC-supplied frame (see xx); the frame comprising the following.

grandTime—A value synchronized to the grand-master time.
localTime—The local time associated with the grandTime value.
frameCount—A value that is incremented for successive timeSync transmissions.
hopCount—Distance from the grand-master station, measured in station-to-station hops.

txPtr
A pointer to a MAC-relay frame (see xx); the frame comprising the following.

grandTime—A value synchronized to the grand-master time.
localTime—The local time associated with the grandTime value.
sourcePort—Identifies the source port that generated the MAC-relay frame.
hopCount—Distance from the grand-master station, measured in station-to-station hops.

thisDelay, thatDelay, thatDelay, thisDelta, thisTime, thatTime, tockTime
Scaled integer representing intermediate local-time values.

8.3.4 State machine routines

Dequeue(queue)
Enqueue(queue, info)

See 6.3.4.
Min(x, y)

Returns the minimum of x and y values.
SourcePort(entity)

See 7.2.5.
StationTime(entity)
TimeSyncSdu(info)

See 6.3.4.
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8.3.5 TimeSyncRxDuplex state machine table

The TimeSyncRxDuplex state machine associates PHY-provided sync information with arriving timeSync
frames and forwards adjusted frames to the MAC-relay function, as illustrated in Table 8.2.

Table 8.2—TimeSyncRxDuplex state machine table

Current

R
ow

Next

state condition action state

START (csInfo = Dequeue(Q_RX_SYNC)) 
!= NULL

1 cxPtr = &cxInfo;
ePtr->rxSnapShot1 = ePtr->rxSnapShot0;
ePtr->rxSnapShot0 = cxPtr->localTime;
ePtr->rxSnapCount = cxPtr->frameCount;

PAIR

(rxInfo=Dequeue(Q_RX_MAC))
!= NULL

2 rxPtr = &rxInfo;
rsPtr = &(rxPtr->service_data_unit);
count = (ePtr->rxFrameCount + 1) % COUNT;
ePtr->rxFrameCount = rxPtr->frameCount;
good = (count == rxPtr->frameCount);

TEST

— 3 stationTime = StationTime(ePtr); START

TEST TimeSyncSdu(rsPtr) 4 — SYNC

— 5 Enqueue(Q_CS_IND, rxPtr); START

TEST rxPtr->hopCount != LAST_HOP
&& good

6 — PAIR

— 7 — START

PAIR rxPtr->frameCount ==
ePtr->rxSnapCount

8 thatTime = rxPtr->localTime;
thisTime = ePtr->rxSnapShot1;
ePtr->rxThisTxTime = thatTime;
ePtr->rxThisRxTime = thisTime;
syncInterval = ePtr->txThisTock;
recent =
thisTime–ePtr->rxThisTime0 >= 3*syncInterval;

remote =
thisTime–ePtr->rxThisTime1 >= 8*syncInterval;

NEXT

— 9 — START

NEXT recent && remote 10 thisDelta = thisTime – ePtr->rxThisTime1;
thatDelta = thatTime – ePtr->rxThatTime1;
ePtr->rxRated = DivideHi(thisDelta, thatDelta);
ePtr->rxThisTime1 = ePtr->rxThisTime0;
ePtr->rxThatTime1 = ePtr->rxThatTime0;
ePtr->rxThisTime0 = thisTime;
ePtr->rxThatTime0 = thatTime;

LAST

— 11 —
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Row 8.2-1: Update snapshot values on timeSync frame arrival.
Row 8.2-2: Initiate inspection of frames received from the lower-level MAC.
Row 8.2-3: Wait for the next change-of-state.

Row 8.2-5: The non-timeSync frames are passed through.
Row 8.2-xx: Discard obsolete timeSync frames.
Row 8.2-xx: Non-sequential frames are discarded.
Row 8.2-7: Sequential timeSync frames are processed.

Row 8.2-8: Inhibit processing when the frame and snap-shot counts are different.
Row 8.2-9: Broadcast revised timeSync frames over the MAC-relay.

Row 8.2-10: Periodic neighbor-timer ratings are performed.
Row 8.2-11: To reduce computation loads, neighbor-timer ratings are infrequently performed.
Row 8.2-12: The grand-master time is compensated by the timer-rate differences.

LAST — 12 // Summary of TimeSyncRxRelayC()
txPtr = &txInfo;
tsPtr = &(txPtr->service_data_unit);
localTime = ePtr->rxSnapShot1; 
roundTrip = localTime – ePtr->thatTxTime; 
turnRound =

rsPtr->localTime – rsPtr->thatRxTime;
cableDelay = Min(0, roundTrip –
turnRound * ePtr->rxRated);

txPtr->destination_address =
rxPtr->destination_address;

txPtr->source_address = rxPtr->source_address;
tsPtr->protocolType = rsPtr->protocolType;
tsPtr->function = rsPtr->function;
tsPtr->version = rsPtr->version;
tsPtr->grandTime = rsPtr->grandTime;
tsPtr->errorTime = rsPtr->errorTime;
tsPtr->localTime =

ePtr->rxSnapShot1 – cableDelay;
tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->hopCount = rsPtr->hopCount;
tsPtr->syncInterval = ePtr->syncInterval;
Enqueue(Q_MR_HOP, relayFrame);

START

Table 8.2—TimeSyncRxDuplex state machine table

Current

R
ow

Next

state condition action state
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8.4 TimeSyncTxDuplex state machine

8.4.1 Function

The TimeSyncTxDuplex state machine is responsible for saving time parameters from relayed timedSync
frames and forming timeSync frames for transmission over the attached link.

8.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with frames sent from the relay.
Q_ES_REQ—The queue identifier associated with frames sent to the MAC.
Q_TX_SYNC—The queue identifier associated with txSync, sent from the lower levels.

T10ms
A constant the represents a 10 ms value.

8.4.3 State machine variables

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
info

A contents of a lower-level supplied time-synchronization poke indication, including the following:
localTime—The value of stationTime associated with the last timeSync packet arrival.
frameCount—The value of the like-named field within the last timeSync packet arrival.

port
A data structure containing port-specific information comprising the following:

txSnapShot—The value of the info.time field saved from the last transmit-port poke indication.
txSyncFrame—The value of the next to-be-transmitted timeSync frame.
txSeenTime—The stationTime value when the last timeSync frame was received.
txSentTime—The stationTime value when the last timeSync frame enqueued for transmission.

8.4.4 State machine routines

Dequeue(queue)
Enqueue(queue, info)

See 6.3.4.
StationTime(entity)

See 7.2.5.
TimeSyncSdu(info)

See 6.3.4.
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8.4.5 TimeSyncTxDuplex state machine table

The TimeSyncTxDuplex state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSync frames, as illustrated in Table 8.3.

Row 8.3-1: Relayed frames are further checked before being processed.
Row 8.3-2: Transmit periodic timeSync frames.
Row 8.3-3: Update snapshot values on timeSync frame departure.
Row 8.3-4: Wait for the next change-of-state.

Row 8.3-5: The timeSync messages are checked further.
Row 8.3-6: The non-timeSync messages are passed through.

Row 8.3-7: Active timeSync frames are cable-delay compensated and passed through.
Row 8.3-8: Over-aged timeSync frames are discarded.

Table 8.3—TimeSyncTxDuplex state machine table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_MS_REQ))
!= NULL

1 rxPtr = &(rxInfo);
rsPtr = &(rxPtr->service_data_unit);

TEST

(stationTime – ePtr->lastTime)
> T10ms

2 ePtr->lastTime = stationTime; SEND

(cxInfo = Dequeue(Q_TX_SYNC))
!= NULL

3 ePtr->txSnapShot = info.localTime;
ePtr->txSnapCount = info.frameCount;

START

— 4 stationTime = StationTime(ePtr);

TEST TimeSyncSdu(rsPtr) 5 — SINK

— 6 Enqueue(Q_ES_REQ, rxPtr); START

SINK rsPtr->hopCount != HOP_LAST 7 txPtr = &txInfo;
tsPtr = &(txPtr->service_data_unit);
nextTimes = NextTimes(stationTime,
ePtr->rxSyncInterval, ePtr->syncInterval,
ePtr->rxTimed);

ePtr->txFrameCount =
(ePtr->txSnapCount + 1) % COUNT;

tsPtr->hopCount = ePtr->txHopCount;
tsPtr->frameCount = ePtr->txFrameCount;
tsPtr->grandTime = bothTimes.grandTime;
tsPtr->errorTime = bothTimes.errorTime;
tsPtr->localTime = ePtr->txSnapShot;
tsPtr->rxThatTxTime = ePtr->rxThisTxTime;
tsPtr->rxThatRxTime = ePtr->rxThisRxTime;
Enqueue(Q_ES_REQ, txPtr);

SEND

— 8 — START
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9. Wireless state machines

NOTE—This clause is based on indirect knowledge of the 802.11v specifications, as interpreted by the
author, and have not been reviewed by the 802.1 or 802.11v WGs. The intent was to provide a forum for
evaluation of the media-independent MAC-relay interface, while also triggering discussion of 802.11v
design details. As such, this clause is highly preliminary and subject to change.

9.1 Overview

This clause specifies the state machines that support wireless 802.11v-based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the formal specification and the interfaces in
any particular implementation.

9.1.1 Link-dependent indications

The wireless 802.11v TimeSyncRadio state machines are provided with MAC service-interface parameters,
as illustrated within Figure 9.1. These link-dependent indications can be different for bridge ports attached
to alternative media.

The rxSync and txSync indications are localized communications between the MAC-and-PHY and are not
directly visible to the a TimeSync state machines. Client-level interface parameters include the timing
information, based on the formats illustrated within Figure 9.2.

Figure 9.1—Radio interface model

Figure 9.2—Formats of wireless-dependent times
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9.1.2 Service interface overview

A sequence of 802.11v TimeSync service interface actions is illustrated in Figure 9.3. A periodic trigger is
assumed to initiate the initial MLME_PRESENCE_REQUEST.request action. Processing of the returned
MLME_PRESENCE_REQUEST.confirm triggers the following MLME_PRESENCE_RESPONSE.request
action. The sequence completes with the final MLME_PRESENCE_RESPONSE.confirm action.

The properties of these service interfaces are summarized below:

MLME_PRESENCE_REQUEST.request
Generated periodically by the clock-master entity.
Triggers an M1.request, to update clock-slave resident timing parameters.

MLME_PRESENCE_REQUEST.indication
Generated in response to receiving an M1.request message.
Provides t2 and t3 timing information to the clock-slave entity.

MLME_PRESENCE_REQUEST.confirm
Generated after the M1.ack message is returned.
Provides time1 and time4 timing information to the clock-master entity.

MLME_PRESENCE_RESPONSE.request
Generated shortly after processing a returned M1.ack message
Triggers an M1.request, to update clock-slave resident timing parameters.

MLME_PRESENCE_RESPONSE.indication
Generated in response to receiving an M2.request message.
Provides time4, time4–time1, and levelTime information to the clock-slave entity.

MLME_PRESENCE_RESPONSE.confirm
Generated after the M2.ack message is returned.
Confirms completion of the time-synchronization exchange.

Figure 9.3—802.11v time-synchronization interfaces
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9.2 Service interface definitions

9.2.1 MLME_PRESENCE_REQUEST.request

9.2.1.1 Function

TBD…

9.2.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_REQUEST.request {
other_arguments // Arguments for other purposes

}

9.2.2 MLME_PRESENCE_REQUEST.indication

9.2.2.1 Function

TBD…

9.2.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_REQUEST.indication {
other_arguments, // Arguments for other purposes
time_t2, // Arrival time of indication
time_t3 // Departure time of confirm

}

9.2.3 MLME_PRESENCE_REQUEST.confirm

9.2.3.1 Function

TBD…

9.2.3.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_REQUEST.indication {
other_arguments, // Arguments for other purposes
time_t1, // Departure time of request
time_t4 // Arrival time of confirm

}
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9.2.4 MLME_PRESENCE_RESPONSE.request

9.2.4.1 Function

TBD…

9.2.4.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_REQUEST.request {
other_arguments, // Arguments for other purposes
time_t4 // Arrival time of REQUEST.confirm
time_t4t1, // Round-trip time
level_time, // Current media-dependent time

}

9.2.5 MLME_PRESENCE_RESPONSE.indication

9.2.5.1 Function

TBD…

9.2.5.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_RESPONSE.indication {
other_arguments, // Arguments for other purposes
time_t4 // Arrival time of REQUEST.confirm
time_t4t1, // Round-trip time
level_time, // Current media-dependent time

}

9.2.6 MLME_PRESENCE_RESPONSE.confirm

9.2.6.1 Function

TBD…

9.2.6.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_RESPONSE.confirm {
other_arguments, // Arguments for other purposes

}
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9.3 TimeSyncRxRadio state machine

9.3.1 Function

The TimeSyncRxRadio state machine consumes primitives provided by the MAC service interface and (in
response) generates MAC-relay frames.

9.3.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—Queue identifier associated with MAC frames sent into the relay.
Q_S1_IND—Queue identifier for MLME_PRESENCE_REQUEST.indication parameters.
Q_S2_IND—Queue identifier for MLME_PRESENCE_RESPONSE.indication parameters.

9.3.3 State machine variables

args1
A set of values returned within the MLME_PRESENCE_REQUEST.indication service primitive:

fastTime2—A local-timer snapshot corresponding to the time of M1.request reception.
fastTime3—A local-timer snapshot corresponding to the time of M1.ack transmission.

args2
A set of values provided to the MLME_PRESENCE_RESPONSE.indication service primitive:

fastTime4—A neighbor-timer snapshot corresponding to the time of M1.ack reception.
fastTimed—A neighbor-timer snapshot corresponding to a time difference:

(M2.request transmission) – (M1.request transmission)
levelTime—Grand-master synchronized time at the fastTime4 neighbor-time snapshot.

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
port

A data structure containing port-specific information, including the following:
rxFastTime2—Saved args1.fastTime2 value.
rxFastTime3—Saved args1.fastTime3 value.
rxFastTime4—Saved args2.fastTime4 value.
rxFastTimed—Saved args2.fastTimed value.
rxLevelTime—Saved args2.levelTime value.

9.3.4 State machine routines

Dequeue(queue)
Enqueue(queue, info)

See 6.3.4.
SourcePort(entity)

See 7.2.5.
StationTime(entity)
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TimeSyncSdu(info)
See 6.3.4.

9.3.5 TimeSyncRxRadio state table

The TimeSyncRxRadio state machine consumes MAC-provided service-primitive information and forwards
adjusted frames to the MAC-relay function, as illustrated in Table 9.1.

Row 9.1-1: Wait until indication parameters become available.
Row 9.1-2: Update snapshot values based on MLME_PRESENCE_REQUEST.indication parameters.

Row 9.1-3: Wait until indication parameters become available.
Row 9.1-4: Update snapshot values based on MLME_PRESENCE_RESPONSE.indication parameters.
Based on those parameters, generate a timeSync frame for MAC-relay transmission.

Table 9.1—TimeSyncRxRadio state machine table

Current

R
ow

Next

state condition action state

START (req1 = Dequeue(Q_S1_IND))
!= NULL

1 ePtr->rxTurnRound =
req1.fastTime3 – req1.fastTime2;

WAIT

— 2 stationTime = StationTime(ePtr);
radioTime = RadioTime(ePtr);

START

WAIT (rxInfo = Dequeue(Q_S2_IND))
!= NULL

3 rxPtr = &(rxInfo);
txPtr = &(txInfo);
tsPtr = &(txPtr->service_data_unit);
twice = rxPtr->roundTrip – ePtr->rxTurnRound;
TBD, RadioToGrand(req2.radioTime) +
MultiplyHi((twice/2) + moved, RADIO_TIME);

moved = ticksTime – rxPtr->fastTime4;
tsPtr->grandTime = rsPtr->grandTime;
txPtr->localTime = stationTime - lapseTime;
Enqueue(Q_GS_IND, txPtr);

START

— 4 — —
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9.4 TimeSyncTxRadio state machine

9.4.1 Function

The TimeSyncTxRadio state machine consumes MAC-relay frames and (in response) generates calls to the
time-synchronization related MAC service interface.

9.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MR_HOP—The queue identifier associated with MAC frames sent into the relay.
Q_RX_MAC—The queue identifier associated with the received MAC frames.
Q_RX_SYNC—The queue identifier associated with rxSync, sent from the lower levels.

9.4.3 State machine variables

args1
A set of values returned within the MLME_PRESENCE_REQUEST.confirm service primitive:

time1—A local-timer snapshot corresponding to the time of M1.request transmission.
time2—A local-timer snapshot corresponding to the time of M2.request reception.

args2
A set of values provided to the MLME_PRESENCE_REQUEST.request service primitive:

time1—The value of the previously returned args1.time1 value.
timed—The difference of previously returned values: args1.time4 – args1.time1.
levelTime—The value of grandTime associated with the returned args1.time1 timer.

curentTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:

seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 2-40 second.
frame

The contents of a MAC-supplied frame.
reqArgs

MLME_PRESENCE_REQUEST.request parameters unrelated to time-synchronization services.
resArgs

MLME_PRESENCE_RESPONSE.request parameters unrelated to time-synchronization services.
port

A data structure containing port-specific information for determining grandTime values.

9.4.4 State machine routines

Dequeue(queue)
Enqueue(queue, info)
StationTime(entity)
TimeSyncSdu(info)

See 7.2.5.
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9.4.5 TimeSyncTxRadio state table

NOTE—The following state machine is highly preliminary; sequence timeouts and grand-master selection
code are not yet included.

The TimeSyncTxRadio state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timedSync frames, as illustrated in Table 9.2.

Table 9.2—TimeSyncTxRadio state table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_MS_REQ))
!= NULL

1 rxPtr = &(rxInfo);
rsPtr = &(rxPtr->service_data_unit);

SINK

(stationTime – ePtr->lastTime)
> T10ms

2 ePtr->lastTime = stationTime; SEND

(con1 = Dequeue(Q_S1_CON))
!= NULL

3 ePtr->txSnapShot1 = con1.ticksTime1;
ePtr->txRoundTrip =

con1.ticksTime4 – con1.ticksTime1;
phase2 = TRUE;

WAIT

— 4 stationTime = StationTime(ePtr);
radioTime = RadioTime(ePtr);

START

SINK TimeSyncServe(rxPtr) 5 — SERVE

— 6 — START

SERVE rsPtr->hopCount != LAST_HOP 7 ePtr->rxSyncInterval = rsPtr->syncInterval;
ePtr->rxHopCount = rsPtr->hopCount;
ePtr->precedence = rsPtr->precedence;
timePtr->grandTime = rsPtr->grandTime;
timePtr->errorTime = rsPtr->errorTime;
timePtr->stationTime = stationTime;

START

— 8 —

WAIT1 phase2 == TRUE 9 lapseTime =
localTimes.radioTime – ePtr->txSnapShot4;

localTime = localTimes.localTime –
MultiplyHi(lapseTime, RADIO_TIME);

nextTimes = NextTimes(stationTime,
ePtr->rxSyncInterval, ePtr->syncInterval,
ePtr->rxTimes);

req2.ticksTime4 = ePtr->txSnapShot4;
req2.roundTrip = ePtr->txRoundTrip;
req2.levelTime =
GrandToRadio(grandTimes.grandTime);

req2.errorTime = grandTimes.errorTime;
req2.precedence = ePtr->txPrecedence;
req2.hopCount = ePtr->txHopCount;
EnqueueService(Q_S2_REQ, req2);

WAIT2

— 10 — —

WAIT2 (args2 = Dequeue(Q_S2_CON))
== NULL

11 — WAIT1

— 12 — START
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Row 9.2-1: Relayed frames are further checked before being processed.
Row 9.2-2: Initiate periodic service-interface primitive calls.
Row 9.2-4: Wait for the next change-of-state.

Row 9.2-5: Non-timeSync frames are retransmitted in the standard fashion.
Row 9.2-xx: Relevant timeSync parameters are saved for the next periodic transmission.
Row 9.2-6: MAC-relay frames from non grand-master stations are discarded.

Row 9.2-7: Discard obsolete timeSync frames.
Row 9.2-8: Transmit parameters through the MLME_PRESENCE_REQUEST.request interface.

Row 9.2-9: Wait for parameters arriving through the MLME_PRESENCE_REQUEST.confirm interface.
Row 9.2-10: Transmit parameters through the MLME_PRESENCE_RESPONSE.request interface.

Row 9.2-11: Wait for parameters arriving through the MLME_PRESENCE_RESPONSE.confirm interface.
Row 9.2-12: Confirm completion and continue.
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10. Ethernet-PON state machines

NOTE—This clause is based on indirect knowledge of the Ethernet-PON specifications, as interpreted by
the author, and have not been reviewed by the 802.1 or 802.3 WGs. The intent was to provide a forum for
evaluation of the GrandSync interfaces, while also triggering discussion of 802.3-PON design details. As
such, the contents are highly preliminary and subject to change.

10.1 Overview

This clause specifies the state machines that support Ethernet-PON based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the formal specification and the interfaces in
any particular implementation.

10.1.1 Link-dependent indications

The TimeSyncPon state machines have knowledge of network-local synchronized ticksTime timers. With
this knowledge, the TimeSyncPon state machines can operated on frames received from the LLC, as illus-
trated in Figure 10.1. Link-dependent indications could be required for bridge ports attached to alternative
media.

The localTime values are represented as timers that are incremented once every 16 ns interval, as illustrated
on the left side of Figure 10.2. Each synchronized local timer is roughly equivalent to a 6-bit sec (seconds)
field and a 26-bit fraction (fractions of second) field timer, as illustrated on the right side of Figure 10.2.

The Ethernet-PON MAC is supplied with frame transmit/receive snapshots, but these are transparent-to and
not-used-by the TimeSync state machine. Instead, these are used to synchronize the ticksTime values in
associated MACs and the TimeSyncPon state machines have access to these synchronized ticksTime values.

Figure 10.1—PON interface model

Figure 10.2—Format of PON-dependent times
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10.2 timeSyncPon frame format

The timeSyncPon frames facilitate the synchronization of neighboring clock-master and clock-slave sta-
tions. The frame, which is normally sent at 10 ms intervals, includes time-snapshot information and the
identity of the network’s clock master, as illustrated in Figure 10.3. The gray boxes represent physical layer
encapsulation fields that are common across Ethernet frames.

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocolType, 8-bit function,
8-bit version, 14-byte precedence, 80-bit grandTime, 32-bit errorTime, and 8-bit hopCount fields are
specified in 6.2.1.2.

10.2.1 frameCount: An 8-bit field that is incremented by one between successive timeSync frame
transmission.

10.2.2 ticksTime: A value representing local time in units of a 16 ns timer ticks, as illustrated in Figure 10.4.

Figure 10.3—timeSyncPon frame format

Figure 10.4—tickTime format
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4 errorTime — Back-prediction error for grandTime computation

ticks

32 bits

LSBMSB



AVB BRIDGING JggDvj20050416/D0.244
2007-04-23

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 73

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

10.3 Service interface primitives

10.3.1 ES_UNITDATA.indication

10.3.1.1 Function

Provides the TimeSyncRxPon entity with clock-synchronization parameters derived from arriving time-sync
frames.

10.3.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

ES_UNITDATA.indication {
destination_address, // Destination address
source_address, // Optional
priority, // Forwarding priority
service_data_unit, // Delivered content
{ // Contents of the service_data_unit

protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between timeSync and other AVB frames
version, // Distinguishes between timeSync frame versions
precedence, // Precedence for grand-master selection
grandTime, // Global-time snapshot (1-cycle delayed)
errorTime, // Accumulated grandTime error
frameCount, // Identifies the source port
hopCount, // Distance from the grand-master station
ticksTime // Local-time snapshot (1-cycle delayed)

}
}

The parameters of the MA_DATA.indication are described as follows:

The 48-bit destination_address, 48-bit source_address, and 8-bit priority field are specified in 6.2.1.2.

The service_data_unit consists of subfields; for content exchanged with the GrandTime protocol entity,
these fields include the following.

The 16-bit protocolType, 8-bit function, 8-bit version, 14-byte precedence, 80-bit grandTime,
32-bit errorTime, and 8-bit hopCount fields are specified in 6.2.1.2.

10.3.1.2.1 frameCount: An 8-bit consistency-check field that increments on successive frames.

10.3.1.2.2 ticksTime: A 32-bit field that specifies the local free-running time within this subnet, when the
previous timeSync frame was received (see 10.2.2).
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10.3.2 ES_UNITDATA.request

10.3.2.1 Function

Provides the Ethernet-PON entity with clock-synchronization parameters for constructing departing
time-sync frames.

10.3.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

ES_UNITDATA.request
{

destination_address, // Destination address
source_address, // Optional
priority, // Forwarding priority
service_data_unit, // Delivered content
{ // Contents of the service_data_unit

protocolType, // Distinguishes AVB frames from others
function, // Distinguishes between timeSync and other frames
version, // Distinguishes between timeSync frame versions
precedence, // Precedence for grand-master selection
grandTime, // Global-time snapshot (1-cycle delayed)
errorTime, // Accumulated grandTime error
frameCount, // Identifies the source port
hopCount, // Distance from the grand-master station
ticksTime // Local-time snapshot (1-cycle delayed)

}
}

The parameters of the MA_UNITDATA.request are described in 10.3.1.2.
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10.4 TimeSyncRxPon state machine

10.4.1 Function

The TimeSyncRxPon state machine is responsible for receiving MAC-supplied frames, converting their
media-dependent parameters, and sending normalized MAC-relay frames. The sequencing of this state
machine is specified by Table 10.1; details of the computations are specified by the C-code of Annex G.

10.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_GS_IND—Associated with the GrandSync entity (see 6.3.2).
Q_ES_IND—The queue identifier associated with the received MAC frames.

10.4.3 State machine variables

ePtr
A pointer to a entity-specific data structure comprising the following:

syncInterval—The expected interval between time-sync frame transmissions.
rsPtr

A pointer to the service-data-unit portion of the rxInfo storage.
rxInfo

A storage location for received service-interface parameters.
rxPtr

A pointer to the rxInfo storage location.
tsPtr

A pointer to the service-data-unit portion of the txInfo storage.
txInfo

A storage location for to-be-transmitted MS_UNITDATA.indication parameters.
txPtr

A pointer to the txInfo storage location.

10.4.4 State machine routines

Dequeue(queue)
Enqueue(queue, info)

See 6.3.4.
SourcePort(entity)

See 7.2.5.
TicksTime(entity)

Returns the value of the station’s shared media-dependent subnet-synchronized timer.
This 32-bit timer is incremented once at the end of each 16 ns interval.

TimeSyncSdu(info)
See 6.3.4.
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10.4.5 TimeSyncRxPon state machine table

The TimeSyncRxPon state machine associates PHY-provided sync information with arriving timeSync
frames and forwards adjusted frames to the MAC-relay function, as illustrated in Table 8.2.

Row 10.1-1: Initiate inspection of frames received from the lower-level MAC.
Row 10.1-2: Wait for the next frame to arrive.

Row 10.1-3: The timeSync frames are checked further.
Row 10.1-4: The non-timeSync frames are passed through.

Row 10.1-5: Active timeSync frames are adjusted for transfer delays and passed through.
Row 10.1-6: Overly-aged timeSync frames are discarded.

Table 10.1—TimeSyncRxPon state machine table

Current

R
ow

Next

state condition action state

START (rxInfo =
Dequeue(Q_RX_MAC)) != NULL

1 rxPtr = &(rxInfo);
rsPtr = &(rxPtr->service_data_unit);

TEST

— 2 stationTime = StationTime(ePtr);
ticksTime = PonTime(ePtr);

START

TEST TimeSyncSdu(frame) 3 txPtr = &(ePtr->txInfo);
tsPtr = &(txPtr->service_data_unit);

SYNC

— 4 Enqueue(Q_GS_IND, txInfo); START

SYNC rsPtr->hopCount != LAST_HOP 5 lapseTime =
TicksToSmall( ticksTime – rsPtr->ticksTime);

compTime = stationTime –
(lapseTime * PON_TICK_TIME);

txPtr->destination_address =
rsPtr->destination_address;

txPtr->source_address = rsPtr->source_address;
txPtr->protocolType = rsPtr->protocolType;
txPtr->function = rsPtr->function;
txPtr->version = rsPtr->version;
tsPtr->precedence = rsPtr->precedence;
tsPtr->grandTime = rsPtr->grandTime;
tsPtr->errorTime = rsPtr->errorTime;
tsPtr->localTime = compTime;
tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->hopCount = frame.hopCount;
tsPtr->syncInterval = ePtr->syncInterval;
Enqueue(Q_GS_IND, txInfo);

START

— 6 —
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10.5 TimeSyncTxPon state machine

10.5.1 Function

The TimeSyncTxPon state machine is responsible for modifying time-sync MS_UNITDATA.request
parameters to form timeSync frames for transmission over the attached link.

10.5.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.

Q_MS_REQ—Associated with the GrandSync entity (see 6.3.2).
Q_ES_REQ—The queue identifier associated with frames sent to the MAC.

T10ms
A constant the represents a 10 ms value.

10.5.3 State machine variables

ePtr
A pointer to a entity-specific data structure comprising the following:

lastTime—The last message-transmit time; used to space periodic transmissions.
rxDa—The destination_address field from the previous GrandSync message.
rxSa—The source_address field from the previous GrandSync message.
rxProtocolType—The protocolType field from the previous GrandSync message.
rxFunction—The function field from the previous GrandSync message.
rxVersion—The version field from the previous GrandSync message.
rxPrecedence—The precedence field from the previous GrandSync message.
rxHopCount—The hopCount field from the previous GrandSync message.
rxSyncInterval—The syncInterval received from the previous GrandSync message.
syncInterval—The expected interval between time-sync frame transmissions.

lapseTime
A value representing the time lapse between transmission of reception of the timeSync frame.

rsPtr
A pointer to the service-data-unit portion of rxInfo storage.

rxInfo
Storage for the contents of GrandSync messages.

rxPtr
A pointer to the rxInfo storage.

stationTime
See 6.3.3.

tsPtr
A pointer to the service-data-unit portion of txInfo storage.

txInfo
Storage for a to-be-transmitted MAC frame.

txPtr
A pointer to the txInfo storage.

ticksTime
A shared value representing Ethernet-PON media-dependent time.
This 32-bit counter is incremented once very 16 ns.
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10.5.4 State machine routines

Dequeue(queue)
Enqueue(queue, info)

See 6.3.4.
SourcePort(entity)

See 7.2.5.
StationTime(entity)

See 6.3.3.
TicksTime(entity)

See 10.4.4.
TimeSyncSdu(info)

See 6.3.4.

10.5.5 TimeSyncTxPon state machine table

The TimeSyncTxPon state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSyncPon frames, as illustrated in Table 10.2.

Table 10.2—TimeSyncTxPon state machine table

Current

R
ow

Next

state condition action state

START (rxInfo = Dequeue(Q_MS_REQ))
!= NULL

1 rxPtr = &rxInfo;
rsPtr = &(rxPtr->service_data_unit);

SINK

(stationTime – ePtr->lastTime)
> T10ms

2 txPtr = &(txInfo);
tsPtr = (txPtr->service_data_unit);

SEND

— 3 stationTime = StationTime(ePtr);
ticksTime = TicksTime(ePtr);

START

SINK TimeSyncSdu(rsPtr) 4 — SEND

— 5 Enqueue(Q_ES_REQ, rxPtr); START

SAVE rsPtr->hopCount != LAST_HOP 6 ePtr->lastTime = stationTime;
ePtr->rxDa = rxPtr->destination_address;
ePtr->rxSa = txPtr->source_address;
ePtr->rxProtocolType = tsPtr->protocolType;
ePtr->rxFunction = tsPtr->function;
ePtr->rxVersion = tsPtr->version;
ePtr->rxPrecedence = tsPtr->precedence;
ePtr->rxHopCount = tsPtr->hopCount;

START

— 7 —
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Row 10.2-1: Relayed frames are further checked before being processed.
Row 10.2-2: Transmit periodic timeSync frames.
Row 10.2-3: Wait for the next change-of-state.

Row 10.2-4: The timeSync messages have additional checks.
Row 10.2-5: Non-timeSync messages are retransmitted in the standard fashion.

Row 10.2-6: Relevant timeSync parameters are saved for the next periodic transmission.
Row 10.2-7: Over-aged timeSync messages are discarded.

Row 10.2-8: Discard obsolete timeSync frames.
Row 10.2-9: Form the next timeSync frame and enqueue this frame for immediate transmission.

SEND rsPtr->hopCount != LAST_HOP 8 nextTimes = NextTimes(stationTime,
ePtr->rxSyncInterval, ePtr->syncInterval,
ePtr->rxTimed);

txPtr->destination_address = ePtr->rxDa;
txPtr->source_address = ePtr->rxSa;
tsPtr->protocolType = ePtr->rxProtocolType;
tsPtr->function = ePtr->rxFunction;
tsPtr->version = ePtr->rxVersion;
tsPtr->precedence = ePtr->rxPrecedence;
tsPtr->hopCount = ePtr->rxHopCount;
tsPtr->grandTime = nextTimes.grandTime;
tsPtr->errorTime = nextTimes.errorTime;
tsPtr->ticksTime = ticksTime;
Enqueue(Q_ES_REQ, txPtr);

START

— 9 —

Table 10.2—TimeSyncTxPon state machine table

Current

R
ow

Next

state condition action state
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