
QCN: Transience, Equilibrium,
Implementation

Abdul Kabbani, Ashvin Lakshmikantha,
 Rong Pan, Balaji Prabhakar, Mick Seaman

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997.

2

Outline of presentation

• Brief review of QCN
– 2-pt and 3-pt versions
– Performance and deployment

• Equilibrium and Scalability

• Transience

• Conclusions

3

Basic QCN

• 2-point architecture: Reaction Point -- Congestion Point
1. Congestion Points: Sample packets, compute feedback (Fb), quantize Fb

to 6 bits, and reflect only negative Fb values back to Reaction Point with a
probability proportional to Fb.

2. Reaction Points: Transmit regular Ethernet frames. When congestion
message arrives: perform multiplicative decrease, fast recovery and active
increase.
– Fast recovery similar to BIC-TCP: gives high performance in high bandwidth-

delay product networks, while being very simple.

|Fb|

Re
fle

ct
io

n
Pr

ob
ab

ilit
y

Pmin

Pmax
Fb = -(qoff + w qdelta)
 = -(queue offset + w.rate offset)

4

Fast Recovery and Active Increase

Time

R
at

e

R

Rnew

Congestion message recd

Rd
Rd/2

Rd/4
Rd/8

Fast Recovery

Active Increase

Extra Fast Recovery

5

Basic QCN: Outcomes/results

• Easy to deploy, light resource requirement
– No header modifications, no tags, immediately deployable.
– Can work with a single rate limiter.

• Alias all flows which have received negative feedback onto the rate limiter. RL
becomes “meta-flow” with fast recovery + active increase ensuring good
performance.

• The algorithm is well-defined; i.e. does not rely on the existence of multiple rate
limiters for correctness of specification since it has no tags or probes.

• Quantizing Fb simplifies implementation
– Fb value used to index into a small table to find the decrease factor.

• No potentially expensive hardware resources needed for computations.
– Lookup table also makes the scheme easily reconfigurable (if Fb -->

Rate relation changes), a useful workaround.

6

QCN: 3-point architecture
• ReaP--CP--RefP

– Allows signaling Fb=0 values to ReaP, which indicate lack of congestion.
Only the RefP can do this without the use of RP-->CP association tags.

– When a ReaP receives an Fb=0 signal, it just skips to the next cycle of
Fast Recovery or Active Probing; i.e. it increases the rate appropriately and
it restarts the byte counter
• Simple behavior, no increase gains or parameters.

• Single bit needed for signaling Fb=0, call this the Fb0 bit
– We can use the DE (Discard Eligible) bit as the Fb0 bit

7

Drift

• Since both Fast Recovery and Active Increase use byte counters for self-
clocking, it is advisable to have a time-driven “rate drift”
– Provides failsafe operation, allows rate limiters to be decommissioned

• Drift
– Drift clock corresponding to RL expires every T units of time
– When clock expires

• Increase transmission rate from R to R.X, where X > 1
• Restart clock

– Any time an Fb<0 signal is received by RL, restart the drift clock
• Note: this ensures drift is used only minimally and when network is uncongested
• Also note it makes drift inversely proportional to a flow’s sending rate, since larger

sources get more Fb<0 signals relative to small sources

• Notes on Drift
– It brings about quicker convergence to fairness
– Because it is time-based, not packet-based, it can also be very helpful in grabbing

extra available bandwidth (more on this later)

8

Fairness: No Drift
2 flows: 1 starting at 1Gbps, 1 starting at 9 Gbps

9

Fairness: With Drift
2 flows: 1 starting at 1Gbps, 1 starting at 9 Gbps

10

2-pt vs 3-pt QCN

• 3-pt QCN performs better than 2-pt QCN
– All simulations indicate this

• Main reason is that the input rate can be matched to the output rate quickly
– However, in most normal cases of operation, the improvement is marginal

• Improvement is significant when grabbing a lot of excess bandwidth

• But the 3-pt QCN has a problem when flows share RLs, which
occurs when the number of RLs is small or there is multipathing
– Basically, signaling rate increases requires path information
– As already shown in an ad hoc meeting, 2-pt QCN has no problem when

RLs are shared

11

Discussion of 3-point architecture:
Signaling rate increases

• Problem: Imagine SW 2 is congested, but SW 3 has bandwidth to spare. Probing or
forward signaling will bring fluctuating positive and negative signals.
– Cannot obey both signals because (a) hot spot will be overloaded, (b) positive

signals will be more numerous.
• Disambiguation of the signals requires path knowledge at either the ReaP or the RefP.
• If we used something like a CPID or other path info to get around this

– There is a potential “stuck at low rate problem.” That is, it is quite likely that the
CPID at the ReaP will be that of SW 2. If the flow passing through SW 2 terminates,
then the ReaP has stale CPID. Specifically, this causes the ReaP to ignore any
positive signals from SW 3 and it has to rely on Active Increase to bring its rate up,
rendering positive signaling ineffective.

• Conclusion
– 2-pt QCN works reasonably well in all cases
– We only need to improve its performance in terms of grabbing extra bandwidth; and

we have a simple idea for doing this; more on this point later

Reaction
Point

SW 2
Hot Spot

SW 3

Reflection
PointSW 1 SW 4Reaction

Point

SW 2
Hot Spot

SW 3

12

Part 2: Scalability, Stability

13

Scalability Analysis

• This refers to understanding the behavior of QCN when N, the number
of sources, gets very large; some questions
– Do we need to choose parameters carefully?
– Is there a problem with aggressing modes of active increase, where new

work is injected into the system?
– Towards a theoretical model…

• We simulate 2-pt QCN with N sources, where N varies from 10 to 1000
– We look at the queue behavior and the link utilization
– We use the following fixed set of parameters for all values of N
– Queue size: 100 (1500 B) packets; Qeq = 22; Gd = 128; w = 2; A = 12

Mbps; Drift: X = 1.005, T = 500 microsecs; Sampling function = linearly
increases with |Fb| from 1--10%; RTT = 40 microsecs

– The aggregate starting rate of sources = 100 Gbps
• I.e. a source starts at 100/N Gbps

– We use AI byte-counter values of 100 pkts and 25 pkts

14

Scalability Analysis: Queue Size
AI byte counter = 100pkts

15

Scalability Analysis: Rate
AI byte counter = 100pkts

16

Scalability Analysis: Queue size
AI byte counter = 25pkts

17

Scalability Analysis: Rate
AI byte counter = 25pkts

18

Scalability Analysis: Inferences
• 2-pt QCN has excellent scalability properties

– Using exactly the same parameters across a large range of N causes no
real scalability issues; why?

• Each source is in FR or AI at any time, as shown in the state diagram

• When there are N sources, the fair share rate per source equals C/N
– The operating rate goes down with N
– Therefore, the time spent in FR (which is based on using byte-counters)

increases with N
– The more sources there are, the longer each sources spends in FR
– Hence, the amount of new work injected into the system during AI, the

potential cause for instability, remains bounded; in fact, it decreases with N
– This gives 2-pt QCN its stability property!

FR AI

19

Scalability Analysis

• Conclusion
– Aggressive forms of AI don’t hurt stability as N increases
– This observation will be very useful for grabbing extra bandwidth

20

Part 3: Transience

21

Transient Behavior

• Since the steady-state behavior of QCN is good as N increases,
it is worth looking into transient behavior; we consider two types
of transient situations
1. Serious bottleneck appears, or there is a heavy oversubscription

• Need to ensure that the sources quickly find the new lower rate
2. Serious bottleneck disappears, or this is a lot of extra bandwidth

• Need to ensure sources quickly grab the extra bandwidth
• Especially for 2-pt QCN (3-pt QCN is ok here, but cannot really be used)

• We propose some tweaks to 2-pt QCN to cope with Case 1; we
discuss a simple tweak for Case 2
– These tweaks take simple advantage of extra information available

in negative feedback
– Our goal is to retain the simplicity of 2-pt QCN while improving its

performance

22

Case 1: Severe Bottleneck

• Discounted Fast Recovery: To help sources achieve the lower
rate quickly
– Observation: This is detectable at the source because it leads to

many bursty negative Fb signals at ReaP.
– Idea: Discount the recovery.
– Algorithm: If number of negative Fb signals in first cycle of FR less

than or equal to 5, recover Rd/2, else recover Rd/4.

• Jittering FR and AI byte-counters: Minimizes synchronization
effects when sources react to bottleneck simultaneously
– Algorithm: Let FR byte counter increment at a random number

chosen in the range, say, of [105 KB, 195KB]. The mean is
150KB or 100 pkts.

– Do the same for the AI byte-counters.

23

2-pt QCN: 0.5G, AI counter = 150KB

24

2-pt QCN: 0.5G, AI counter = 37.5KB

25

3-pt QCN: 0.5G, AI counter = 150KB
Reflection Prob = 1%

26

3-pt QCN: 0.5G, AI counter = 150KB
Reflection Prob = 4%

27

• The way we have defined AI in QCN, we have used byte counters to
increase rate
– The rule: Every 100 (or 25) pkts R = R + 12 Mbps
– This gives rise to an exponential increase in rate over time:

– So, the rate increases exponentially during AI
– However, as pointed out in several simulations (thanks Cyriel, Davide and

Mitch), AI is not be quick enough in grabbing extra bandwidth when a severe
bottleneck disappears; that is, it is worse than exponential

• Why?

Case 2: Grabbing Extra Bandwidth

28

• Consider 10 sources bottlenecked to 0.5G as in the single hop
output-generated hotspot (see Davide’s presentation for details)
– When bottlenecked, the rate of each source is small; e.g. 50 Mbps
– Moreover, the offered load per source may not be high
– Therefore, the AI byte-counters which advance the rate actually have

no bytes to count; this kills exponential growth
– Need packets to increase rate!

• A possible simple solution (already proposed in the Orlando
meeting)
– Use timer-based increase during AI; avoid byte-counters here,

although we should still use them for FR (because that is precisely
why we got scalability)

– Timer-based multiplicative increase, as in drift, gives exponential rate
increases over time regardless of whether we have packets or not

– Need to work out the details, but the basic problem of not having
packets to use for AI is removed by the use of timers

Case 2: Grabbing Extra Bandwidth

29

• We have proposed and studied 2-pt and 3-pt QCN
– 3-pt QCN performs slightly better than 2-pt QCN in most common

cases of operation, but has implementation issues when flows
share RLs

– So 2-pt QCN (which is a combination of BIC and REM) seems the
preferred algorithm of the two

• We have seen that 2-pt QCN has excellent stability properties
when the number of sources increases

• It’s transient behavior can be improved with the help of minor
tweaks to the basic scheme; we shall present further work on
this shortly
– Many thanks to all who gave us feedback, esp to Davide, Cyriel,

Mitch for pointing out the single hotspot output generated scenario
and other discussions

Conclusions

