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Revision history: 
 

0.0 – Initial document.  Contains detailed state machines and corresponding C code for 
Pdelay requestor port, Pdelay responder port, peer-to-peer (P2P) transparent clock (TC) 
node, receipt of Sync and Follow_Up by P2P TC port, receipt of Sync and Follow_Up by 
ordinary clock (OC), and sending of Sync and Follow_Up by OC.  Also contains message 
formats, copied and pasted from IEEE 1588 version 2, Draft D1-C [1], with material not of 
interest to IEEE 802.1AS omitted.
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1. Introduction 
This document provides state machines and message formats for IEEE 802.1AS.  The actions in 
the state machines are given in the form of C code.  The state machines include:  (1) Pdelay 
responder port, (2) Pdelay requestor port, (3) peer-to-peer transparent clock node, (4) receipt of 
Sync and Follow_Up by a peer-to-peer transparent clock port, (5) receipt of Sync and Follow_Up 
by an ordinary clock, (6) sending of Sync and Follow_Up by an ordinary clock, and (7) receiving 
and sending of Announce by an ordinary clock.  The latter state machine is a simplified version. 
Message formats are provided for Announce, Sync, Follow_Up, Pdelay_Req, Pdelay_Resp,  and 
Pdelay_Resp_Follow_Up.  Each message contains a PTP common header, whose format is 
provided prior to the message formats (this is to avoid repeating the common header information 
with each message).  Data types are summarized prior to the common header and messages. 

2. State machines and corresponding C code 
 
The state machines and corresponding C code for the various P2P TC and OC functions are given in 
the following subsections.  The notation used describes state transition diagrams using the Mealy 
style, where actions are associated with the transition from one state to another.  The following 
description is taken from [1] (with additional description added on how C code is used with the state 
machines). 
 
State transition diagrams are used to specify behavioral characteristics as illustrated in Figure 1. 
Each state transition diagram is composed of the following components: 
⎯ Named boxes, representing states 

⎯ Directed arrows, indicating transitions from one state to the next. 

Each transition is labeled with: 
⎯ The enabling event or predicate label for a transition and 

⎯ The transition action label for a transition 

event_1 OR  event_2
result_1 event_3

result_2

(i)

(d)

State_1
or

State_2
State_1

State_2
result_3

 

Figure 1 : Mealy state transition diagram  
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Events, for example “event_1,” “event_2” and “event_3” identify the inputs to the state machine. 
They can be operation requests and responses, or internal occurrences such as timer expirations. 
 
Predicates, for example “event_1 OR event_2,” identify enabling conditions for transitions. The first 
predicate encountered, evaluating from left to right, that is TRUE, selects the transition to execute 
and therefore the next state.  In the state machines here, the predicates are indicated using standard C 
language constructs, e.g., ‘&&’ is used for ‘AND’ and ‘||’ is used for ‘OR’. 
 
Transition actions, for example “result_1,” are the actions that are executed before transitioning to 
the next state.  These are indicated in the state machines here using C code.  Small amounts of C 
code are shown next to the associated transition, below the horizontal line that separates the event 
and action.  In cases where the amount of C code is too large to fit in the diagram next to the 
transition, the code is placed in a C function, and the function is indicated in the diagram next to the 
transition.  The function is in turn defined in the same figure (i.e., the figure containing the state 
machine) off to the side. 
 
The next state identifies the state for the state machine after the selected transition action completes. 
The value of the current state changes as the transition to the next state occurs. 
 
A bold line for a state box indicates that the box represents multiple states. Any transition shown, 
that begins and terminates in such a state box indicates that there has been no change in state.  Note 
that this construct is not used in the state machines of Revision 0.0 of this document, but may be 
used in future revisions. 
 
Transitions, for example the transition resulting in result_3, that have no indicated enabling 
conditions, occur via unspecified mechanisms. Unless otherwise stated, in PTP the events giving 
rise to these mechanisms are implementation-specific and outside the scope of the standard.  Note 
that this construct is not used in any of the state machines of Revision 0.0 of this document. 
 
A transition into a state machine, for example “(i),” is indicated by a transition arrow that has no 
source state. A transition out of a state machine, for example “(d),” is indicated by a transition arrow 
with no destination state.  Note that these constructs are not used in any of the state machines of 
Revision 0.0 of this document. 
 
Example: As a result of either event_1 or event_2 becoming TRUE, State_1 is replaced with the 
value of the next state. In this example the next state is State_2, which is specified as the name of 
the state box that is the target of the transition arrow. Before the transition, result_1 occurs. 
“event_3” can occur in either State_1 or State_2. The state is unchanged but an action, result_2, 
occurs as the result of event_3. 

2.1 Pdelay responder port 
The state machine and C code for a Pdelay responder P2P TC port are shown in Figure 2-1. 
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Waiting for Pdelay_Req

(RX_timestamp = TCreceive (Pdelay_Req) ) != 
NULL

T2 = RX_timestamp;
seqNum = Pdelay_Req.seqNum;
Pdelay_Resp.seqNum = seqNum;
Pdelay_Resp.correctionField = 0;
Pdelay_Resp.requestingPortIdentity = Pdelay_Req.sourcePortIdentity;
Pdelay_Resp.requestReceiptTimestamp = 0;
TX_timestamp = TCtransmit (Pdelay_Resp);
T3 = TX_timestamp;
Pdelay_Resp_Follow_Up.seqNum = seqNum;
Pdelay_Resp_Follow_Up.correctionField = Pdelay_Req.correctionField;
Pdelay_Resp_Follow_Up.requestingPortIdentity = Pdelay_Req.sourcePortIdentity
Pdelay_Resp_Follow_Up.responseOriginTimestamp = 0;
turnaroundTime = T3 – T2;
Pdelay_Resp_Follow_Up.correctionField += turnaroundTime;
TCtransmit ( Pdelay_Resp_Follow_Up);

Integer64 T2, T3, turnaroundTime;
Integer64 TX_timestamp, RX_timestamp;

Integer64 TCreceive(); /* returns timestamp as a 
64 bit signed integer, in units of 2^(-16) ns */

Integer64 TCtransmit(); /* returns timestamp as a 
64 bit signed integer, in units of 2^(-16) ns */

/* Since TC clock is syntonized and not 
synchronized, a full timestamp (seconds plus ns) 
is not needed; instead, timestamp can be taken 
using a 64-bit syntonized timer that counts in 
units of 2^(-16) ns); note that the basic timer 
interval can be an integer multiple of this basic 
unit if desired */

 
 

Figure 2-1.  State machine, and corresponding C code, for Pdelay responder P2P TC port 

2.2 Pdelay requester port 
 
The state machine and C code for a Pdelay requestor P2P TC port are shown in Figure 2-2. 

Waiting for Pdelay_Resp

START

Waiting for 
Pdelay_Resp_Follow_Up

Waiting for 
pdelay_inteval_timer to 

expire

f1()
{
     Pdelay_Req.correctionField = 0;
     Pdelay_Req.originTimestamp = 0;
     Pdelay_Req.seqNum = X;
     TX_timestamp = TCtransmit ( Pdelay_Req);
     T1 = TX_timestamp;
     pdelayIntervalTimer = currentTime;
     pdelayRespIntervalTimer = currentTime;
}

X = random();
f1();

((RX_timestamp = TCreceive (Pdelay_Resp)) != NULL 
) && (Pdelay_Resp.seqNum == X)

T4 = RX_timestamp;

Compute_link_delay();

X += 1;
f1();

currentTime – pdelayRespIntervalTimer > 
pdelayRespIntervalTimerTimeout

X += 1;
f1();

currentTime – pdelayRespIntervalTimer > 
pdelayRespIntervalTimerTimeout

X += 1;
f1();

(TCreceive (Pdelay_Resp_Follow_Up) != NULL ) && 
(Pdelay_Resp_Follow_Up.seqNum == X)

currentTime – pdelayIntervalTimer > (1 << 
(Port_config_data_set.[ thisPort 

].log_min_mean_pdelay_req_intervall))

Compute_link_delay ()
{
      /* IEEE 1588 allows 2 options:

       * Option 1 – the delay responder returns the
       * difference T3 – T2 in the 
       * Pdelay_Resp_Follow_Up message

       * Option 2 – the delay responder returns T2 in the
       * Pdelay_Resp message
       * and T3 in the Pdelay_Resp_Follow_Up message

        * Option 1 is chosen for 802.1AS, as it is simpler
        */
        turnaroundTime = 
        Pdelay_Resp_Follow_Up.correctionField;
        timeDiff = T4 – T1;
        linkDelay = timdDiff – turnaroundTime;
        Port_config_data_set [thisPort].peer_mean_path_delay =
        linkDelay;
}

Integer64 T1, T4, turnaroundTime;
Integer64 TX_timestamp, RX_timestamp;

Integer64 TCreceive(); /* returns timestamp as a 
64 bit signed integer, in units of 2^(-16) ns */

Integer64 TCtransmit(); /* returns timestamp as a 
64 bit signed integer, in units of 2^(-16) ns */

/* Since TC clock is syntonized and not 
synchronized, a full timestamp (seconds plus ns) 
is not needed; instead, timestamp can be taken 
using a 64-bit syntonized timer that counts in 
units of 2^(-16) ns); note that the basic timer 
interval can be an integer multiple of this basic 
unit if desired */
UInteger16 X;
Integer64 turnaroundTime, linkDelay, timeDiff;
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Figure 2-2.  State machine, and corresponding C code, for Pdelay requestor P2P TC port 
 
 

2.3 Peer-to-peer transparent clock node 
 
The state machine and C code for a peer-to-peer transparent clock node are shown in Figure 2-3. 
 
 

Start

No ports active One port active

(activePort = port_indication()) 
== ACTIVE

for (j = 1; j <= Default_data_set.number_ports; j++)
     notify_port (j, INACTIVE);

(activePort = port_indication()) 
== INACTIVE

for (j = 1; j <= Default_data_set.number_ports; j++)
     notify_port (j, INACTIVE);

UInteger32 activePort, i, j, 

 
 

Figure 2-3.  State machine, and corresponding C code, for a peer-to-peer transparent clock node 
 

2.4 Receipt of Sync and Follow_Up by a peer-to-peer transparent 
clock port 
The state machine and C code for receipt of Sync and Follow_Up by a peer-to-peer transparent 
clock port are shown in Figure 2-4. 
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Inactive, no ports active

START

Active, waiting for Sync Inactive, another port 
active

(activePort = node_indication()) == 
INACTIVE

Active, waiting for 
Follow_Up

currentTime – followupReceiptTimer 
> followupReceiptTimeout

(RX_timestamp = 
TCreceive (Sync)) != 

NULL
T1 = RX_timestamp;
freqUpdateIntervalCounter += 1;
seqNum = Sync.seqNum;
followupReceiptTimer = currentTime;

T1 = RX_timestamp;
freqUpdateIntervalCounter= 1;
seqNum = Sync.seqNum;
followUpReceiptTimer = currentTime;
notify_node_that_active();

Sent Sync and Follow_Up

Sync.correctionField = FollowUp.correctionField;
If (freqUpdateIntervalCounter >= freqUpdateInterval)
{
   preciseOriginTimestampNs = convert (
                Follow_Up.preciseOriginTimestamp);
   syncCorrField = Sync.correctionField;
   followUpCorrField = Follow_Up.correctionField;
}
for (portNum = 1; portNum <= Default_data_set.number_ports; 
portNum++)
{
     if ((portNum == thisPort) || (blocked(portNum) == TRUE))
        continue;
     TX_timestamp = TCtransmit (Sync, portNum);
     T2 = TX_timestamp;
     residenceTime = T2 – T1;
     Follow_Up.correction_field = residence_time  +     
Port_config_data_set [thisPort].peer_mean_path_delay;
     TCtransmit (Follow_Up);
}

(TCreceive (Follow_Up) != NULL) && 
(Follow_Up.seqNum == seqNum)

freqUpdateIntervalCounter >= 
freqUpdateInterval

freq_update_interval_counter < 
freq_update_interval

f1()
{
     freqUpdateIntervalCounter = 0;
     correctedMasterEventTimestamp = preciseOriginTimestampNs  +
             syncCorrField + followUpCorrField +
             Port_config_data_set [thisPort].peer_mean_path_delay;
     Freq_offset_relative_to_master = [(T1 – T1Old)/
              (correctedMasterEventTimestamp –
                      correctedMasterEventTimestampOld)] – 1;
     Adjust_frequency();
     T1Old = T1;
     correctedMasterEventTimestampOld =
                                  correctedMasterEventTimestamp;
      syncReceiptTimer = currentTime;
}

f1();

(RX_timestamp = 
TCreceive (Sync)) != 

NULL

Notify_node (INACTIVE, thisPort)

currentTime – syncReceiptTimer 
> syncReceiptTimeout

Notify_node (INACTIVE, thisPort)

(activePort = node_indication()) == 
INACTIVE

(activePort = node_indication()) == 
ACTIVE

(activePort = node_indication()) == 
ACTIVE

Integer64 T1, T2, T1Old, T2Old, residenceTime;
Integer 64 TX_timestamp, RX_timestamp;
Integer64 syncCorrField, followUpCorrField;
Integer96 preciseOriginTimestampNs;
Integer96 correctedMasterEventTimestamp;
Integer96 correctedMasterEventTimestampOld;

Struct Timestamp
{
     UInteger48 seconds;
     UInteger32 nanoseconds;
}

Integer96 convert (Timestamp X)
{
     Integer96 result;
     result = 1000000000 * X.seconds + X.nanoseconds;
     result <<= 16;
     return (result);
}

Integer64 TCreceive(); /* returns timestamp as a 
64 bit signed integer, in units of 2^(-16) ns */

Integer64 TCtransmit(); /* returns timestamp as a 
64 bit signed integer, in units of 2^(-16) ns */

/* Since TC clock is syntonized and not 
synchronized, a full timestamp (seconds plus ns) 
is not needed; instead, timestamp can be taken 
using a 64-bit syntonized timer that counts in 
units of 2^(-16) ns); note that the basic timer 
interval can be an integer multiple of this basic 
unit if desired */

 
 

Figure 2-4.  State machine, and corresponding C code, for receipt of Sync and Follow_Up by a peer-
to-peer transparent clock port 

 

2.5 Receipt of Sync and Follow_Up by an ordinary clock 
The state machine and C code for receipt of Sync and Follow_Up by an ordinary clock are shown in 
Figure 2-5. 
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OC in slave state, waiting 
for Sync

OC in slave state, waiting 
for Follow_Up

(RX_timestamp = OCreceive (Sync)) != 
NULL

T2ns = convert (RX_timestamp);
followupReceipTimer = currentTime; 
X = Sync.seqNum;;

(OCreceive (Follow_Up) != NULL) && 
(Follow_Up.seqNum == X)

preciseOriginTimestampNs = convert (Follow_Up.preciseOriginTimestamp);
Offset_from_master = T2ns – preciseOriginTimestampNs – (Sync.correctionField) – 
(Follow_Up.correctionField) – (Port_config_data_set [thisPort].peer_mean_path_delay);
synchronize_clock();

currentTime – followupReceiptTimer > 
followUpReceiptTimeout

Struct Timestamp
{
     UInteger48 seconds;
     UInteger32 nanoseconds;
}

/* It is assumed the timestamp granularity is  = 1 ns.  If it is less 
than 1 ns, then OCreceive() and OCtransmit must also return 
the fractional ns part of the timestamp. */
Timestamp OCreceive();
Timestamp OCtransmit();

Timestamp RX_timestamp;
Integer96 T2ns, preciseOriginTimestampNs;
Integer96 Offset_from_master;

Integer96 convert (Timestamp X)
{
     Integer96 result;
     result = 1000000000 * X.seconds + X.nanoseconds;
     result <<= 16;
     return (result);
}

 
 

Figure 2-5.  State machine, and corresponding C code, for receipt of Sync and Follow_Up by an 
ordinary clock 

 

2.6 Sending of Sync and Follow_Up by an ordinary clock 
The state machine and C code for sending of Sync and Follow_Up by an ordinary clock are shown 
in Figure 2-6. 
 

OC in master state

currentTime – syncIntervalTimer > (1 << 
(Port_config_data_set [thisPort].log_mean_sync_interval))

seqNum += 1;
Sync.seqNum = seqNum;
Sync.OriginTimestamp = 0;
TX_timestamp = OCtransmit (Sync);
Follow_Up.preciseOriginTimestamp = TX_timestamp;

Follow_Up.correctionField = 0;
Follow_Up.seqNum = seqNum;
OCtransmit (Follow_Up);
syncIntervalTimer = currentTime;

Struct Timestamp
{
     UInteger48 seconds;
     UInteger32 nanoseconds;
}

/* It is assumed the timestamp granularity is  = 1 ns.  If it is less 
than 1 ns, then OCreceive() and OCtransmit must also return 
the fractional ns part of the timestamp. */
Timestamp OCreceive();
Timestamp OCtransmit();

Timestamp TX_timestamp;

 
 
Figure 2-6.  State machine, and corresponding C code, for sending of Sync and Follow_Up by an 
ordinary clock 
 

2.7 Simplified state machine for receiving and sending of 
Announce by an ordinary clock 
A simplified state machine for receiving and sending of Announce by an ordinary clock is 
shown in Figure 2-7.   
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OC in MASTER state 
with no new 

recommended state

STATE_DECISION_EVENT 

OC in MASTER state; 
new recommended 

state

invoke_bmca();
S = bmca_recommended _state;

Recommended_state == 
MASTER

OC in SLAVE state 
with no new 

recommended state

OC in SLAVE state 
new recommended; 

state

STATE_DECISION_EVENT 

invoke_bmca();
S = bmca_recommended _state;

OC in PASSIVE state 
with no new 

recommended state

OC in PASSIVE state; 
new recommended 

state

STATE_DECISION_EVENT 

invoke_bmca();
S = bmca_recommended _state;

Recommended_state == 
MASTER

Recommended_state == 
MASTER

Recommended_state == 
PASSIVE

Recommended_state == 
PASSIVE

Recommended_state == 
SLAVE

Recommended_state == 
SLAVE

Announce_receipt_timeout
_expires

STATE_DECISION_EVENT shall 
occur once per Announce interval

- for MASTER, can occurs when 
Announce interval timer expires (just 
before sending Announce message)

- for SLAVE and PASSIVE, when a 
timer whose threshold is equal to the 
Announce interval expires.

Send Announce;
reset announce_interval_timer

Receive Announce

Update data sets;

Receive Announce

Update data sets;

Receive Announce

Update data sets;

 
 

Figure 2-7.  Simplified state machine for receiving and sending of Announce by an ordinary clock 
 

3.  Message formats 
 
The subsections below contain the details of those 1588 messages that are used in IEEE 802.1AS.  
The material here is copied from clauses 5 and 13 of [1], with modifications for recent agreements 
in the P1588 committee. 
 
In the tables in the subsections below, the ‘octets’ column indicates the size of the field in octets. 
The ‘offset’ column indicates the offset of the first octet of the field from the start of the PTP 
defined fields of the message. 
 

3.1 Data types 

3.1.1 Primitive data types specifications 
All non-primitive data types are derived from these primitive types. Signed integers are represented in two’s 
complement form. 
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Table 1: Primitive PTP data types 
Data type Definition 
Boolean TRUE or FALSE. 
Enumeration4 4-bit enumerated value 
Enumeration8 8-bit enumerated value 
Enumeration16 16-bit enumerated value 
UInteger4 4-bit unsigned integer 
Integer8 8-bit signed integer 
UInteger8 8-bit unsigned integer 
Integer16 16-bit signed integer 
UInteger16 16-bit unsigned integer 
Integer32 32-bit signed integer 
UInteger32 32-bit unsigned integer 
UInteger48 48-bit unsigned integer 
Integer64 64-bit signed integer 
Nibble 4-bit field not interpreted as a number 
Octet 8-bit field not interpreted as a number 

3.1.2 Derived data type specifications 

3.1.2.1 TimeInterval  
The TimeInterval type represents time intervals. 
 
struct TimeInterval 
{ 
 Integer64 scaledNanoseconds; 
}; 
 
The scaledNanoseconds member is the time interval expressed in units of nanoseconds and multiplied by 2+16.  
Positive or negative time intervals outside the maximum range of this data type shall be encoded as the largest 
positive and negative values of the data type respectively. 
 
For example: 2.5 ns is expressed as:  
(hex) 0x0000 0000 0002 8000 
 

3.1.2.2 Timestamp  
The Timestamp type represents a positive time with respect to the epoch. 
 
struct Timestamp 
{ 
 UInteger48 seconds; 
 UInteger32 nanoseconds; 
}; 
The seconds member is the integer portion of the timestamp in units of seconds. 
The nanoseconds member is the fractional portion of the timestamp in units of nanoseconds. 
The nanoseconds member is always less than 109. 
 
For example: 
+2.000000001 seconds is represented by seconds = 0x0000 0000 0002 and nanoseconds= 0x0000 0001 
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3.1.2.3 ClockIdentity  
The ClockIdentity type identifies a PTP clock. 
 
typedef Octet[8]  ClockIdentity; 
 

3.1.2.4 PortIdentity  
The PortIdentity type identifies a PTP port. 
 
struct PortIdentity 
{ 
 ClockIdentity clockIdentity;     
 UInteger16 portNumber; 
} 
 

3.1.2.5 ClockQuality  
The ClockQuality represents the quality of a clock. 
 
struct ClockQuality 
{ 
 UInteger8 clockClass; 
 Enumeration8 clockAccuracy; 
 Integer16 scaledLogVariance; 
} 
 
 
 

3.2 General message format requirements 
All messages shall have a header and a body.  Reserved fields shall be transmitted with the all bits of the field 
0 and ignored by the receiver.  The data type of the field shall be the type indicated in brackets in the title of 
each clause. 
 
The standard Ethernet header and FCS (18 bytes total) must be added to each of the messages of sections 3.4 
through 3.9. 

3.3 Header 

3.3.1 General header specifications 
The common header for all PTP messages shall be as specified in Table 2.  

Table 2: Common message header 
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   Bits     Octets Offset 
7 6 5 4 3 2 1 0   

transportSpecific messageType 1 0 
reserved versionPTP 1 1 

messageLength 2 2 
domainNumber  1 4 

reserved 1 5 
flags 2 6 

correctionField 8 8 
reserved 4 16 

sourcePortIdentity 10 20 
sequenceId 2 30 

control 1 32 
logMeanMessageInterval 1 33 

3.3.2 Header field specifications 

transportSpecific (Nibble) 

The transportSpecific field may be used by a lower layer transport protocol and is defined by the mapping 
specification of that protocol in the respective annex of [1].   

messageType (Enumeration4) 

The value shall indicate the type of the message as defined in Table 3. 

Table 3: Values of messageType field  
Message Type Message class Value(hex) 
SYNC_MESSAGE Event 0 
DELAY_REQ_MESSAGE Event 1 
PATH_DELAY_REQ_MESSAGE Event 2 
PATH_DELAY_RESP_MESSAGE  Event 3 
Reserved  4-7 
FOLLOWUP_MESSAGE General 8 
DELAY_RESP_MESSAGE General 9 
PATH_DELAY_FOLLOWUP_MESSAGE General A 
ANNOUNCE_MESSAGE General B 
SIGNALING_MESSAGE General C 
MANAGEMENT_MESSAGE General D 
Reserved  E-F 

 
The Most Significant Bit of the message ID field divides this field in half between Event and General 
messages.  

NOTE- The reserved nibble immediately following messageType is reserved for future expansion of the messageType 
field.  

NOTE- The message types DELAY_REQ_MESSAGE, DELAY_RESP_MESSAGE, SIGNALING_MESSAGE, and 
MANAGEMENT_MESSAGE are not used in IEEE 802.1AS. 

versionPTP (UInteger4) 
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The value of the versionPTP field shall be the value of the version_number member of the port data set.  For 
the current version of IEEE 802.1AS, this value is 2. 

messageLength (UInteger16) 

The value of the messageLength shall be the total number of octets that form the PTP message.  The counted 
octets start with the first octet of the header and include and terminate with the last octet of the body of the 
message as defined in the subsections below. 

domainNumber (UInteger8) 

For ordinary of boundary clocks, the value shall be the value of the domain_number member of the default 
data set of the originating ordinary or boundary clock.  For IEEE 802.1AS, this value is 0. 

Flags (Octet[2])   

The value of the bits of the array shall be as defined in Table 4. For message types where the bit is not defined 
in Table 4, the values shall be FALSE. 
 
The flags PTP_profile_Specific1 and PTP_profile_Specific2 are available for use by IEEE 802.1AS if needed. 
 

Table 4: Values of flags field 
Octet Bit Message Type Name Description 

0 0 Announce LI_61 Value of leap_61 of global time 
properties data set 

0 1 Announce LI_59 Value of leap_59 of global time 
properties data set 

0 2 Announce, Sync, 
Follow_Up 

ALTERNATE_MASTER (not 
used by IEEE 802.1AS) 

FALSE if the port of the originator is in 
the MASTER state. Otherwise TRUE.  

0 3 Sync, Pdelay_Resp TWO_STEP  For an one-step clock, the value of  
TWO_STEP  shall be FALSE. 
 
For a two-step clock, the value of  
TWO_STEP shall be TRUE. 
 

0 4 Announce TIME_TRACEABLE The value of time_traceable of the 
global time properties data set. 

0 5 Announce PTP_TIMESCALE The value of ptp_timescale of the global 
properties data set. 

0 6 All UNICAST (not used by IEEE 
802.1AS) 

TRUE, if the transport layer protocol 
address to which this message was sent 
is a unicast address.  FALSE, if the 
transport layer protocol address to 
which this message was sent is a 
multicast address.   

0 7 Announce FREQUENCY_TRACEABLE The value of frequency_traceable of the 
global time properties data set. 

1 0 ALL Reserved NOTE-This bit is reserved for the 
experimental security mechanism of [1] 

1 6 All PTP_profile_Specific1 As defined by an alternate PTP profile 
1 7 All PTP_profile_Specific2 As defined by and alternate PTP profile 
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All unused flags are reserved. 

correctionField (Integer64) 

The correctionField is the value of the correction measured in nanoseconds and multiplied by 216. E.g. 2.5 ns 
is represented as 0x0000000000028000 
 
A value of one in all bits, except the most significant, of the field, shall indicate that the correction is too big to 
be represented.   
 
The value of the correctionField depends on the message type as described in Table 5. 

Table 5: Correction field semantics 
Message Type correctionField description 
SYNC_MESSAGE Corrections for fractional nanoseconds, residence time and path 

delay in peer-to-peer transparent clocks, and asymmetry 
corrections 

PATH_DELAY_REQ_MESSAGE Corrections for fractional nanoseconds and asymmetry 
corrections 

PATH_DELAY_RESP_MESSAGE  Corrections for fractional nanoseconds and asymmetry 
corrections 

FOLLOWUP_MESSAGE Corrections for fractional nanoseconds, residence time and path 
delay in peer-to-peer transparent clocks, and asymmetry 
corrections 

PATH_DELAY_FOLLOWUP_MESSAGE Corrections for fractional nanoseconds and asymmetry 
corrections 

ANNOUNCE_MESSAGE Zero 
 

sourcePortIdentity (PortIdentity) 

The value of the sourcePortIdentity field shall be the value of the port_identity member of the port data set of 
the port that originated this message.  

sequenceId (UInteger16) 

For Sync, Pdelay_Req, and Announce messages, the value of the sequenceId field shall be assigned by the 
originator of the message in conformance to  subclause 7.3.7 of [1], i.e., a separate pool of sequence numbers 
shall be used for each of these message types, and the sequenceId of a message shall be one greater than the 
sequenceId of the previous message of the same type, subject to the constraints of rollover.  The value of the 
sequenceId field of a Follow_Up message shall be equal to the value of the sequenceId field of the 
corresponding Sync message.  The value of the sequenceId field of a Pdelay_Resp and of a 
Pdelay_Resp_Follow_Up message shall be equal to the value of the sequenceId field of the corresponding 
Pdelay_Req message. 

control (UInteger8) 

The value of control field depends on the message type defined in the messageType field, sub-clause 0, and 
shall have the value specified in Table 6. The use of this field by the receiver is deprecated. NOTE—This field 
is provided for compatibility with hardware designed based on version 1 of this standard.  This field is not 
used by IEEE 802.1AS. 

Table 6: control field enumeration 
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Message Type control field Value 

Sync 0x0 

Delay_Req 0x1 

Follow_Up 0x2 

Delay_Resp 0x3 

Management 0x4 

All others 0x5 

reserved 0x6-0xFF 
 

 logMeanMessageInterval (Integer8) 

The value of the logMeanMessageInterval field is determined by the type of the message and shall be as 
defined in Table 7.  

Table 7: Values of logMeanMessageInterval field   
Message Type Value of logMeanMessageInterval

Announce The value of the log_mean_announce_interval member of the default data set 
Sync, Follow_Up The value of the log_mean_sync_interval member of the port data set  

Pdelay_Req  0x7F 
 Pdelay_Resp  0x7F 

Pdelay_Resp_Follow_Up  0x7F 
   

3.4 Announce message 

3.4.1 General Announce message specifications 
The fields of Announce messages shall be as specified in Table 8.  
 

Table 8: Announce message fields 
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   Bits     Octets Offset 
7 6 5 4 3 2 1 0   

header (section 3.3) 34 0 
originTimestamp 10 34 
currentUTCOffset 2 44 

reserved 1 46 
timeSource 1 47 

stepsRemoved 2 48 
grandmasterPortIdentity 10 50 

grandmasterClockQuality 4 60 
grandmasterPriority1 1 64 
grandmasterPriority2 1 65 

parentPortIdentity 10 66 

3.4.2 Announce message field specifications 

originTimestamp (Timestamp)  

The value shall be an estimate of the local time of the originating clock when the Announce message was 
transmitted.  

currentUTCOffset (Integer16) 

The value shall be the value of the current_utc_offset member of the global properties data set. 

timeSource (Enumeration8) 

The value shall be the value of the time_source member of the global properties data set. 

stepsRemoved (UInteger16) 

The value of the stepsRemoved field shall be the value of steps_removed of the current data set of the clock 
issuing this message. 

grandmasterPortIdentity (PortIdentity) 

The value of the grandmasterPortIdentity field shall be the value of the grandmaster_port_identity member of 
the parent data set. 

grandmasterClockQuality (ClockQuality) 

The value of the grandmasterClockQuality field shall be the value of the grandmaster_clock_quality member 
of the parent data set. 
 

grandmasterPriority1 (UInteger8) 

The value of the grandmasterPriority1 field shall be the value of the grandmaster_priority1 member of the 
parent data set.   

grandmasterPriority2 (UInteger8) 

The value of the grandmasterPriority2 field shall be the value of the grandmaster_priority2 member of the 
parent data set.   
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parentPortIdentity (PortIdentity) 

The value of the parentPortIdentity field shall be the value of the parent_port_identity member of the parent 
data set.  

3.5 Sync message 

3.5.1 General Sync message specifications 
The fields of Sync and Delay_Req messages shall be as specified in Table 9. 
  
 

Table 9: Sync and Delay_Req message fields 
 

   Bits     Octets Offset 
7 6 5 4 3 2 1 0   

header (section 3.3) 34 0 
originTimestamp 10 34 

originTimestamp (Timestamp) 

The value of the originTimestamp field shall be an estimate of the correct time.  For IEEE 802.1AS, zero is an 
acceptable estimate of the correct time. 

3.6 Follow_Up message 

3.6.1 General Follow_Up message specifications 
The fields of Follow_Up message shall be as specified in Table 10.  
 

Table 10: Follow_Up message fields 
 

   Bits     Octets Offset 
7 6 5 4 3 2 1 0   

header (section 3.3) 34 0 
preciseOriginTimestamp 10 34 

preciseOriginTimestamp (Timestamp) 

The value of the preciseOriginTimestamp shall be the value of the timestamp for transmission of the 
associated Sync message, truncated to the next lowest nanosecond (i.e., excluding any fractional nanoseconds)   

3.7 Pdelay_Req message  

3.7.1 General Pdelay_Req message specifications 
The fields of the Pdelay_Req message shall be as specified in Table 11.  

Table 11: Pdelay_Req message fields 
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   Bits     Octets Offset 
7 6 5 4 3 2 1 0   

header (section 3.3) 34 0 
originTimestamp 10 34 

Reserved 10 44 

originTimestamp (Timestamp) 

The value of the originTimestamp shall be 0. 

3.8 Pdelay_Resp message 

3.8.1 General Pdelay_Resp message specifications 
The fields of the Pdelay_Resp message shall be as specified in Table 12.  

Table 12: Pdelay_Resp message fields 
 

   Bits     Octets Offset 
7 6 5 4 3 2 1 0   

header (section 3.3) 34 0 
requestReceiptTimestamp 10 34 

requestingPortIdentity 10 44 
  

requestReceiptTimestamp (Timestamp) 

The value of the requestReceiptTimestamp shall be 0. 

requestingPortIdentity (PortIdentity)  

The value of the requestingPortIdentity shall be the value of the sourcePortIdentity of the corresponding 
Pdelay_Req message. 
 

3.9 Pdelay_Resp_Follow_Up message 

3.9.1 General Pdelay_Resp_Follow_Up message specifications 
The fields of the Pdelay_Resp_Follow_Up message shall be as specified in Table 13.  
 

Table 13: Pdelay_Resp_Follow_Up message fields 
   Bits     Octets Offset 
7 6 5 4 3 2 1 0   

header (section 3.3) 34 0 
responseOriginTimestamp 10 34 

requestingPortIdentity 10 44 
   

responseOriginTimestamp (Timestamp) 



 19

The value of the responseOriginTimestamp shall be 0. 

requestingPortIdentity (PortIdentity)  

The value of the requestingPortIdentity shall be the value of the sourcePortIdentity of the corresponding 
Pdelay_Req message. 
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