

State Machines and Message Formats
for IEEE 802.1AS

Revision 0.0
2007.03.08

Geoffrey M. Garner

Samsung
gmgarner@comcast.net

 2

Revision history:

0.0 – Initial document. Contains detailed state machines and corresponding C code for
Pdelay requestor port, Pdelay responder port, peer-to-peer (P2P) transparent clock (TC)
node, receipt of Sync and Follow_Up by P2P TC port, receipt of Sync and Follow_Up by
ordinary clock (OC), and sending of Sync and Follow_Up by OC. Also contains message
formats, copied and pasted from IEEE 1588 version 2, Draft D1-C [1], with material not of
interest to IEEE 802.1AS omitted.

 3

1. Introduction
This document provides state machines and message formats for IEEE 802.1AS. The actions in
the state machines are given in the form of C code. The state machines include: (1) Pdelay
responder port, (2) Pdelay requestor port, (3) peer-to-peer transparent clock node, (4) receipt of
Sync and Follow_Up by a peer-to-peer transparent clock port, (5) receipt of Sync and Follow_Up
by an ordinary clock, (6) sending of Sync and Follow_Up by an ordinary clock, and (7) receiving
and sending of Announce by an ordinary clock. The latter state machine is a simplified version.
Message formats are provided for Announce, Sync, Follow_Up, Pdelay_Req, Pdelay_Resp, and
Pdelay_Resp_Follow_Up. Each message contains a PTP common header, whose format is
provided prior to the message formats (this is to avoid repeating the common header information
with each message). Data types are summarized prior to the common header and messages.

2. State machines and corresponding C code

The state machines and corresponding C code for the various P2P TC and OC functions are given in
the following subsections. The notation used describes state transition diagrams using the Mealy
style, where actions are associated with the transition from one state to another. The following
description is taken from [1] (with additional description added on how C code is used with the state
machines).

State transition diagrams are used to specify behavioral characteristics as illustrated in Figure 1.
Each state transition diagram is composed of the following components:
⎯ Named boxes, representing states

⎯ Directed arrows, indicating transitions from one state to the next.

Each transition is labeled with:
⎯ The enabling event or predicate label for a transition and

⎯ The transition action label for a transition

event_1 OR event_2
result_1 event_3

result_2

(i)

(d)

State_1
or

State_2
State_1

State_2
result_3

Figure 1 : Mealy state transition diagram

 4

Events, for example “event_1,” “event_2” and “event_3” identify the inputs to the state machine.
They can be operation requests and responses, or internal occurrences such as timer expirations.

Predicates, for example “event_1 OR event_2,” identify enabling conditions for transitions. The first
predicate encountered, evaluating from left to right, that is TRUE, selects the transition to execute
and therefore the next state. In the state machines here, the predicates are indicated using standard C
language constructs, e.g., ‘&&’ is used for ‘AND’ and ‘||’ is used for ‘OR’.

Transition actions, for example “result_1,” are the actions that are executed before transitioning to
the next state. These are indicated in the state machines here using C code. Small amounts of C
code are shown next to the associated transition, below the horizontal line that separates the event
and action. In cases where the amount of C code is too large to fit in the diagram next to the
transition, the code is placed in a C function, and the function is indicated in the diagram next to the
transition. The function is in turn defined in the same figure (i.e., the figure containing the state
machine) off to the side.

The next state identifies the state for the state machine after the selected transition action completes.
The value of the current state changes as the transition to the next state occurs.

A bold line for a state box indicates that the box represents multiple states. Any transition shown,
that begins and terminates in such a state box indicates that there has been no change in state. Note
that this construct is not used in the state machines of Revision 0.0 of this document, but may be
used in future revisions.

Transitions, for example the transition resulting in result_3, that have no indicated enabling
conditions, occur via unspecified mechanisms. Unless otherwise stated, in PTP the events giving
rise to these mechanisms are implementation-specific and outside the scope of the standard. Note
that this construct is not used in any of the state machines of Revision 0.0 of this document.

A transition into a state machine, for example “(i),” is indicated by a transition arrow that has no
source state. A transition out of a state machine, for example “(d),” is indicated by a transition arrow
with no destination state. Note that these constructs are not used in any of the state machines of
Revision 0.0 of this document.

Example: As a result of either event_1 or event_2 becoming TRUE, State_1 is replaced with the
value of the next state. In this example the next state is State_2, which is specified as the name of
the state box that is the target of the transition arrow. Before the transition, result_1 occurs.
“event_3” can occur in either State_1 or State_2. The state is unchanged but an action, result_2,
occurs as the result of event_3.

2.1 Pdelay responder port
The state machine and C code for a Pdelay responder P2P TC port are shown in Figure 2-1.

 5

Waiting for Pdelay_Req

(RX_timestamp = TCreceive (Pdelay_Req)) !=
NULL

T2 = RX_timestamp;
seqNum = Pdelay_Req.seqNum;
Pdelay_Resp.seqNum = seqNum;
Pdelay_Resp.correctionField = 0;
Pdelay_Resp.requestingPortIdentity = Pdelay_Req.sourcePortIdentity;
Pdelay_Resp.requestReceiptTimestamp = 0;
TX_timestamp = TCtransmit (Pdelay_Resp);
T3 = TX_timestamp;
Pdelay_Resp_Follow_Up.seqNum = seqNum;
Pdelay_Resp_Follow_Up.correctionField = Pdelay_Req.correctionField;
Pdelay_Resp_Follow_Up.requestingPortIdentity = Pdelay_Req.sourcePortIdentity
Pdelay_Resp_Follow_Up.responseOriginTimestamp = 0;
turnaroundTime = T3 – T2;
Pdelay_Resp_Follow_Up.correctionField += turnaroundTime;
TCtransmit (Pdelay_Resp_Follow_Up);

Integer64 T2, T3, turnaroundTime;
Integer64 TX_timestamp, RX_timestamp;

Integer64 TCreceive(); /* returns timestamp as a
64 bit signed integer, in units of 2^(-16) ns */

Integer64 TCtransmit(); /* returns timestamp as a
64 bit signed integer, in units of 2^(-16) ns */

/* Since TC clock is syntonized and not
synchronized, a full timestamp (seconds plus ns)
is not needed; instead, timestamp can be taken
using a 64-bit syntonized timer that counts in
units of 2^(-16) ns); note that the basic timer
interval can be an integer multiple of this basic
unit if desired */

Figure 2-1. State machine, and corresponding C code, for Pdelay responder P2P TC port

2.2 Pdelay requester port

The state machine and C code for a Pdelay requestor P2P TC port are shown in Figure 2-2.

Waiting for Pdelay_Resp

START

Waiting for
Pdelay_Resp_Follow_Up

Waiting for
pdelay_inteval_timer to

expire

f1()
{
 Pdelay_Req.correctionField = 0;
 Pdelay_Req.originTimestamp = 0;
 Pdelay_Req.seqNum = X;
 TX_timestamp = TCtransmit (Pdelay_Req);
 T1 = TX_timestamp;
 pdelayIntervalTimer = currentTime;
 pdelayRespIntervalTimer = currentTime;
}

X = random();
f1();

((RX_timestamp = TCreceive (Pdelay_Resp)) != NULL
) && (Pdelay_Resp.seqNum == X)

T4 = RX_timestamp;

Compute_link_delay();

X += 1;
f1();

currentTime – pdelayRespIntervalTimer >
pdelayRespIntervalTimerTimeout

X += 1;
f1();

currentTime – pdelayRespIntervalTimer >
pdelayRespIntervalTimerTimeout

X += 1;
f1();

(TCreceive (Pdelay_Resp_Follow_Up) != NULL) &&
(Pdelay_Resp_Follow_Up.seqNum == X)

currentTime – pdelayIntervalTimer > (1 <<
(Port_config_data_set.[thisPort

].log_min_mean_pdelay_req_intervall))

Compute_link_delay ()
{
 /* IEEE 1588 allows 2 options:

 * Option 1 – the delay responder returns the
 * difference T3 – T2 in the
 * Pdelay_Resp_Follow_Up message

 * Option 2 – the delay responder returns T2 in the
 * Pdelay_Resp message
 * and T3 in the Pdelay_Resp_Follow_Up message

 * Option 1 is chosen for 802.1AS, as it is simpler
 */
 turnaroundTime =
 Pdelay_Resp_Follow_Up.correctionField;
 timeDiff = T4 – T1;
 linkDelay = timdDiff – turnaroundTime;
 Port_config_data_set [thisPort].peer_mean_path_delay =
 linkDelay;
}

Integer64 T1, T4, turnaroundTime;
Integer64 TX_timestamp, RX_timestamp;

Integer64 TCreceive(); /* returns timestamp as a
64 bit signed integer, in units of 2^(-16) ns */

Integer64 TCtransmit(); /* returns timestamp as a
64 bit signed integer, in units of 2^(-16) ns */

/* Since TC clock is syntonized and not
synchronized, a full timestamp (seconds plus ns)
is not needed; instead, timestamp can be taken
using a 64-bit syntonized timer that counts in
units of 2^(-16) ns); note that the basic timer
interval can be an integer multiple of this basic
unit if desired */
UInteger16 X;
Integer64 turnaroundTime, linkDelay, timeDiff;

 6

Figure 2-2. State machine, and corresponding C code, for Pdelay requestor P2P TC port

2.3 Peer-to-peer transparent clock node

The state machine and C code for a peer-to-peer transparent clock node are shown in Figure 2-3.

Start

No ports active One port active

(activePort = port_indication())
== ACTIVE

for (j = 1; j <= Default_data_set.number_ports; j++)
 notify_port (j, INACTIVE);

(activePort = port_indication())
== INACTIVE

for (j = 1; j <= Default_data_set.number_ports; j++)
 notify_port (j, INACTIVE);

UInteger32 activePort, i, j,

Figure 2-3. State machine, and corresponding C code, for a peer-to-peer transparent clock node

2.4 Receipt of Sync and Follow_Up by a peer-to-peer transparent
clock port
The state machine and C code for receipt of Sync and Follow_Up by a peer-to-peer transparent
clock port are shown in Figure 2-4.

 7

Inactive, no ports active

START

Active, waiting for Sync Inactive, another port
active

(activePort = node_indication()) ==
INACTIVE

Active, waiting for
Follow_Up

currentTime – followupReceiptTimer
> followupReceiptTimeout

(RX_timestamp =
TCreceive (Sync)) !=

NULL
T1 = RX_timestamp;
freqUpdateIntervalCounter += 1;
seqNum = Sync.seqNum;
followupReceiptTimer = currentTime;

T1 = RX_timestamp;
freqUpdateIntervalCounter= 1;
seqNum = Sync.seqNum;
followUpReceiptTimer = currentTime;
notify_node_that_active();

Sent Sync and Follow_Up

Sync.correctionField = FollowUp.correctionField;
If (freqUpdateIntervalCounter >= freqUpdateInterval)
{
 preciseOriginTimestampNs = convert (
 Follow_Up.preciseOriginTimestamp);
 syncCorrField = Sync.correctionField;
 followUpCorrField = Follow_Up.correctionField;
}
for (portNum = 1; portNum <= Default_data_set.number_ports;
portNum++)
{
 if ((portNum == thisPort) || (blocked(portNum) == TRUE))
 continue;
 TX_timestamp = TCtransmit (Sync, portNum);
 T2 = TX_timestamp;
 residenceTime = T2 – T1;
 Follow_Up.correction_field = residence_time +
Port_config_data_set [thisPort].peer_mean_path_delay;
 TCtransmit (Follow_Up);
}

(TCreceive (Follow_Up) != NULL) &&
(Follow_Up.seqNum == seqNum)

freqUpdateIntervalCounter >=
freqUpdateInterval

freq_update_interval_counter <
freq_update_interval

f1()
{
 freqUpdateIntervalCounter = 0;
 correctedMasterEventTimestamp = preciseOriginTimestampNs +
 syncCorrField + followUpCorrField +
 Port_config_data_set [thisPort].peer_mean_path_delay;
 Freq_offset_relative_to_master = [(T1 – T1Old)/
 (correctedMasterEventTimestamp –
 correctedMasterEventTimestampOld)] – 1;
 Adjust_frequency();
 T1Old = T1;
 correctedMasterEventTimestampOld =
 correctedMasterEventTimestamp;
 syncReceiptTimer = currentTime;
}

f1();

(RX_timestamp =
TCreceive (Sync)) !=

NULL

Notify_node (INACTIVE, thisPort)

currentTime – syncReceiptTimer
> syncReceiptTimeout

Notify_node (INACTIVE, thisPort)

(activePort = node_indication()) ==
INACTIVE

(activePort = node_indication()) ==
ACTIVE

(activePort = node_indication()) ==
ACTIVE

Integer64 T1, T2, T1Old, T2Old, residenceTime;
Integer 64 TX_timestamp, RX_timestamp;
Integer64 syncCorrField, followUpCorrField;
Integer96 preciseOriginTimestampNs;
Integer96 correctedMasterEventTimestamp;
Integer96 correctedMasterEventTimestampOld;

Struct Timestamp
{
 UInteger48 seconds;
 UInteger32 nanoseconds;
}

Integer96 convert (Timestamp X)
{
 Integer96 result;
 result = 1000000000 * X.seconds + X.nanoseconds;
 result <<= 16;
 return (result);
}

Integer64 TCreceive(); /* returns timestamp as a
64 bit signed integer, in units of 2^(-16) ns */

Integer64 TCtransmit(); /* returns timestamp as a
64 bit signed integer, in units of 2^(-16) ns */

/* Since TC clock is syntonized and not
synchronized, a full timestamp (seconds plus ns)
is not needed; instead, timestamp can be taken
using a 64-bit syntonized timer that counts in
units of 2^(-16) ns); note that the basic timer
interval can be an integer multiple of this basic
unit if desired */

Figure 2-4. State machine, and corresponding C code, for receipt of Sync and Follow_Up by a peer-
to-peer transparent clock port

2.5 Receipt of Sync and Follow_Up by an ordinary clock
The state machine and C code for receipt of Sync and Follow_Up by an ordinary clock are shown in
Figure 2-5.

 8

OC in slave state, waiting
for Sync

OC in slave state, waiting
for Follow_Up

(RX_timestamp = OCreceive (Sync)) !=
NULL

T2ns = convert (RX_timestamp);
followupReceipTimer = currentTime;
X = Sync.seqNum;;

(OCreceive (Follow_Up) != NULL) &&
(Follow_Up.seqNum == X)

preciseOriginTimestampNs = convert (Follow_Up.preciseOriginTimestamp);
Offset_from_master = T2ns – preciseOriginTimestampNs – (Sync.correctionField) –
(Follow_Up.correctionField) – (Port_config_data_set [thisPort].peer_mean_path_delay);
synchronize_clock();

currentTime – followupReceiptTimer >
followUpReceiptTimeout

Struct Timestamp
{
 UInteger48 seconds;
 UInteger32 nanoseconds;
}

/* It is assumed the timestamp granularity is = 1 ns. If it is less
than 1 ns, then OCreceive() and OCtransmit must also return
the fractional ns part of the timestamp. */
Timestamp OCreceive();
Timestamp OCtransmit();

Timestamp RX_timestamp;
Integer96 T2ns, preciseOriginTimestampNs;
Integer96 Offset_from_master;

Integer96 convert (Timestamp X)
{
 Integer96 result;
 result = 1000000000 * X.seconds + X.nanoseconds;
 result <<= 16;
 return (result);
}

Figure 2-5. State machine, and corresponding C code, for receipt of Sync and Follow_Up by an
ordinary clock

2.6 Sending of Sync and Follow_Up by an ordinary clock
The state machine and C code for sending of Sync and Follow_Up by an ordinary clock are shown
in Figure 2-6.

OC in master state

currentTime – syncIntervalTimer > (1 <<
(Port_config_data_set [thisPort].log_mean_sync_interval))

seqNum += 1;
Sync.seqNum = seqNum;
Sync.OriginTimestamp = 0;
TX_timestamp = OCtransmit (Sync);
Follow_Up.preciseOriginTimestamp = TX_timestamp;

Follow_Up.correctionField = 0;
Follow_Up.seqNum = seqNum;
OCtransmit (Follow_Up);
syncIntervalTimer = currentTime;

Struct Timestamp
{
 UInteger48 seconds;
 UInteger32 nanoseconds;
}

/* It is assumed the timestamp granularity is = 1 ns. If it is less
than 1 ns, then OCreceive() and OCtransmit must also return
the fractional ns part of the timestamp. */
Timestamp OCreceive();
Timestamp OCtransmit();

Timestamp TX_timestamp;

Figure 2-6. State machine, and corresponding C code, for sending of Sync and Follow_Up by an
ordinary clock

2.7 Simplified state machine for receiving and sending of
Announce by an ordinary clock
A simplified state machine for receiving and sending of Announce by an ordinary clock is
shown in Figure 2-7.

 9

OC in MASTER state
with no new

recommended state

STATE_DECISION_EVENT

OC in MASTER state;
new recommended

state

invoke_bmca();
S = bmca_recommended _state;

Recommended_state ==
MASTER

OC in SLAVE state
with no new

recommended state

OC in SLAVE state
new recommended;

state

STATE_DECISION_EVENT

invoke_bmca();
S = bmca_recommended _state;

OC in PASSIVE state
with no new

recommended state

OC in PASSIVE state;
new recommended

state

STATE_DECISION_EVENT

invoke_bmca();
S = bmca_recommended _state;

Recommended_state ==
MASTER

Recommended_state ==
MASTER

Recommended_state ==
PASSIVE

Recommended_state ==
PASSIVE

Recommended_state ==
SLAVE

Recommended_state ==
SLAVE

Announce_receipt_timeout
_expires

STATE_DECISION_EVENT shall
occur once per Announce interval

- for MASTER, can occurs when
Announce interval timer expires (just
before sending Announce message)

- for SLAVE and PASSIVE, when a
timer whose threshold is equal to the
Announce interval expires.

Send Announce;
reset announce_interval_timer

Receive Announce

Update data sets;

Receive Announce

Update data sets;

Receive Announce

Update data sets;

Figure 2-7. Simplified state machine for receiving and sending of Announce by an ordinary clock

3. Message formats

The subsections below contain the details of those 1588 messages that are used in IEEE 802.1AS.
The material here is copied from clauses 5 and 13 of [1], with modifications for recent agreements
in the P1588 committee.

In the tables in the subsections below, the ‘octets’ column indicates the size of the field in octets.
The ‘offset’ column indicates the offset of the first octet of the field from the start of the PTP
defined fields of the message.

3.1 Data types

3.1.1 Primitive data types specifications
All non-primitive data types are derived from these primitive types. Signed integers are represented in two’s
complement form.

 10

Table 1: Primitive PTP data types
Data type Definition
Boolean TRUE or FALSE.
Enumeration4 4-bit enumerated value
Enumeration8 8-bit enumerated value
Enumeration16 16-bit enumerated value
UInteger4 4-bit unsigned integer
Integer8 8-bit signed integer
UInteger8 8-bit unsigned integer
Integer16 16-bit signed integer
UInteger16 16-bit unsigned integer
Integer32 32-bit signed integer
UInteger32 32-bit unsigned integer
UInteger48 48-bit unsigned integer
Integer64 64-bit signed integer
Nibble 4-bit field not interpreted as a number
Octet 8-bit field not interpreted as a number

3.1.2 Derived data type specifications

3.1.2.1 TimeInterval
The TimeInterval type represents time intervals.

struct TimeInterval
{
 Integer64 scaledNanoseconds;
};

The scaledNanoseconds member is the time interval expressed in units of nanoseconds and multiplied by 2+16.
Positive or negative time intervals outside the maximum range of this data type shall be encoded as the largest
positive and negative values of the data type respectively.

For example: 2.5 ns is expressed as:
(hex) 0x0000 0000 0002 8000

3.1.2.2 Timestamp
The Timestamp type represents a positive time with respect to the epoch.

struct Timestamp
{
 UInteger48 seconds;
 UInteger32 nanoseconds;
};
The seconds member is the integer portion of the timestamp in units of seconds.
The nanoseconds member is the fractional portion of the timestamp in units of nanoseconds.
The nanoseconds member is always less than 109.

For example:
+2.000000001 seconds is represented by seconds = 0x0000 0000 0002 and nanoseconds= 0x0000 0001

 11

3.1.2.3 ClockIdentity
The ClockIdentity type identifies a PTP clock.

typedef Octet[8] ClockIdentity;

3.1.2.4 PortIdentity
The PortIdentity type identifies a PTP port.

struct PortIdentity
{
 ClockIdentity clockIdentity;
 UInteger16 portNumber;
}

3.1.2.5 ClockQuality
The ClockQuality represents the quality of a clock.

struct ClockQuality
{
 UInteger8 clockClass;
 Enumeration8 clockAccuracy;
 Integer16 scaledLogVariance;
}

3.2 General message format requirements
All messages shall have a header and a body. Reserved fields shall be transmitted with the all bits of the field
0 and ignored by the receiver. The data type of the field shall be the type indicated in brackets in the title of
each clause.

The standard Ethernet header and FCS (18 bytes total) must be added to each of the messages of sections 3.4
through 3.9.

3.3 Header

3.3.1 General header specifications
The common header for all PTP messages shall be as specified in Table 2.

Table 2: Common message header

 12

 Bits Octets Offset
7 6 5 4 3 2 1 0

transportSpecific messageType 1 0
reserved versionPTP 1 1

messageLength 2 2
domainNumber 1 4

reserved 1 5
flags 2 6

correctionField 8 8
reserved 4 16

sourcePortIdentity 10 20
sequenceId 2 30

control 1 32
logMeanMessageInterval 1 33

3.3.2 Header field specifications

transportSpecific (Nibble)

The transportSpecific field may be used by a lower layer transport protocol and is defined by the mapping
specification of that protocol in the respective annex of [1].

messageType (Enumeration4)

The value shall indicate the type of the message as defined in Table 3.

Table 3: Values of messageType field
Message Type Message class Value(hex)
SYNC_MESSAGE Event 0
DELAY_REQ_MESSAGE Event 1
PATH_DELAY_REQ_MESSAGE Event 2
PATH_DELAY_RESP_MESSAGE Event 3
Reserved 4-7
FOLLOWUP_MESSAGE General 8
DELAY_RESP_MESSAGE General 9
PATH_DELAY_FOLLOWUP_MESSAGE General A
ANNOUNCE_MESSAGE General B
SIGNALING_MESSAGE General C
MANAGEMENT_MESSAGE General D
Reserved E-F

The Most Significant Bit of the message ID field divides this field in half between Event and General
messages.

NOTE- The reserved nibble immediately following messageType is reserved for future expansion of the messageType
field.

NOTE- The message types DELAY_REQ_MESSAGE, DELAY_RESP_MESSAGE, SIGNALING_MESSAGE, and
MANAGEMENT_MESSAGE are not used in IEEE 802.1AS.

versionPTP (UInteger4)

 13

The value of the versionPTP field shall be the value of the version_number member of the port data set. For
the current version of IEEE 802.1AS, this value is 2.

messageLength (UInteger16)

The value of the messageLength shall be the total number of octets that form the PTP message. The counted
octets start with the first octet of the header and include and terminate with the last octet of the body of the
message as defined in the subsections below.

domainNumber (UInteger8)

For ordinary of boundary clocks, the value shall be the value of the domain_number member of the default
data set of the originating ordinary or boundary clock. For IEEE 802.1AS, this value is 0.

Flags (Octet[2])

The value of the bits of the array shall be as defined in Table 4. For message types where the bit is not defined
in Table 4, the values shall be FALSE.

The flags PTP_profile_Specific1 and PTP_profile_Specific2 are available for use by IEEE 802.1AS if needed.

Table 4: Values of flags field
Octet Bit Message Type Name Description

0 0 Announce LI_61 Value of leap_61 of global time
properties data set

0 1 Announce LI_59 Value of leap_59 of global time
properties data set

0 2 Announce, Sync,
Follow_Up

ALTERNATE_MASTER (not
used by IEEE 802.1AS)

FALSE if the port of the originator is in
the MASTER state. Otherwise TRUE.

0 3 Sync, Pdelay_Resp TWO_STEP For an one-step clock, the value of
TWO_STEP shall be FALSE.

For a two-step clock, the value of
TWO_STEP shall be TRUE.

0 4 Announce TIME_TRACEABLE The value of time_traceable of the
global time properties data set.

0 5 Announce PTP_TIMESCALE The value of ptp_timescale of the global
properties data set.

0 6 All UNICAST (not used by IEEE
802.1AS)

TRUE, if the transport layer protocol
address to which this message was sent
is a unicast address. FALSE, if the
transport layer protocol address to
which this message was sent is a
multicast address.

0 7 Announce FREQUENCY_TRACEABLE The value of frequency_traceable of the
global time properties data set.

1 0 ALL Reserved NOTE-This bit is reserved for the
experimental security mechanism of [1]

1 6 All PTP_profile_Specific1 As defined by an alternate PTP profile
1 7 All PTP_profile_Specific2 As defined by and alternate PTP profile

 14

All unused flags are reserved.

correctionField (Integer64)

The correctionField is the value of the correction measured in nanoseconds and multiplied by 216. E.g. 2.5 ns
is represented as 0x0000000000028000

A value of one in all bits, except the most significant, of the field, shall indicate that the correction is too big to
be represented.

The value of the correctionField depends on the message type as described in Table 5.

Table 5: Correction field semantics
Message Type correctionField description
SYNC_MESSAGE Corrections for fractional nanoseconds, residence time and path

delay in peer-to-peer transparent clocks, and asymmetry
corrections

PATH_DELAY_REQ_MESSAGE Corrections for fractional nanoseconds and asymmetry
corrections

PATH_DELAY_RESP_MESSAGE Corrections for fractional nanoseconds and asymmetry
corrections

FOLLOWUP_MESSAGE Corrections for fractional nanoseconds, residence time and path
delay in peer-to-peer transparent clocks, and asymmetry
corrections

PATH_DELAY_FOLLOWUP_MESSAGE Corrections for fractional nanoseconds and asymmetry
corrections

ANNOUNCE_MESSAGE Zero

sourcePortIdentity (PortIdentity)

The value of the sourcePortIdentity field shall be the value of the port_identity member of the port data set of
the port that originated this message.

sequenceId (UInteger16)

For Sync, Pdelay_Req, and Announce messages, the value of the sequenceId field shall be assigned by the
originator of the message in conformance to subclause 7.3.7 of [1], i.e., a separate pool of sequence numbers
shall be used for each of these message types, and the sequenceId of a message shall be one greater than the
sequenceId of the previous message of the same type, subject to the constraints of rollover. The value of the
sequenceId field of a Follow_Up message shall be equal to the value of the sequenceId field of the
corresponding Sync message. The value of the sequenceId field of a Pdelay_Resp and of a
Pdelay_Resp_Follow_Up message shall be equal to the value of the sequenceId field of the corresponding
Pdelay_Req message.

control (UInteger8)

The value of control field depends on the message type defined in the messageType field, sub-clause 0, and
shall have the value specified in Table 6. The use of this field by the receiver is deprecated. NOTE—This field
is provided for compatibility with hardware designed based on version 1 of this standard. This field is not
used by IEEE 802.1AS.

Table 6: control field enumeration

 15

Message Type control field Value

Sync 0x0

Delay_Req 0x1

Follow_Up 0x2

Delay_Resp 0x3

Management 0x4

All others 0x5

reserved 0x6-0xFF

 logMeanMessageInterval (Integer8)

The value of the logMeanMessageInterval field is determined by the type of the message and shall be as
defined in Table 7.

Table 7: Values of logMeanMessageInterval field
Message Type Value of logMeanMessageInterval

Announce The value of the log_mean_announce_interval member of the default data set
Sync, Follow_Up The value of the log_mean_sync_interval member of the port data set

Pdelay_Req 0x7F
 Pdelay_Resp 0x7F

Pdelay_Resp_Follow_Up 0x7F

3.4 Announce message

3.4.1 General Announce message specifications
The fields of Announce messages shall be as specified in Table 8.

Table 8: Announce message fields

 16

 Bits Octets Offset
7 6 5 4 3 2 1 0

header (section 3.3) 34 0
originTimestamp 10 34
currentUTCOffset 2 44

reserved 1 46
timeSource 1 47

stepsRemoved 2 48
grandmasterPortIdentity 10 50

grandmasterClockQuality 4 60
grandmasterPriority1 1 64
grandmasterPriority2 1 65

parentPortIdentity 10 66

3.4.2 Announce message field specifications

originTimestamp (Timestamp)

The value shall be an estimate of the local time of the originating clock when the Announce message was
transmitted.

currentUTCOffset (Integer16)

The value shall be the value of the current_utc_offset member of the global properties data set.

timeSource (Enumeration8)

The value shall be the value of the time_source member of the global properties data set.

stepsRemoved (UInteger16)

The value of the stepsRemoved field shall be the value of steps_removed of the current data set of the clock
issuing this message.

grandmasterPortIdentity (PortIdentity)

The value of the grandmasterPortIdentity field shall be the value of the grandmaster_port_identity member of
the parent data set.

grandmasterClockQuality (ClockQuality)

The value of the grandmasterClockQuality field shall be the value of the grandmaster_clock_quality member
of the parent data set.

grandmasterPriority1 (UInteger8)

The value of the grandmasterPriority1 field shall be the value of the grandmaster_priority1 member of the
parent data set.

grandmasterPriority2 (UInteger8)

The value of the grandmasterPriority2 field shall be the value of the grandmaster_priority2 member of the
parent data set.

 17

parentPortIdentity (PortIdentity)

The value of the parentPortIdentity field shall be the value of the parent_port_identity member of the parent
data set.

3.5 Sync message

3.5.1 General Sync message specifications
The fields of Sync and Delay_Req messages shall be as specified in Table 9.

Table 9: Sync and Delay_Req message fields

 Bits Octets Offset
7 6 5 4 3 2 1 0

header (section 3.3) 34 0
originTimestamp 10 34

originTimestamp (Timestamp)

The value of the originTimestamp field shall be an estimate of the correct time. For IEEE 802.1AS, zero is an
acceptable estimate of the correct time.

3.6 Follow_Up message

3.6.1 General Follow_Up message specifications
The fields of Follow_Up message shall be as specified in Table 10.

Table 10: Follow_Up message fields

 Bits Octets Offset
7 6 5 4 3 2 1 0

header (section 3.3) 34 0
preciseOriginTimestamp 10 34

preciseOriginTimestamp (Timestamp)

The value of the preciseOriginTimestamp shall be the value of the timestamp for transmission of the
associated Sync message, truncated to the next lowest nanosecond (i.e., excluding any fractional nanoseconds)

3.7 Pdelay_Req message

3.7.1 General Pdelay_Req message specifications
The fields of the Pdelay_Req message shall be as specified in Table 11.

Table 11: Pdelay_Req message fields

 18

 Bits Octets Offset
7 6 5 4 3 2 1 0

header (section 3.3) 34 0
originTimestamp 10 34

Reserved 10 44

originTimestamp (Timestamp)

The value of the originTimestamp shall be 0.

3.8 Pdelay_Resp message

3.8.1 General Pdelay_Resp message specifications
The fields of the Pdelay_Resp message shall be as specified in Table 12.

Table 12: Pdelay_Resp message fields

 Bits Octets Offset
7 6 5 4 3 2 1 0

header (section 3.3) 34 0
requestReceiptTimestamp 10 34

requestingPortIdentity 10 44

requestReceiptTimestamp (Timestamp)

The value of the requestReceiptTimestamp shall be 0.

requestingPortIdentity (PortIdentity)

The value of the requestingPortIdentity shall be the value of the sourcePortIdentity of the corresponding
Pdelay_Req message.

3.9 Pdelay_Resp_Follow_Up message

3.9.1 General Pdelay_Resp_Follow_Up message specifications
The fields of the Pdelay_Resp_Follow_Up message shall be as specified in Table 13.

Table 13: Pdelay_Resp_Follow_Up message fields
 Bits Octets Offset
7 6 5 4 3 2 1 0

header (section 3.3) 34 0
responseOriginTimestamp 10 34

requestingPortIdentity 10 44

responseOriginTimestamp (Timestamp)

 19

The value of the responseOriginTimestamp shall be 0.

requestingPortIdentity (PortIdentity)

The value of the requestingPortIdentity shall be the value of the sourcePortIdentity of the corresponding
Pdelay_Req message.

5. References
[1] IEEE 1588TM/D1-C 4 March 2007 Draft Standard for a Precision Clock Synchronization

Protocol for Networked Measurement and Control Systems, IEEE, March 4, 2007.

[2] IEEE P802.1AS/D0.6, IEEE Standard for Local and Metropolitan Area Networks – Timing and

Synchronization for Time-Sensitive Applications in Bridged Local Area Networks, IEEE,
January 22, 2007.

