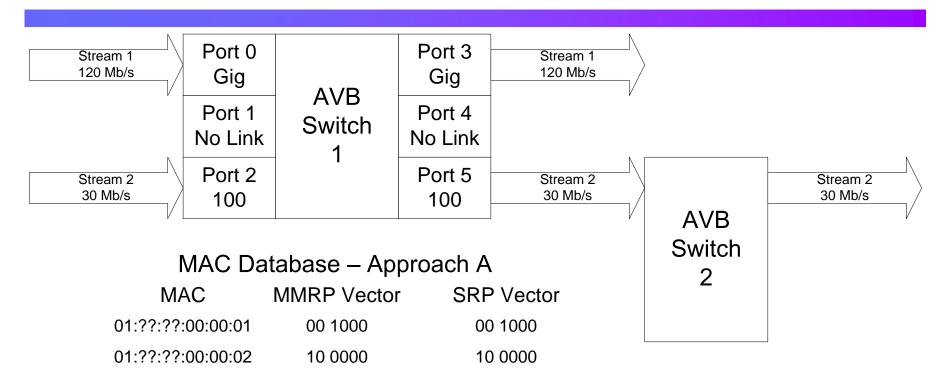
Issues/Concerns with MMRP 802.1 AVB Conference Call March 28, 2007

Don Pannell Marvell dpannell@marvell.com

March 28, 2007

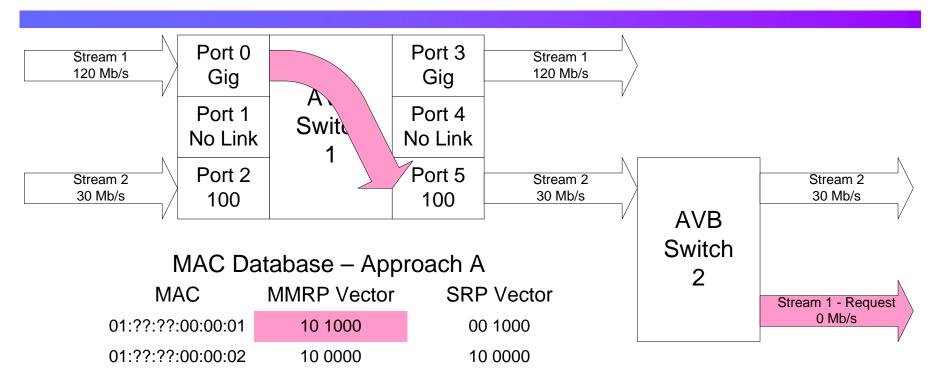
IEEE 802.1 Qat - SRP


Approach A

- Approach A's Assumptions (my understanding anyway):
 - MMRP is not 'touched by human hands'
 - MMRP runs 1st and then SRP gets its chance
 - MMRP maintains a per port bit (vector) for each multicast Stream address
 - MMRP will update a Stream's bit vector (the MMRP portion) in the hardware when requested to add or update a Stream's flow
 - SRP maintains a per port bit (vector) for each multicast Stream address
 - SRP will update a Stream's bit vector (the SRP portion) in the hardware when the requested Stream is 'approved'

Approach A

- Two bit vectors are needed
 - Do both need to be in hardware or can one be in software?
- Consider a 48 port switch if two bit vectors are needed in hardware
 - Any MAC Database will need 48-bits per entry just for MMRP
 - Architectures already support this to support IGMP multicast pruning
 - If two separate bit vectors are needed then an additional 48 bits per stream entry (MAC) is needed in the hardware
 - This adds too much cost when it can be easily avoided


Consider this Corner Case A

- Two streams 1 & 2 Setup by MMRP and Approved by SRP
- Everything is OK
- But then a device on AVB Switch 2 wants to join Stream 1

IEEE 802.1 Qat - SRP

Corner Case A, part 2

- MMRP, not knowing if SRP will 'approve' the flow, allows Stream 1 to be mapped to port 5 (in its vector).
- Then SRP 'sees' that there is not enough bandwidth so it does not update Stream 1's SRP vector.
- If the MMRP vector is the only one used then the new Join request will cause Stream 2 to have drops until SRP 'fixes' the problem

Marah	20	2007
March	∠0,	2007

IEEE 802.1 Qat - SRP

Corner Case A's Issues

- Requires *Two* bit vectors in hardware!
 - Remember the 48 port switch This will cost a lot
- Requires the hardware knows which bit vector to use
 - Remember other 'legacy' ports on the switch could be using MMRP for 'standard' MMRP flows
 - MMRP flows need to look at the MMRP bit vector
 - SRP flows need to look at the SRP bit vector
 - What does the hardware look at to know which vector to use?
 - Can use PRI 4 or 5 on an AVB port but this has nothing to do with the address database
 - It is better to use the DA as its part of the address database

Approach B

- Approach B's Assumptions:
 - MMRP is only slightly 'touched by human hands'
 - MMRP does not update the hardware Address Database bit vector for a MAC if the Stream is an SRP stream. That is ONLY change!
 - MMRP can know if the Stream is an SRP stream by a range of MAC addresses
 - Something that is good for MMRP anyway!
 - MMRP runs 1st and then SRP gets its chance
 - SRP will update a Stream's bit vector in the hardware Address Database when the requested Stream is 'approved'
- Only **One** hardware bit vector is needed
 - Architectures already support this to support IGMP multicast pruning
 - Saves the need and cost of an additional bit per port per address database entry!